1
|
Bajad NG, T A G, Kothari M, Mukherjee R, Chowdhury A, Kumar A, Krishnamurthy S, Singh SK. Development of multifunctional fluorescence-emitting potential theranostic agents for Alzheimer's disease. Talanta 2025; 287:127574. [PMID: 39818048 DOI: 10.1016/j.talanta.2025.127574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The cholinergic deficits and amyloid beta (Aβ) aggregation are the mainstream simultaneously observed pathologies during the progression of Alzheimer's disease (AD). Deposited Aβ plaques are considered to be the primary pathological hallmarks of AD and are contemplated as promising diagnostic biomarker. Herein, a series of novel theranostic agents were designed, synthesised and evaluated against cholinesterase (ChEs) enzymes and detection of Aβ species, which are major targets for development of therapeutics for AD. Among all the tested compounds against ChEs enzymes, compound/probe 39 & 43 exhibited potent inhibitory activities. Its excellent BBB permeability was anticipated in PAMPA assay. Measurement of fluorescent properties showed emission maxima (λemm) in between 530 and 550 nm in distinct organic solvent except in the most polar solvent i.e., PBS (10 % DMSO), where broad absorption (λabs of 440 nm) and emission spectrum (λemm of 640 nm) was observed. The relative fluorescence quantum yield of probe 39 in methanol was found to be 0.17. The increase in fluorescence intensity displayed by the probe 39 upon binding with Aβ aggregates in the in vitro assay, and produced high apparent binding constant. Further, it's binding affinity towards Aβ1-42 aggregates was validated on the basis of colocalization with thioflavin T (ThT). A significant enhancement in the fluorescence lifetime of probe 39 on binding with Aβ aggregates was observed in time-correlated single-photon counting (TCSPC) analysis (10.00 ± 1.12 ns) and fluorescence lifetime imaging microscopy (FLIM) imaging (11.53 ± 0.01 ns). Furthermore, acute oral toxicity studies signified the safety profile of lead probe 39. The in-vivo behavioural studies demonstrated a substantial improvement of cognitive and special memory impairment in the scopolamine-induced cognitive deficit in mice model on the administration of compound 39 at a dose of 20 mg/kg. The AChE inhibitory potential and antioxidant property of lead probe 39 were further accessed with ex vivo biochemical analysis. Together, our findings suggest Probe 39 as a promising theranostic agent for the AD.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gajendra T A
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Mansi Kothari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Rajat Mukherjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
2
|
Zhao X, Hu Q, Wang X, Li C, Chen X, Zhao D, Qiu Y, Xu H, Wang J, Ren L, Zhang N, Li S, Gong P, Hou Y. Dual-target inhibitors based on acetylcholinesterase: Novel agents for Alzheimer's disease. Eur J Med Chem 2024; 279:116810. [PMID: 39243456 DOI: 10.1016/j.ejmech.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, accounting for 60 %-70 % of cases. At present, the pathogenesis of this condition remains unclear, but the hydrolysis of acetylcholine (ACh) is thought to play a role. Acetylcholinesterase (AChE) can break down ACh transmission from the presynaptic membrane and stop neurotransmitters' excitatory effect on the postsynaptic membrane, which plays a key role in nerve conduction. Acetylcholinesterase inhibitors (AChEIs) can delay the hydrolysis of acetylcholine (ACh), which represents a key strategy for treating AD. Due to its complex etiology, AD has proven challenging to treat. Various inhibitors and antagonists targeting key enzymes and proteins implicated in the disease's pathogenesis have been explored as potential therapeutic agents. These include Glycogen Synthase Kinase 3β (GSK-3β) inhibitors, β-site APP Cleaving Enzyme (BACE-1) inhibitors, Monoamine Oxidase (MAO) inhibitors, Phosphodiesterase inhibitors (PDEs), N-methyl--aspartic Acid (NMDA) antagonists, Histamine 3 receptor antagonists (H3R), Serotonin receptor subtype 4 (5-HT4R) antagonists, Sigma1 receptor antagonists (S1R) and soluble Epoxide Hydrolase (sEH) inhibitors. The drug development strategy of multi-target-directed ligands (MTDLs) offers unique advantages in the treatment of complex diseases. On the one hand, it can synergistically enhance the therapeutic efficacy of single-target drugs. On the other hand, it can also reduce the side effects. In this review, we discuss the design strategy of dual inhibitors based on acetylcholinesterase and the structure-activity relationship of these drugs.
Collapse
Affiliation(s)
- Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoqian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chunting Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) CO., Ltd. NO.1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Jiaqi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Le Ren
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Na Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Shuang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
3
|
Saraf P, Bhardwaj B, Verma A, Siddiqui MA, Verma H, Kumar P, Srivastava S, Krishnamurthy S, Srikrishna S, Shrivastava SK. Design, synthesis, and evaluation of benzhydrylpiperazine-based novel dual COX-2/5-LOX inhibitors with anti-inflammatory and anti-cancer activity. RSC Med Chem 2024; 16:d4md00471j. [PMID: 39430948 PMCID: PMC11487423 DOI: 10.1039/d4md00471j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024] Open
Abstract
Piperazine derivatives were screened using the ChEMBL database, paving the way for the design, synthesis, and evaluation of a novel series of dual COX-2/5-LOX inhibitors and identifying their role in mitigating cancer cell proliferation. Compound 9d with 4-Cl substitution at the terminal phenyl ring showed promising inhibition of COX-2 (IC50 = 0.25 ± 0.03 μM) and 5-LOX (IC50 = 7.87 ± 0.33 μM), outperforming the standards celecoxib (IC50 = 0.36 ± 0.023 μM) and zileuton (IC50 = 14.29 ± 0.173 μM), respectively. The two most active derivatives 9d and 9g indicated a significant anti-inflammatory response in a paw edema model by inhibiting PGE2, IL-6, and TNF-α and an increase in IL-10 concentrations. Interestingly, 9d effectively reduced pain by 55.78%, closely comparable to the 59.09% exhibited by the standard indomethacin, and was also devoid of GI, liver, kidney, and cardiac toxicity. Furthermore, 9d demonstrated anti-cancer potential against in vitro A549, COLO-205, and MIA-PA-CA-2 human cancer cell lines and an in vivo Drosophila cancer model. The pharmacokinetic investigations revealed that 9d has good oral absorption characteristics.
Collapse
Affiliation(s)
- Poorvi Saraf
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| | - Bhagwati Bhardwaj
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| | - Akash Verma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| | - Mohammad Aquib Siddiqui
- Pharmacology Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Himanshu Verma
- Pharmacology Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi-221005 India
| | - Samridhi Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| | - Sairam Krishnamurthy
- Pharmacology Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi-221005 India
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi-221005 India +91 945 2156 527
| |
Collapse
|
4
|
Sharma A, Sharma M, Bharate SB. N-Benzyl piperidine Fragment in Drug Discovery. ChemMedChem 2024; 19:e202400384. [PMID: 38924676 DOI: 10.1002/cmdc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The N-benzyl piperidine (N-BP) structural motif is commonly employed in drug discovery due to its structural flexibility and three-dimensional nature. Medicinal chemists frequently utilize the N-BP motif as a versatile tool to fine-tune both efficacy and physicochemical properties in drug development. It provides crucial cation-π interactions with the target protein and also serves as a platform for optimizing stereochemical aspects of potency and toxicity. This motif is found in numerous approved drugs and clinical/preclinical candidates. This review focuses on the applications of the N-BP motif in drug discovery campaigns, emphasizing its role in imparting medicinally relevant properties. The review also provides an overview of approved drugs, the clinical and preclinical pipeline, and discusses its utility for specific therapeutic targets and indications, along with potential challenges.
Collapse
Affiliation(s)
- Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| |
Collapse
|
5
|
Punna SK, Arockiaraj M, Rajeshkumar V. I 2-catalyzed tandem sp 3 C-H oxidation and annulation of aryl methyl ketones with amidoximes for the synthesis of 5-aroyl-1,2,4-oxadiazoles. Org Biomol Chem 2024; 22:7478-7484. [PMID: 39189408 DOI: 10.1039/d4ob01221f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A metal-free, iodine-catalyzed protocol has been developed for constructing biologically significant 5-aroyl 1,2,4-oxadiazole scaffolds using aryl methyl ketones and amidoximes. The strategy produces structurally diverse 5-aroyl 1,2,4-oxadiazoles in good to excellent yields, with a broad substrate scope that includes drug derived substrates. The reaction proceeds through iodine/DMSO-mediated oxidation of aryl methyl ketones, followed by imine formation and subsequent cyclization to yield the desired products. Additionally, this protocol has successfully produced the carbonyl analogs of ataluren and tioxazafen and has facilitated some intriguing late-stage transformations.
Collapse
Affiliation(s)
- Shiva Kumar Punna
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India.
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India.
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India.
| |
Collapse
|
6
|
Khedraoui M, Abchir O, Nour H, Yamari I, Errougui A, Samadi A, Chtita S. An In Silico Study Based on QSAR and Molecular Docking and Molecular Dynamics Simulation for the Discovery of Novel Potent Inhibitor against AChE. Pharmaceuticals (Basel) 2024; 17:830. [PMID: 39065681 PMCID: PMC11280381 DOI: 10.3390/ph17070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Acetylcholinesterase (AChE) is one of the main drug targets for treating Alzheimer's disease. This current study relies on multiple molecular modeling approaches to develop new potent inhibitors of AChE. We explored a 2D QSAR study using the statistical method of multiple linear regression based on a set of substituted 5-phenyl-1,3,4-oxadiazole and N-benzylpiperidine analogs, which were recently synthesized and proved their inhibitory activities against acetylcholinesterase (AChE). The molecular descriptors, polar surface area, dipole moment, and molecular weight are the key structural properties governing AChE inhibition activity. The MLR model was selected based on its statistical parameters: R2 = 0.701, R2test = 0.76, Q2CV = 0.638, and RMSE = 0.336, demonstrating its predictive reliability. Randomization tests, VIF tests, and applicability domain tests were adopted to verify the model's robustness. As a result, 11 new molecules were designed with higher anti-Alzheimer's activities than the model molecule. We demonstrated their improved pharmacokinetic properties through an in silico ADMET study. A molecular docking study was conducted to explore their AChE inhibition mechanisms and binding affinities in the active site. The binding scores of compounds M1, M2, and M6 were (-12.6 kcal/mol), (-13 kcal/mol), and (-12.4 kcal/mol), respectively, which are higher than the standard inhibitor Donepezil with a binding score of (-10.8 kcal/mol). Molecular dynamics simulations over 100 ns were used to validate the molecular docking results, indicating that compounds M1 and M2 remain stable in the active site, confirming their potential as promising anti-AChE inhibitors.
Collapse
Affiliation(s)
- Meriem Khedraoui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20670, Morocco; (M.K.); (O.A.); (H.N.); (I.Y.); (A.E.)
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20670, Morocco; (M.K.); (O.A.); (H.N.); (I.Y.); (A.E.)
| | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20670, Morocco; (M.K.); (O.A.); (H.N.); (I.Y.); (A.E.)
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20670, Morocco; (M.K.); (O.A.); (H.N.); (I.Y.); (A.E.)
| | - Abdelkbir Errougui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20670, Morocco; (M.K.); (O.A.); (H.N.); (I.Y.); (A.E.)
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20670, Morocco; (M.K.); (O.A.); (H.N.); (I.Y.); (A.E.)
| |
Collapse
|
7
|
Ayoup MS, Barakat MR, Abdel-Hamid H, Emam E, Al-Faiyz YS, Masoud AA, Ghareeb DA, Sonousi A, Kassab AE. Design, synthesis, and biological evaluation of 1,2,4-oxadiazole-based derivatives as multitarget anti-Alzheimer agents. RSC Med Chem 2024; 15:2080-2097. [PMID: 38911158 PMCID: PMC11187554 DOI: 10.1039/d4md00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/04/2024] [Indexed: 06/25/2024] Open
Abstract
A series of novel 1,2,4-oxadiazole-based derivatives were synthesized and evaluated for their potential anti-Alzheimer disease activity. The results revealed that compounds 2b, 2c, 2d, 3a, 4a, 6, 9a, 9b, and 13b showed excellent inhibitory activity against acetylcholinesterase (AChE) with IC50 values in the range of 0.0158 to 0.121 μM. They were 1.01 to 7.78 times more potent than donepezil (IC50 = 0.123 μM). The newly synthesized compounds exhibited lower activity towards butyrylcholinesterase (BuChE) when compared to rivastigmine. Compounds 4b and 13b showed the most prominent inhibitory potential against BuChE with IC50 values of 11.50 and 15 μM, respectively. Moreover, 4b, and 9b were found to be more potent antioxidant agents (IC50 values of 59.25, and 56.69 μM, respectively) in comparison with ascorbic acid (IC50 = 74.55 μM). Compounds 2b and 2c exhibited monoamine oxidase-B (MAO-B) inhibitory activity with IC50 values of 74.68 and 225.48 μM, respectively. They were 3.55 and 1.17 times more potent than biperiden (IC50 = 265.85 μM). The prominent interactions of the compounds with the AChE active site can be used to computationally explain the high AChE inhibitory activity. The results unveiled 1,2,4-oxadiazole derivatives 2c and 3a as multitarget anti-AD agents. The predicted ADME properties for compounds 2b and 4a were satisfactory, and 4a had the highest likelihood of crossing the blood-brain barrier (BBB), making it the optimum compound for future optimization.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| | - Mohamed Reda Barakat
- Chemistry Department, Faculty of Science, Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| | - Ehab Emam
- General Q.C Manager, Alexandria company for pharmaceuticals Alexandria 21521 Egypt
| | - Yasair S Al-Faiyz
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Aliaa A Masoud
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city) New Borg El Arab Alexandria Egypt
| | - Amr Sonousi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University P.O. Box 11562, Kasr El-Aini Street Cairo Egypt
- University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital Cairo Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University P.O. Box 11562, Kasr El-Aini Street Cairo Egypt
| |
Collapse
|
8
|
Verma A, Waiker DK, Singh N, Singh A, Saraf P, Bhardwaj B, Kumar P, Krishnamurthy S, Srikrishna S, Shrivastava SK. Lead optimization based design, synthesis, and pharmacological evaluation of quinazoline derivatives as multi-targeting agents for Alzheimer's disease treatment. Eur J Med Chem 2024; 271:116450. [PMID: 38701714 DOI: 10.1016/j.ejmech.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and β-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aβ aggregation inhibition in a self- and AChE-induced Aβ aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aβ-induced cognitive deficits in the Aβ-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aβ and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.
Collapse
Affiliation(s)
- Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Neha Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Abhinav Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
9
|
Waiker DK, Verma A, Gajendra TA, Namrata, Roy A, Kumar P, Trigun SK, Srikrishna S, Krishnamurthy S, Davisson VJ, Shrivastava SK. Design, synthesis, and biological evaluation of some 2-(3-oxo-5,6-diphenyl-1,2,4-triazin-2(3H)-yl)-N-phenylacetamide hybrids as MTDLs for Alzheimer's disease therapy. Eur J Med Chem 2024; 271:116409. [PMID: 38663285 DOI: 10.1016/j.ejmech.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), β secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aβ aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 μM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 μM) along with good anti-Aβ aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 μM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aβ-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.
Collapse
Affiliation(s)
- Digambar Kumar Waiker
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India
| | - Akash Verma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India
| | - T A Gajendra
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, 221005, India
| | - Namrata
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, 221005, India
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology - Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Mishra CB, Shalini S, Gusain S, Kumar P, Kumari S, Choi YS, Kumari J, Moku BK, Yadav AK, Prakash A, Jeon R, Tiwari M. Multitarget action of Benzothiazole-piperazine small hybrid molecule against Alzheimer's disease: In silico, In vitro, and In vivo investigation. Biomed Pharmacother 2024; 174:116484. [PMID: 38565058 DOI: 10.1016/j.biopha.2024.116484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aβ1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aβ1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 μM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aβ, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea; Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Shruti Shalini
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Siddharth Gusain
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Pawan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Kumari
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yong-Sung Choi
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea
| | - Jyoti Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Bala Krishna Moku
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anita Kumari Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea.
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India.
| |
Collapse
|
11
|
de Sena Murteira Pinheiro P, Franco LS, Montagnoli TL, Fraga CAM. Molecular hybridization: a powerful tool for multitarget drug discovery. Expert Opin Drug Discov 2024; 19:451-470. [PMID: 38456452 DOI: 10.1080/17460441.2024.2322990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION The current drug discovery paradigm of 'one drug, multiple targets' has gained attention from both the academic medicinal chemistry community and the pharmaceutical industry. This is in response to the urgent need for effective agents to treat multifactorial chronic diseases. The molecular hybridization strategy is a useful tool that has been widely explored, particularly in the last two decades, for the design of multi-target drugs. AREAS COVERED This review examines the current state of molecular hybridization in guiding the discovery of multitarget small molecules. The article discusses the design strategies and target selection for a multitarget polypharmacology approach to treat various diseases, including cancer, Alzheimer's disease, cardiac arrhythmia, endometriosis, and inflammatory diseases. EXPERT OPINION Although the examples discussed highlight the importance of molecular hybridization for the discovery of multitarget bioactive compounds, it is notorious that the literature has focused on specific classes of targets. This may be due to a deep understanding of the pharmacophore features required for target binding, making targets such as histone deacetylases and cholinesterases frequent starting points. However, it is important to encourage the scientific community to explore diverse combinations of targets using the molecular hybridization strategy.
Collapse
Affiliation(s)
- Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Silva Franco
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tadeu Lima Montagnoli
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Verma A, Waiker DK, Singh N, Roy A, Singh N, Saraf P, Bhardwaj B, Krishnamurthy S, Trigun SK, Shrivastava SK. Design, Synthesis, and Biological Investigation of Quinazoline Derivatives as Multitargeting Therapeutics in Alzheimer's Disease Therapy. ACS Chem Neurosci 2024; 15:745-771. [PMID: 38327209 DOI: 10.1021/acschemneuro.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
An efficient and promising method of treating complex neurodegenerative diseases like Alzheimer's disease (AD) is the multitarget-directed approach. Here in this work, a series of quinazoline derivatives (AV-1 to AV-21) were rationally designed, synthesized, and biologically evaluated as multitargeted directed ligands against human cholinesterase (hChE) and human β-secretase (hBACE-1) that exhibit moderate to good inhibitory effects. Compounds AV-1, AV-2, and AV-3 from the series demonstrated balanced and significant inhibition against these targets. These compounds also displayed excellent blood-brain barrier permeability via the PAMPA-BBB assay. Compound AV-2 significantly displaced propidium iodide (PI) from the acetylcholinesterase-peripheral anionic site (AChE-PAS) and was found to be non-neurotoxic at the maximum tested concentration (80 μM) against differentiated SH-SY5Y cell lines. Compound AV-2 also prevented AChE- and self-induced Aβ aggregation in the thioflavin T assay. Additionally, compound AV-2 significantly ameliorated scopolamine and Aβ-induced cognitive impairments in the in vivo behavioral Y-maze and Morris water maze studies, respectively. The ex vivo and biochemical analysis further revealed good hippocampal AChE inhibition and the antioxidant potential of the compound AV-2. Western blot and immunohistochemical (IHC) analysis of hippocampal brain revealed reduced Aβ, BACE-1, APP/Aβ, and Tau molecular protein expressions levels. The pharmacokinetic analysis of compound AV-2 demonstrated significant oral absorption with good bioavailability. The in silico molecular modeling studies of lead compound AV-2 moreover demonstrated a reasonable binding profile with AChE and BACE-1 enzymes and stable ligand-protein complexes throughout the 100 ns run. Compound AV-2 can be regarded as the lead candidate and could be explored more for AD therapy.
Collapse
Affiliation(s)
- Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Neha Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
13
|
Banoo R, Nuthakki VK, Wadje BN, Sharma A, Bharate SB. Design, synthesis, and pharmacological evaluation of indole-piperidine amides as Blood-brain barrier permeable dual cholinesterase and β-secretase inhibitors. Eur J Med Chem 2024; 266:116131. [PMID: 38215587 DOI: 10.1016/j.ejmech.2024.116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Heterocyclic compounds play a crucial role in the discovery of therapeutics. Alzheimer's disease (AD) is an unfathomable sporadic neurodegenerative disorder that involves multiple pathological pathways. The failure of current single-target small molecules to address AD's underlying causes has prompted interest in discovering multi-target directed ligands (MTDLs) to slow down the disease's progression. Herein we report the synthesis and biological evaluation of indole-piperidine amides as MTDLs for AD. The 5,6-dimethoxy-indole N-(2-(1-benzylpiperidine) carboxamide (23a) inhibits hAChE and hBACE-1 with IC50 values of 0.32 and 0.39 μM, respectively. The MTDL 23a is a mixed-type inhibitor of both hAChE and hBACE-1 with Ki values of 0.26 μM and 0.46 μM, respectively. The MD simulation studies revealed that both AChE and BACE-1 experience minor conformational changes on binding with 23a. In the PAMPA-BBB assay, analog 23a demonstrated CNS permeability, indicating the possibility for future investigation in preclinical models of AD.
Collapse
Affiliation(s)
- Razia Banoo
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijay K Nuthakki
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagyashri N Wadje
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India; Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
14
|
Manzoor S, Gabr MT, Nafie MS, Raza MK, Khan A, Nayeem SM, Arafa RK, Hoda N. Discovery of Quinolinone Hybrids as Dual Inhibitors of Acetylcholinesterase and Aβ Aggregation for Alzheimer's Disease Therapy. ACS Chem Neurosci 2024; 15:539-559. [PMID: 38149821 DOI: 10.1021/acschemneuro.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The development of multitargeted therapeutics has evolved as a promising strategy to identify efficient therapeutics for neurological disorders. We report herein new quinolinone hybrids as dual inhibitors of acetylcholinesterase (AChE) and Aβ aggregation that function as multitargeted ligands for Alzheimer's disease. The quinoline hybrids (AM1-AM16) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. Among the tested compounds, AM5 and AM10 inhibited AChE activity by more than 80% at single-dose screening and possessed a remarkable ability to inhibit the fibrillation of Aβ42 oligomers at 10 μM. In addition, dose-dependent screening of AM5 and AM10 was performed, giving half-maximal AChE inhibitory concentration (IC50) values of 1.29 ± 0.13 and 1.72 ± 0.18 μM, respectively. In addition, AM5 and AM10 demonstrated concentration-dependent inhibitory profiles for the aggregation of Aβ42 oligomers with estimated IC50 values of 4.93 ± 0.8 and 1.42 ± 0.3 μM, respectively. Moreover, the neuroprotective properties of the lead compounds AM5 and AM10 were determined in SH-SY5Y cells incubated with Aβ oligomers. This work would enable future research efforts aiming at the structural optimization of AM5 and AM10 to develop potent dual inhibitors of AChE and amyloid aggregation. Furthermore, the in vivo assay confirmed the antioxidant activity of compounds AM5 and AM10 through increasing GSH, CAT, and SOD activities that are responsible for scavenging the ROS and restoring its normal level. Blood investigation illustrated the protective activity of the two compounds against lead-induced neurotoxicity through retaining hematological and liver enzymes near normal levels. Finally, immunohistochemistry investigation revealed the inhibitory activity of β-amyloid (Aβ) aggregation.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K
| | - Moustafa T Gabr
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York10021, United States
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (P.O. Box 27272), United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ashma Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Reem K Arafa
- Drug Design and Discovery Lab, Helmy Institute for Medical Sciences, Zewail City of Science, Technology and Innovation, Giza 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza12578,Egypt
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
15
|
Long J, Qin F, Luo J, Zhong G, Huang S, Jing L, Yi T, Liu J, Jiang N. Design, synthesis, and biological evaluation of novel capsaicin-tacrine hybrids as multi-target agents for the treatment of Alzheimer's disease. Bioorg Chem 2024; 143:107026. [PMID: 38103330 DOI: 10.1016/j.bioorg.2023.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
A series of novel hybrid compounds were designed, synthesized, and utilized as multi-target drugs to treat Alzheimer's disease (AD) by connecting capsaicin and tacrine moieties. The biological assays indicated that most of these compounds demonstrated strong inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities with IC50 values in the nanomolar, as well as good blood-brain barrier permeability. Among the synthesized hybrids, compound 5s displayed the most balanced inhibitory effect on hAChE (IC50 = 69.8 nM) and hBuChE (IC50 = 68.0 nM), and exhibited promising inhibitory activity against β-secretase-1 (BACE-1) (IC50 = 3.6 µM). Combining inhibition kinetics and molecular model analysis, compound 5s was shown to be a mixed inhibitor affecting both the catalytic active site (CAS) and peripheral anionic site (PAS) of hAChE. Additionally, compound 5s showed low toxicity in PC12 and BV2 cell assays. Moreover, compound 5s demonstrated good tolerance at the dose of up to 2500 mg/kg and exhibited no hepatotoxicity at the dose of 3 mg/kg in mice, and it could effectively improve memory ability in mice. Taken together, these findings suggest that compound 5s is a promising and effective multi-target agent for the potential treatment of AD.
Collapse
Affiliation(s)
- Juanyue Long
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Fengxue Qin
- Blood Transfusion Department, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise, Guangxi 533000, PR China
| | - Jinchong Luo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, PR China
| | - Guohui Zhong
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Shutong Huang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Lin Jing
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise, Guangxi 533000, PR China.
| | - Jing Liu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China; School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, PR China.
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China.
| |
Collapse
|
16
|
Bajad NG, Singh RB, T A G, Gutti G, Kumar A, Krishnamurthy S, Singh SK. Development of multi-targetable chalcone derivatives bearing N-aryl piperazine moiety for the treatment of Alzheimer's disease. Bioorg Chem 2024; 143:107082. [PMID: 38199142 DOI: 10.1016/j.bioorg.2023.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
The multi-target directed ligand (MTDL) discovery has been gaining immense attention in the development of therapeutics for Alzheimer's disease (AD). The strategy has been evolved as an auspicious approach suitable to combat the heterogeneity and the multifactorial nature of AD. Therefore, multi-targetable chalcone derivatives bearing N-aryl piperazine moiety were designed, synthesized, and evaluated for the treatment of AD. All the synthesized compounds were screened for thein vitro activityagainst acetylcholinesterase (AChE), butylcholinesterase (BuChE), β-secretase-1 (BACE-1), and inhibition of amyloid β (Aβ) aggregation. Amongst all the tested derivatives, compound 41bearing unsubstituted benzylpiperazine fragment and para-bromo substitution at the chalcone scaffold exhibited balanced inhibitory profile against the selected targets. Compound 41 elicited favourable permeation across the blood-brain barrier in the PAMPA assay. The molecular docking and dynamics simulation studies revealed the binding mode analysis and protein-ligand stability ofthe compound with AChE and BACE-1. Furthermore,itameliorated cognitive dysfunctions and signified memory improvement in thein-vivobehavioural studies (scopolamine-induced amnesia model). Theex vivobiochemical analysis of mice brain homogenates established the reduced AChE and increased ACh levels. The antioxidant activity of compound 41 was accessed with the determination of catalase (CAT) and malondialdehyde (MDA) levels. The findings suggested thatcompound 41, containing a privileged chalcone scaffold, can act as a lead molecule for developing AD therapeutics.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, India
| | | | - Gajendra T A
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, India
| | - Sairam Krishnamurthy
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, India.
| |
Collapse
|
17
|
Kiran PVR, Waiker DK, Verma A, Saraf P, Bhardwaj B, Kumar H, Singh A, Kumar P, Singh N, Srikrishna S, Trigun SK, Shrivastava SK. Design and development of benzyl piperazine linked 5-phenyl-1,2,4-triazole-3-thione conjugates as potential agents to combat Alzheimer's disease. Bioorg Chem 2023; 139:106749. [PMID: 37517157 DOI: 10.1016/j.bioorg.2023.106749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Our present work demonstrates the molecular hybridization-assisted design, synthesis, and biological evaluation of 22 benzylpiperazine-linked 1,2,4-triazole compounds (PD1-22) as AD modifying agents. All the compounds were tested for their in vitro hChEs, hBACE-1, and Aβ-aggregation inhibition properties. Among them, compound PD-08 and PD-22 demonstrated good hChE and hBACE-1 inhibition as compared to standards donepezil and rivastigmine. Both compounds displaced PI from PAS at 50 µM concentration which was comparable to donepezil and also demonstrated anti-Aβ aggregation properties in self- and AChE-induced thioflavin T assay. Both compounds have shown excellent BBB permeation via PAMPA-BBB assay and were found to be non-neurotoxic at 80 µM concentration against differentiated SH-SY5Y cell lines. Compound PD-22 demonstrated an increase in rescued eye phenotype in Aβ-phenotypic drosophila AD model and amelioration of behavioral deficits in the Aβ-induced rat model of AD. The in-silico docking studies of compound PD-22 revealed a good binding profile towards CAS and PAS residues of AChE and the catalytic dyad of the BACE-1. The 100 ns molecular dynamics simulation studies of compound PD-22 complexed with AChE and BACE-1 enzymes suggested stable ligand-protein complex throughout the simulation run. Based on our findings compound PD-22 could further be utilized as a lead to design a promising candidate for AD therapy.
Collapse
Affiliation(s)
- Pidugu Venkata Ravi Kiran
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Hansal Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Abhinav Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
18
|
Nguyen HD. In silico identification of novel heterocyclic compounds combats Alzheimer's disease through inhibition of butyrylcholinesterase enzymatic activity. J Biomol Struct Dyn 2023; 42:10890-10910. [PMID: 37723904 DOI: 10.1080/07391102.2023.2259482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Increasing evidence indicates that heterocyclic molecules possess properties against butyrylcholinesterase (BChE) enzymatic activity, which is a potential therapeutic target for Alzheimer's disease (AD). Thus, this study aimed to further evaluate the relationship between heterocyclic molecules and their biological activities. A dataset of 38 selective and potent heterocyclic compounds (-log[the half‑maximal inhibitory concentration (pIC50)]) values ranging from 8.02 to 10.05) was applied to construct a quantitative structure-activity relationship (QSAR) study, including Bayesian model average (BMA), artificial neural network (ANN), multiple nonlinear regression (MNLR), and multiple linear regression (MLR) models. Four models met statistical acceptance in internal and external validation. The ANN model was superior to other models in predicting the pIC50 of the outcome. The descriptors put into the models were found to be comparable with the target-ligand complex X-ray structures, making these models interpretable. Three selected molecules possess drug-like properties (pIC50 values ranged from 9.19 to 9.54). The docking score between candidates and the BChE receptor (RCSB ID 6EYF) ranged from -8.4 to -9.0 kcal/mol. Remarkably, the pharmacokinetics, biological activities, molecular dynamics, and physicochemical properties of compound 18 (C20H22N4O, pIC50 value = 9.33, oxadiazole derivative group) support its protective effects on AD treatment due to its non-toxic nature, non-carcinogen, cholinergic nature, capability to penetrate the blood-brain barrier, and high gastrointestinal absorption.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
19
|
Waiker DK, Verma A, A GT, Singh N, Roy A, Dilnashin H, Tiwari V, Trigun SK, Singh SP, Krishnamurthy S, Lama P, Davisson VJ, Shrivastava SK. Design, Synthesis, and Biological Evaluation of Piperazine and N-Benzylpiperidine Hybrids of 5-Phenyl-1,3,4-oxadiazol-2-thiol as Potential Multitargeted Ligands for Alzheimer's Disease Therapy. ACS Chem Neurosci 2023. [PMID: 37216500 DOI: 10.1021/acschemneuro.3c00245] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Our present work demonstrates the successful design and synthesis of a new class of compounds based upon a multitargeted directed ligand design approach to discover new agents for use in Alzheimer's disease (AD). All the compounds were tested for their in vitro inhibitory potential against human acetylcholinesterase (hAChE), human butylcholinesterase (hBChE), β-secretase-1 (hBACE-1), and amyloid β (Aβ) aggregation. Compounds 5d and 5f have shown hAChE and hBACE-1 inhibition comparable to donepezil, while hBChE inhibition was comparable to rivastigmine. Compounds 5d and 5f also demonstrated a significant reduction in the formation of Aβ aggregates through the thioflavin T assay and confocal, atomic force, and scanning electron microscopy studies and significantly displaced the total propidium iodide, that is, 54 and 51% at 50 μM concentrations, respectively. Compounds 5d and 5f were devoid of neurotoxic liabilities against RA/BDNF (RA = retinoic acid; BDNF = brain-derived neurotrophic factor)-differentiated SH-SY5Y neuroblastoma cell lines at 10-80 μM concentrations. In both the scopolamine- and Aβ-induced mouse models for AD, compounds 5d and 5f demonstrated significant restoration of learning and memory behaviors. A series of ex vivo studies of hippocampal and cortex brain homogenates showed that 5d and 5f elicit decreases in AChE, malondialdehyde, and nitric oxide levels, an increase in glutathione level, and reduced levels of pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) mRNA. The histopathological examination of mice revealed normal neuronal appearance in the hippocampal and cortex regions of the brain. Western blot analysis of the same tissue indicated a reduction in Aβ, amyloid precursor protein (APP)/Aβ, BACE-1, and tau protein levels, which were non-significant compared to the sham group. The immunohistochemical analysis also showed significantly lower expression of BACE-1 and Aβ levels, which was comparable to donepezil-treated group. Compounds 5d and 5f represent new lead candidates for developing AD therapeutics.
Collapse
Affiliation(s)
- Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Gajendra T A
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surya P Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Prem Lama
- CSIR - Indian Institute of Petroleum, Tech. Block, Mohkampur, Dehradun 248005, Uttarakhand, India
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 479047, United States
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
20
|
Waiker D, Verma A, Saraf P, T.A. G, Krishnamurthy S, Chaurasia RN, Shrivastava SK. Development and Evaluation of Some Molecular Hybrids of N-(1-Benzylpiperidin-4-yl)-2-((5-phenyl-1,3,4-oxadiazol-2-yl)thio) as Multifunctional Agents to Combat Alzheimer's Disease. ACS OMEGA 2023; 8:9394-9414. [PMID: 36936338 PMCID: PMC10018501 DOI: 10.1021/acsomega.2c08061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
A series of some novel compounds (SD-1-17) were designed following a molecular hybridization approach, synthesized, and biologically tested for hAChE, hBChE, hBACE-1, and Aβ aggregation inhibition potential to improve cognition and memory functions associated with Alzheimer's disease. Compounds SD-4 and SD-6 have shown multifunctional inhibitory profiles against hAChE, hBChE, and hBACE-1 enzymes in vitro. Compounds SD-4 and SD-6 have also shown anti-Aβ aggregation potential in self- and acetylcholinesterase (AChE)-induced thioflavin T assay. Both compounds have shown a significant propidium iodide (PI) displacement from the cholinesterase-peripheral active site (ChE-PAS) region with excellent blood-brain barrier (BBB) permeability and devoid of neurotoxic liabilities. Compound SD-6 ameliorates cognition and memory functions in scopolamine- and Aβ-induced behavioral rat models of Alzheimer's disease (AD). Ex vivo biochemical estimation revealed a significant decrease in malonaldehyde (MDA) and AChE levels, while a substantial increase of superoxide dismutase (SOD), catalase, glutathione (GSH), and ACh levels is seen in the hippocampal brain homogenates. The histopathological examination of brain slices also revealed no sign of neuronal or any tissue damage in the SD-6-treated experimental animals. The in silico molecular docking results of compounds SD-4 and SD-6 showed their binding with hChE-catalytic anionic site (CAS), PAS, and the catalytic dyad residues of the hBACE-1 enzymes. A 100 ns molecular dynamic simulation study of both compounds with ChE and hBACE-1 enzymes also confirmed the ligand-protein complex's stability, while quikprop analysis suggested drug-like properties of the compounds.
Collapse
Affiliation(s)
- Digambar
Kumar Waiker
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Akash Verma
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Gajendra T.A.
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering and
Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering and
Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Rameshwar Nath Chaurasia
- Institute
of Medical Sciences, Faculty of Medicine, Department of Neurology, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| |
Collapse
|
21
|
Raghuvanshi R, Jamwal A, Nandi U, Bharate SB. Multitargeted C9-substituted ester and ether derivatives of berberrubine for Alzheimer's disease: Design, synthesis, biological evaluation, metabolic stability, and pharmacokinetics. Drug Dev Res 2023; 84:121-140. [PMID: 36461610 DOI: 10.1002/ddr.22017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Berberrubine is a naturally occurring isoquinoline alkaloid and a bioactive metabolite of berberine. Berberine exhibits a wide range of pharmacological activities, including cholinesterase inhibition. The cholinesterase inhibitors provide symptomatic treatment for Alzheimer's disease; however, multitarget-directed ligands have the potential as disease-modifying therapeutics. Herein, we prepared a series of C9-substituted berberrubine derivatives intending to discover dual cholinesterase and beta-site amyloid-precursor protein cleaving enzyme 1 (BACE-1) inhibitors. Most synthesized derivatives possessed balanced dual inhibition (AChE and BChE) activity in the submicromolar range and a moderate inhibition against BACE-1. Two most active ester derivatives, 12a and 11d, display inhibition of AChE, BChE, and BACE-1. The 3-methoxybenzoyl ester derivative, 12a, inhibits electric eel acetylcholinesterase (EeAChE), equine serum butyrylcholinesterase (eqBChE), and human hBACE-1 with IC50 values of 0.5, 4.3, and 11.9 μM, respectively and excellent BBB permeability (Pe = 8 × 10-6 cm/s). The ester derivative 12a is metabolically unstable; however, its ether analog 13 is stable in HLM and exhibits inhibition of AChE, BChE, and BACE-1 with IC50 values of 0.44, 3.8, and 17.9 μM, respectively. The ether analog also inhibits self-aggregation of Aβ and crosses BBB (Pe = 7.3 × 10-6 cm/s). Administration of 13 at 5 mg/kg (iv) in Wistar rats showed excellent plasma exposure with AUC0-∞ of 28,834 ng min/ml. In conclusion, the multitargeted berberrubine ether derivative 13 is CNS permeable and has good ADME properties.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Ashiya Jamwal
- Academy of Scientific & Innovative Research, Ghaziabad, India.,Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research, Ghaziabad, India.,Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research, Ghaziabad, India
| |
Collapse
|
22
|
Monteiro KLC, Dos Santos Alcântara MG, Freire NML, Brandão EM, do Nascimento VL, Dos Santos Viana LM, de Aquino TM, da Silva-Júnior EF. BACE-1 Inhibitors Targeting Alzheimer's Disease. Curr Alzheimer Res 2023; 20:131-148. [PMID: 37309767 DOI: 10.2174/1567205020666230612155953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The accumulation of amyloid-β (Aβ) is the main event related to Alzheimer's disease (AD) progression. Over the years, several disease-modulating approaches have been reported, but without clinical success. The amyloid cascade hypothesis evolved and proposed essential targets such as tau protein aggregation and modulation of β-secretase (β-site amyloid precursor protein cleaving enzyme 1 - BACE-1) and γ-secretase proteases. BACE-1 cuts the amyloid precursor protein (APP) to release the C99 fragment, giving rise to several Aβ peptide species during the subsequent γ-secretase cleavage. In this way, BACE-1 has emerged as a clinically validated and attractive target in medicinal chemistry, as it plays a crucial role in the rate of Aβ generation. In this review, we report the main results of candidates in clinical trials such as E2609, MK8931, and AZD-3293, in addition to highlighting the pharmacokinetic and pharmacodynamic-related effects of the inhibitors already reported. The current status of developing new peptidomimetic, non-peptidomimetic, naturally occurring, and other class inhibitors are demonstrated, considering their main limitations and lessons learned. The goal is to provide a broad and complete approach to the subject, exploring new chemical classes and perspectives.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Marcone Gomes Dos Santos Alcântara
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Nathalia Monteiro Lins Freire
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Esaú Marques Brandão
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Vanessa Lima do Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Líbni Maísa Dos Santos Viana
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
23
|
Mishra G, Awasthi R, Singh AK, Singh S, Mishra SK, Singh SK, Nandi MK. Intranasally Co-administered Berberine and Curcumin Loaded in Transfersomal Vesicles Improved Inhibition of Amyloid Formation and BACE-1. ACS OMEGA 2022; 7:43290-43305. [PMID: 36467923 PMCID: PMC9713875 DOI: 10.1021/acsomega.2c06215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Selective permeability of the blood-brain barrier restricts the treatment efficacy of neurologic diseases. Berberine (BBR) and curcumin (CUR)-loaded transferosomes (TRANS) were prepared for the effective management of Alzheimer's disease (AD). The study involved the syntheses of BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS by the film hydration method. Vesicles were characterized to ensure the formation of drug-loaded vesicles and their in vivo performance. The particle sizes of BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS were 139.2 ± 7, 143.4 ± 8, and 165.3 ± 6.5 nm, respectively. The presence of diffused rings in the SED image indicates the crystalline nature of the payload. Low surface roughness in an AFM image could be associated with the presence of a surface lipid. BBR-CUR-TRANS showed 41.03 ± 1.22 and 47.79 ± 3.67% release of BBR and 19.22 ± 1.47 and 24.67 ± 1.94% release of CUR, respectively, in phosphate buffer saline (pH 7.4) and acetate buffer (pH 4.0). Formulations showed sustained release of both loaded drugs. BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS exhibited a lower percentage of hemolysis than pure BBR and CUR, indicating the safety of the payload from delivery vesicles. Lower percentages of binding were recorded from BBR-CUR-TRANS than BBR-TRANS and CUR-TRANS. Acetylcholinesterase inhibition activity of the prepared transferosomes was greater than that of pure drugs, which are thought to have good cellular penetration. The spatial memory was improved in treated mice models. The level of malondialdehyde decreased in AD animals treated with BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS, respectively, as compared to the scopolamine-induced AD animals. BBR-CUR-TRANS-treated animals showed the highest decrease in the NO level. The catalase level was significantly restored in scopolamine-intoxicated animals treated with BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS. The immunohistochemistry result suggested that the BBR-TRANS, CUR-TRANS, and BBR-CUR-TRANS have significantly decreased the regulation of expression of BACE-1 through antioxidant activity. In conclusion, the study highlights the utility of formulated transferosomes as promising carriers for the co-delivery of drugs to the brain.
Collapse
Affiliation(s)
- Gaurav Mishra
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| | - Rajendra Awasthi
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, Bidholi, Via-Prem
Nagar, Dehradun, Uttarakhand248 007, India
| | - Anurag Kumar Singh
- Cancer
Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, Alabama36101-0271, United States
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| | - Snigdha Singh
- Mahatma
Gandhi Kashi Vidyapith, Varanasi, Uttar Pradesh221 002, India
| | - Sunil Kumar Mishra
- Department
of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh221 005, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| | - Manmath K. Nandi
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh221 005, India
| |
Collapse
|
24
|
Structural Variations in the Central Heterocyclic Scaffold of Tripartite 2,6-Difluorobenzamides: Influence on Their Antibacterial Activity against MDR Staphylococcus aureus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196619. [PMID: 36235156 PMCID: PMC9573484 DOI: 10.3390/molecules27196619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Five series of heterocyclic tripartite 2,6-difluorobenzamides, namely 1,2,3-triazoles, 1,2,4- and 1,3,4-oxadiazoles, analogs of reported model anti-staphylococcal compounds, were prepared. The purpose was to investigate the influence of the nature of the heterocyclic central scaffold on the biological activity against three strains of S. aureus, including two drug-resistant ones. Among the 15 compounds of the new collection, a 3-(4-tert-butylphenyl)-1,2,4-oxadiazole linked via a methylene group with a 2,6-difluorobenzamide moiety (II.c) exhibited a minimal inhibitory concentration between 0.5 and 1 µg/mL according to the strain. Subsequent studies on II.c demonstrated no human cytotoxicity, while targeting the bacterial divisome.
Collapse
|
25
|
Novel 5,6-diphenyl-1,2,4-triazine-3-thiol derivatives as dual COX-2/5-LOX inhibitors devoid of cardiotoxicity. Bioorg Chem 2022; 129:106147. [PMID: 36126607 DOI: 10.1016/j.bioorg.2022.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
A novel series of 5,6-diphenyl-1,2,4-triazine-3-thiol derivatives were designed, synthesized, and screened for their inhibitory potential against COX-2 and 5-LOX enzymes. The compounds from the series have shown moderate to excellent inhibitory potential against both targets. Compound 6k showed the inhibitions against COX-2 (IC50 = 0.33 ± 0.02 μM) and 5-LOX inhibition (IC50 = 4.90 ± 0.22 μM) which was better than the standard celecoxib (IC50 = 1.81 ± 0.13 μM) for COX-2 and zileuton (IC50 = 15.04 ± 0.18 μM) for 5-LOX respectively. Further investigation on the selected derivative 6k in rat paw edema models revealed significant anti-inflammatory efficacy. Compound 6k has also shown negligible ulcerogenic liability as compared to indomethacin. Moreover, in vivo biochemical analysis also established the compound's antioxidant properties. Compounds 6c and 6k were also observed to be devoid of cardiotoxicity post-myocardial infarction in rats. The molecular docking and dynamics simulation studies of the most active derivative 6k affirmed their consentient binding interactions with COX-2 specific ravine and cleft of 5-LOX.
Collapse
|
26
|
Recent advance on pleiotropic cholinesterase inhibitors bearing amyloid modulation efficacy. Eur J Med Chem 2022; 242:114695. [PMID: 36044812 DOI: 10.1016/j.ejmech.2022.114695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Due to the hugely important roles of neurotransmitter acetylcholine (ACh) and amyloid-β (Aβ) in the pathogenesis of Alzheimer's disease (AD), the development of multi-target directed ligands (MTDLs) focused on cholinesterase (ChE) and Aβ becomes one of the most attractive strategies for combating AD. To date, numerous preclinical studies toward multifunctional conjugates bearing ChE inhibition and anti-Aβ aggregation have been reported. Noteworthily, most of the reported multifunctional cholinesterase inhibitors are carbamate-based compounds due to the initial properties of carbamate moiety. However, because their easy hydrolysis in vivo and the instability of the compound-enzyme conjugate, the mechanism of action of these compounds is rare. Thus, non-carbamate compounds are of great need for developing novel cholinesterase inhibitors. Besides, given that Aβ accumulation begins to occur 10-15 years before AD onset, modulating Aβ is ineffective only in inhibiting its aggregation but not eliminate the already accumulated Aβ if treatment is started when the patient has been diagnosed as AD. Considering the limitation of current Aβ accumulation modulators in ameliorating cognitive deficits and ineffectiveness of ChE inhibitors in blocking disease progression, the development of a practically valuable strategy with multiple pharmaceutical properties including ChE inhibition and Aβ modulation for treating AD is indispensable. In this review, we focus on summarizing the scaffold characteristics of reported non-carbamate cholinesterase inhibitors with Aβ modulation since 2020, and understanding the ingenious multifunctional drug design ideas to accelerate the pace of obtaining more efficient anti-AD drugs in the future.
Collapse
|
27
|
Obaid RJ, Naeem N, Mughal EU, Al-Rooqi MM, Sadiq A, Jassas RS, Moussa Z, Ahmed SA. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase. RSC Adv 2022; 12:19764-19855. [PMID: 35919585 PMCID: PMC9275557 DOI: 10.1039/d2ra03081k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 01/15/2023] Open
Abstract
Heterocycles are the key structures in organic chemistry owing to their immense applications in the biological, chemical, and pharmaceutical fields. Heterocyclic compounds perform various noteworthy functions in nature, medication, innovation etc. Most frequently, pure nitrogen heterocycles or various positional combinations of nitrogen, oxygen, and sulfur atoms in five or six-membered rings can be found. Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes is a popular strategy for the management of numerous mental diseases. In this context, cholinesterase inhibitors are utilized to relieve the symptoms of neurological illnesses like dementia and Alzheimer's disease (AD). The present review focuses on various heterocyclic scaffolds and their role in designing and developing new potential AChE and BChE inhibitors to treat AD. Moreover, a detailed structure-activity relationship (SAR) has been established for the future discovery of novel drugs for the treatment of AD. Most of the heterocyclic motifs have been used in the design of new potent cholinesterase inhibitors. In this regard, this review is an endeavor to summarize the biological and chemical studies over the past decade (2010-2022) describing the pursuit of new N, O and S containing heterocycles which can offer a rich supply of promising AChE and BChE inhibitory activities.
Collapse
Affiliation(s)
- Rami J Obaid
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | | | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain Abu Dhabi United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
28
|
Babaei E, Küçükkılınç TT, Jalili-Baleh L, Nadri H, Öz E, Forootanfar H, Hosseinzadeh E, Akbari T, Ardestani MS, Firoozpour L, Foroumadi A, Sharifzadeh M, Mirjalili BBF, Khoobi M. Novel Coumarin–Pyridine Hybrids as Potent Multi-Target Directed Ligands Aiming at Symptoms of Alzheimer’s Disease. Front Chem 2022; 10:895483. [PMID: 35844650 PMCID: PMC9280334 DOI: 10.3389/fchem.2022.895483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this research, a series of coumarin-based scaffolds linked to pyridine derivatives via a flexible aliphatic linkage were synthesized and assessed as multifunctional anti-AD agents. All the compounds showed acceptable acetylcholinesterase (AChE) inhibition activity in the nanomolar range (IC50 = 2–144 nM) and remarkable butyrylcholinesterase (BuChE) inhibition property (IC50 = 9–123 nM) compared to donepezil as the standard drug (IC50 = 14 and 275 nM, respectively). Compound 3f as the best AChE inhibitor (IC50 = 2 nM) showed acceptable BuChE inhibition activity (IC50 = 24 nM), 100 times more active than the standard drug. Compound 3f could also significantly protect PC12 and SH-SY5Y cells against H2O2-induced cell death and amyloid toxicity, respectively, superior to the standard drugs. It could interestingly reduce β-amyloid self and AChE-induced aggregation, more potent than the standard drug. All the results suggest that compound 3f could be considered as a promising multi-target-directed ligand (MTDL) against AD.
Collapse
Affiliation(s)
- Elaheh Babaei
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | | | - Leili Jalili-Baleh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Hamid Nadri
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Esin Öz
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elaheh Hosseinzadeh
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
- *Correspondence: Bi Bi Fatemeh Mirjalili, ; Mehdi Khoobi, ,
| | - Mehdi Khoobi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bi Bi Fatemeh Mirjalili, ; Mehdi Khoobi, ,
| |
Collapse
|
29
|
Elghazawy NH, Zaafar D, Hassan RR, Mahmoud MY, Bedda L, Bakr AF, Arafa RK. Discovery of New 1,3,4-Oxadiazoles with Dual Activity Targeting the Cholinergic Pathway as Effective Anti-Alzheimer Agents. ACS Chem Neurosci 2022; 13:1187-1205. [PMID: 35377601 DOI: 10.1021/acschemneuro.1c00766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Finding an effective anti-Alzheimer agent is quite challenging due to its multifactorial nature. As such, multitarget directed ligands (MTDLs) could be a promising paradigm for finding potential therapeutically effective new small-molecule bioactive agents against Alzheimer's disease (AD). We herein present the design, synthesis, and biological evaluation of a new series of compounds based on a 5-pyrid-3-yl-1,3,4-oxadiazole scaffold. Our synthesized compounds displayed excellent in vitro enzyme inhibitory activity at nanomolar (nM) concentrations against two major AD disease-modifying targets, i.e., acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Among our compounds, 5e was considered the best dual inhibitor of both AChE (IC50 = 50.87 nM) and BuChE (IC50 = 4.77 nM), where these values surpassed those of rivastagmine (the only FDA-approved dual AChE and BuChE inhibitor) in our study. Furthermore, in vivo and ex vivo testing of the hit compound 5e highlighted its significant AD-biotargeting effects including reducing the elevated levels of lipid peroxidation and glutathione (GSH), normalizing levels of 8-OHdG, and, most importantly, decreasing the levels of the well-known AD hallmark β-amyloid protein. Finally, the binding ability of 5e to each of our targets, AChE and BuChE, was confirmed through additional molecular docking and molecular dynamics (MD) simulations that reflected good interactions of 5e to the active site of both targets. Hence, we herein present a series of new 1,3,4-oxadiazoles that are promising leads for the development of dual-acting AChE and BuChE inhibitors for the management of AD.
Collapse
Affiliation(s)
- Nehal H. Elghazawy
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 12055, Egypt
| | - Reham R. Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| | - Mohamed Y. Mahmoud
- Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Loay Bedda
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| | - Alaa F. Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Reem K. Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| |
Collapse
|
30
|
Verma A, Kumar Waiker D, Bhardwaj B, Saraf P, Shrivastava SK. The molecular mechanism, targets, and novel molecules in the treatment of Alzheimer's disease. Bioorg Chem 2021; 119:105562. [PMID: 34952243 DOI: 10.1016/j.bioorg.2021.105562] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/27/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurological illness that causes dementia mainly in the elderly. The challenging obstacles related to AD has freaked global healthcare system to encourage scientists in developing novel therapeutic startegies to overcome with the fatal disease. The current treatment therapy of AD provides only symptomatic relief and to some extent disease-modifying effects. The current approach for AD treatment involves designing of cholinergic inhibitors, Aβ disaggregation inducing agents, tau inhibitors and several antioxidants. Hence, extensive research on AD therapy urgently requires a deep understanding of its pathophysiology and exploration of various chemical scaffolds to design and develop a potential drug candidate for the treatment. Various issues linked between disease and therapy need to be considered such as BBB penetration capability, clinical failure and multifaceted pathophisiology requires a proper attention to develop a lead candidate. This review article covers all probable mechanisms including one of the recent areas for investigation i.e., lipid dyshomeostasis, pathogenic involvement of P. gingivalis and neurovascular dysfunction, recently reported molecules and drugs under clinical investigations and approved by FDA for AD treatment. Our summarized information on AD will attract the researchers to understand and explore current status and structural modifications of the recently reported heterocyclic derivatives in drug development for AD therapy.
Collapse
Affiliation(s)
- Akash Verma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Digambar Kumar Waiker
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Bhagwati Bhardwaj
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Poorvi Saraf
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
31
|
Bulbocodin D ameliorate cognitive impairment in APP/PS1 transgenic mice by modulating amyloid-beta burden, oxidative status and neuroinflammation. Psychopharmacology (Berl) 2021; 238:2073-2082. [PMID: 33811504 DOI: 10.1007/s00213-021-05832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Amyloid β peptide (Aβ) triggers a series of pathological events including microglial activation, oxidative stress, and inflammation-causing neuronal death and typical pathological changes in Alzheimer's disease (AD). OBJECTIVES This study aimed to investigate the therapeutic effects and mechanism of bulbocodin D for AD in vivo. METHODS In this study, Morris water maze (MWM) analysis was used to detect the cognitive ability of APP/PS1 mice after gavage with bulbocodin D for 2 months. Levels of Aβ40, Aβ42, IL-1β, and TNF-α were evaluated by ELISA. Aβ plaques and biomarkers of neuroinflammation were also investigated through histological analysis. RESULTS We established that bulbocodin D significantly improved cognitive deficits in APP/PS1 transgenic mice and reduced the levels of amyloid plaque, Aβ40, and Aβ42. Bulbocodin D also reduced levels of microglial markers IbA1, GFAP, and antioxidant enzymes and reduced the products of lipid peroxidation and proinflammatory cytokines. CONCLUSION In summary, the present study provides preclinical evidence that oral bulbocodin D can reduce AD pathology.
Collapse
|
32
|
Machine learning models for predicting the activity of AChE and BACE1 dual inhibitors for the treatment of Alzheimer's disease. Mol Divers 2021; 26:1501-1517. [PMID: 34327619 DOI: 10.1007/s11030-021-10282-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Multi-target directed ligand-based 2D-QSAR models were developed using different N-benzyl piperidine derivatives showing inhibitory activity toward acetylcholinesterase (AChE) and β-Site amyloid precursor protein cleaving enzyme (BACE1). Five different classes of molecular descriptors belonging to spatial, structural, thermodynamics, electro-topological and E-state indices were used for machine learning by linear method, genetic function approximation (GFA) and nonlinear method, support vector machine (SVM) and artificial neural network (ANN). Dataset used for QSAR model development includes 57 AChE and 53 BACE1 inhibitors. Statistically significant models were developed for AChE (R2 = 0.8688, q2 = 0.8600) and BACE1 (R2 = 0.8177, q2 = 0.7888) enzyme inhibitors. Each model was generated with an optimum five significant molecular descriptors such as electro-topological (ES_Count_aaCH and ES_Count_dssC), structural (QED_HBD, Num_TerminalRotomers), spatial (JURS_FNSA_1) for AChE and structural (Cl_Count, Num_Terminal Rotomers), electro-topological (ES_Count_dO), electronic (Dipole_Z) and spatial (Shadow_nu) for BACE1 enzyme, determining the key role in its enzyme inhibitory activity. The predictive ability of the generated machine learning models was validated using the leave-one-out, Fischer (F) statistics and predictions based on the test set of 11 AChE (r2 = 0.8469, r2pred = 0.8138) and BACE1 (r2 = 0.7805, r2pred = 0.7128) inhibitors. Further, nonlinear machine learning methods such as ANN and SVM predicted better than the linear method GFA. These molecular descriptors are very important in describing the inhibitory activity of AChE and BACE1 enzymes and should be used further for the rational design of multi-targeted anti-Alzheimer's lead molecules.
Collapse
|
33
|
Mirzazadeh R, Asgari MS, Barzegari E, Pedrood K, Mohammadi-Khanaposhtani M, Sherafati M, Larijani B, Rastegar H, Rahmani H, Mahdavi M, Taslimi P, Üç EM, Gulçin İ. New quinoxalin-1,3,4-oxadiazole derivatives: Synthesis, characterization, in vitro biological evaluations, and molecular modeling studies. Arch Pharm (Weinheim) 2021; 354:e2000471. [PMID: 33999440 DOI: 10.1002/ardp.202000471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
A new series of quinoxalin-1,3,4-oxadiazole (10a-l) derivatives was synthesized and evaluated against some metabolic enzymes including human carbonic anhydrase (hCA) isoenzymes I and II (carbonic anhydrases I and II), cholinesterase (acetylcholinesterase and butyrylcholinesterase), and α-glucosidase. Obtained data revealed that all the synthesized compounds were more potent as compared with the used standard inhibitors against studied target enzymes. Among the synthesized compounds, 4-fluoro derivative (10f) against hCA I, 4-chloro derivative (10i) against hCA II, 3-fluoro derivative (10e) against acetylcholinesterase and butyrylcholinesterase, and 3-bromo derivative (10k) against α-glucosidase were the most potent compounds with inhibitory activity around 1.8- to 7.37-fold better than standard inhibitors. Furthermore, docking studies of these compounds were performed at the active site of their target enzymes.
Collapse
Affiliation(s)
| | - Mohammad S Asgari
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maedeh Sherafati
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Hojjat Rahmani
- Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Eda M Üç
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
34
|
Kumar B, Thakur A, Dwivedi AR, Kumar R, Kumar V. Multi-Target-Directed Ligands as an Effective Strategy for the Treatment of Alzheimer's Disease. Curr Med Chem 2021; 29:1757-1803. [PMID: 33982650 DOI: 10.2174/0929867328666210512005508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder, and multiple pathological factors are believed to be involved in the genesis and progression of the disease. A number of hypotheses, including Acetylcholinesterase, Monoamine oxidase, β-Amyloid, Tau protein, etc., have been proposed for the initiation and progression of the disease. At present, acetylcholine esterase inhibitors and memantine (NMDAR antagonist) are the only approved therapies for the symptomatic management of AD. Most of these single-target drugs have miserably failed in the treatment or halting the progression of the disease. Multi-factorial diseases like AD require complex treatment strategies that involve simultaneous modulation of a network of interacting targets. Since the last few years, Multi-Target-Directed Ligands (MTDLs) strategy, drugs that can simultaneously hit multiple targets, is being explored as an effective therapeutic approach for the treatment of AD. In the current review article, the authors have briefly described various pathogenic pathways associated with AD. The importance of Multi-Target-Directed Ligands and their design strategies in recently reported articles have been discussed in detail. Potent leads are identified through various structure-activity relationship studies, and their drug-like characteristics are described. Recently developed promising compounds have been summarized in the article. Some of these MTDLs with balanced activity profiles against different targets have the potential to be developed as drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | - Amandeep Thakur
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | | | - Rakesh Kumar
- Central University of Punjab, Bathinda, Punjab-151001, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab-151001, India
| |
Collapse
|
35
|
Choubey PK, Tripathi A, Tripathi MK, Seth A, Shrivastava SK. Design, synthesis, and evaluation of N-benzylpyrrolidine and 1,3,4-oxadiazole as multitargeted hybrids for the treatment of Alzheimer's disease. Bioorg Chem 2021; 111:104922. [PMID: 33945941 DOI: 10.1016/j.bioorg.2021.104922] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/03/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
Novel N-Benzylpyrrolidine hybrids were designed, synthesized, and tested against multiple in-vitro and in-vivo parameters. Among all the synthesized molecules, 8f and 12f showed extensive inhibition against beta-secretase-1 (hBACE-1), human acetylcholinesterase (hAChE) & human butyrylcholinesterase (hBuChE). These molecules are also endowed with significant AChE-peripheral anionic site (PAS) binding capability, blood-brain barrier permeability, potential disassembly of Aβ aggregates along with neuroprotection ability on SHSY-5Y cell lines. Results of the Y-Maze and Morris water maze test concluded that compounds 8f and 12f ameliorated cognitive dysfunction induced by scopolamine and Aβ. The ex-vivo activity was executed on rat's brain homogenate indicating a reduction in AChE level and oxidative stress. The pharmacokinetic investigation ascertained considerable oral absorption profile of the lead 12f. The results of the in silico docking studies and molecular dynamics simulations demonstrated stable interactions of compounds 8f and 12f with the target residues of hAChE, hBuChE and hBACE-1.
Collapse
Affiliation(s)
- Priyanka Kumari Choubey
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Avanish Tripathi
- Institute of Pharmaceutical Research, GLA University, Matura 281406, India
| | - Manish Kumar Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ankit Seth
- Aryakul College of Pharmacy & Research, Sitapur 2613303, India
| | - Sushant Kumar Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
36
|
Design, synthesis and evaluation of novel dimethylamino chalcone-O-alkylamines derivatives as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2021; 216:113310. [PMID: 33667847 DOI: 10.1016/j.ejmech.2021.113310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
A novel series of dimethylamino chalcone-O-alkylamines derivatives was designed and synthesized as multifunctional agents for the treatment of AD. All the target compounds exhibited significant abilities to inhibit and disaggregate Aβ aggregation, and acted as potential selective AChE inhibitors, biometal chelators and selective MAO-B inhibitors. Among these compounds, compound TM-6 showed the greatest inhibitory activity against self-induced Aβ aggregation (IC50 = 0.88 μM) and well disaggregation ability toward self-induced Aβ aggregation (95.1%, 25 μM), the TEM images, molecular docking study and molecular dynamics simulations provided reasonable explanation for its high efficiency, and it was also found to be a remarkable antioxidant (ORAC-FL values of 2.1eq.), the best AChE inhibitor (IC50 = 0.13 μM) and MAO-B inhibitor (IC50 = 1.0 μM), as well as a good neuroprotectant. UV-visual spectrometry and ThT fluorescence assay revealed that compound TM-6 was not only a good biometal chelator by inhibiting Cu2+-induced Aβ aggregation (95.3%, 25 μM) but also could disassemble the well-structured Aβ fibrils (88.1%, 25 μM). Further, TM-6 could cross the blood-brain barrier (BBB) in vitro. More importantly, compound TM-6 did not show any acute toxicity in mice at doses of up to 1000 mg/kg and improved scopolamine-induced memory impairment. Taken together, these data indicated that TM-6, an excellent balanced multifunctional inhibitor, was a potential lead compound for the treatment of AD.
Collapse
|
37
|
Zhang Z, Guo J, Cheng M, Zhou W, Wan Y, Wang R, Fang Y, Jin Y, Liu J, Xie SS. Design, synthesis, and biological evaluation of novel xanthone-alkylbenzylamine hybrids as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2021; 213:113154. [PMID: 33476932 DOI: 10.1016/j.ejmech.2021.113154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022]
Abstract
In this study, a series of multifunctional hybrids against Alzheimer's disease were designed and obtained by conjugating the pharmacophores of xanthone and alkylbenzylamine through the alkyl linker. Biological activity results demonstrated that compound 4j was the most potent and balanced dual ChEs inhibitor with IC50 values 0.85 μM and 0.59 μM for eeAChE and eqBuChE, respectively. Kinetic analysis and docking study indicated that compound 4j was a mixed-type inhibitor for both AChE and BuChE. Additionally, it exhibited good abilities to penetrate BBB, scavenge free radicals (4.6 trolox equivalent) and selectively chelate with Cu2+ and Al3+ at a 1:1.4 ligand/metal molar ratio. Importantly, after assessments of cytotoxic and acute toxicity, we found compound 4j could improve memory function of scopolamine-induced amnesia mice. Hence, the compound 4j can be considered as a promising lead compound for further investigation in the treatment of AD.
Collapse
Affiliation(s)
- Zhipeng Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Jie Guo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Maojun Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Weixin Zhou
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Jing Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China.
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China.
| |
Collapse
|
38
|
Development of genistein-O-alkylamines derivatives as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Chem 2021; 107:104602. [PMID: 33453647 DOI: 10.1016/j.bioorg.2020.104602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/01/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022]
Abstract
The multi-target-directed ligands have been regarded as the promising multifunctional agents for the treatment of Alzheimer's disease (AD). Based on our previous work, a series of genistein-O-alkylamines derivatives was developed to further explore the structure-activity-relationship. The results showed that compound 7d indicated reversible and highly selective hAChE inhibitory activity with IC50 value of 0.53 μM. Compound 7d also displayed good antioxidant activity (ORAC = 1.1 eq.), promising neuroprotective effect and selective metal chelation property. Moreover, compound 7d significantly inhibited self-induced, hAChE-induced and Cu2+-induced Aβ aggregation with 39.8%, 42.1% and 74.1%, respectively, and disaggregated Cu2+-induced Aβ1-42 aggregation (67.3%). In addition, compound 7d was a potential autophagy inducer and improved the levels of GPX4 protein. Furthermore, compound 7d presented good blood-brain-barrier permeability in vitro. More importantly, compound 7d did not show any acute toxicity at doses of up to 1000 mg/kg and presented good precognitive effect on scopolamine-induced memory impairment. Therefore, compound 7d was a promising multifunctional agent for the development of anti-AD drugs.
Collapse
|
39
|
Kareem RT, Abedinifar F, Mahmood EA, Ebadi AG, Rajabi F, Vessally E. The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer's agents: highlights from 2010 to 2020. RSC Adv 2021; 11:30781-30797. [PMID: 35498922 PMCID: PMC9041380 DOI: 10.1039/d1ra03718h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
Dementia is a term used to define different brain disorders that affect memory, thinking, behavior, and emotion. Alzheimer's disease (AD) is the second cause of dementia that is generated by the death of cholinergic neurons (especially acetylcholine (ACh)), which have a vital role in cognition. Acetylcholinesterase inhibitors (AChEI) affect acetylcholine levels in the brain and are broadly used to treat Alzheimer's. Donepezil, rivastigmine, and galantamine, which are FDA-approved drugs for AD, are cholinesterase inhibitors. In addition, scientists are attempting to develop hybrid molecules and multi-target-directed ligands (MTDLs) that can simultaneously modulate multiple biological targets. This review highlights recent examples of MTDLs and fragment-based strategy in the rational design of new potential AD medications from 2010 onwards. This review highlights recent examples of multi-target-directed ligands (MTDLs) based on donepezil structure modification from 2010 onwards.![]()
Collapse
Affiliation(s)
- Rzgar Tawfeeq Kareem
- Department of Chemistry, College of Science, University of Bu Ali Sina, Hamadan, Iran
| | - Fahimeh Abedinifar
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Evan Abdolkareem Mahmood
- College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan region of Iraq
| | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, Iran
| | - Fatemeh Rajabi
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
40
|
Choubey PK, Tripathi A, Sharma P, Shrivastava SK. Design, synthesis, and multitargeted profiling of N-benzylpyrrolidine derivatives for the treatment of Alzheimer’s disease. Bioorg Med Chem 2020; 28:115721. [DOI: 10.1016/j.bmc.2020.115721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023]
|
41
|
Ghotbi G, Mahdavi M, Najafi Z, Moghadam FH, Hamzeh-Mivehroud M, Davaran S, Dastmalchi S. Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and β-amyloid aggregation for Alzheimer’s disease. Bioorg Chem 2020; 103:104186. [DOI: 10.1016/j.bioorg.2020.104186] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/15/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023]
|
42
|
Chen J, Yin B, Wang W, Sun H. Effects of Disulfide Bonds on Binding of Inhibitors to β-Amyloid Cleaving Enzyme 1 Decoded by Multiple Replica Accelerated Molecular Dynamics Simulations. ACS Chem Neurosci 2020; 11:1811-1826. [PMID: 32459964 DOI: 10.1021/acschemneuro.0c00234] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The β-amyloid cleaving enzyme 1 (BACE1) has been thought to be an efficient target for treatment of Alzheimer's disease (AD). Deep insight into inhibitor-BACE1 binding mechanism is of significance for design of potent drugs toward BACE1. In this work, multiple replica accelerated molecular dynamics (MR-aMD) simulations, principal component (PC) analysis, and free energy landscapes were integrated to decode the effect of disulfide bonds (SSBs) in BACE1 on bindings of three inhibitors 3KO, 3KT, and 779 to BACE1. The results from cross-correlation analysis suggest that the breaking of SSBs exerts significant influence on structural flexibility and internal dynamics of inhibitor-bound BACE1. PC analysis and free energy landscapes reveal that the breaking of SSBs not only evidently induces the conformational rearrangement of BACE1 but also highly changes binding poses of three inhibitors in BACE1 and leads to more disordered binding of three inhibitors to BACE1, which is further supported by the increase in binding entropy of inhibitors to BACE1 due to the breaking of SSBs. Residue-based free energy decomposition method was utilized to evaluate contributions of separate residues to inhibitor-BACE1 binding. The results suggest that although the breaking of SSBs in BACE1 does not destroy the interaction network of inhibitors with BACE1 it changes interaction strength of some residues with inhibitors. Meanwhile, the information from residue-based free energy decomposition indicates that residues L91, S96, V130, Y132, Q134, W137, F169, I171, and I179 can be used as efficient targets of drug design toward BACE1.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Baohua Yin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| |
Collapse
|
43
|
Computational exploration and experimental validation to identify a dual inhibitor of cholinesterase and amyloid-beta for the treatment of Alzheimer’s disease. J Comput Aided Mol Des 2020; 34:983-1002. [DOI: 10.1007/s10822-020-00318-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
|
44
|
Xie J, Liang R, Wang Y, Huang J, Cao X, Niu B. Progress in Target Drug Molecules for Alzheimer's Disease. Curr Top Med Chem 2020; 20:4-36. [DOI: 10.2174/1568026619666191203113745] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that 4 widespread in the elderly.
The etiology of AD is complicated, and its pathogenesis is still unclear. Although there are many
researches on anti-AD drugs, they are limited to reverse relief symptoms and cannot treat diseases.
Therefore, the development of high-efficiency anti-AD drugs with no side effects has become an urgent
need. Based on the published literature, this paper summarizes the main targets of AD and their drugs,
and focuses on the research and development progress of these drugs in recent years.
Collapse
Affiliation(s)
- Jiayang Xie
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ruirui Liang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yajiang Wang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Junyi Huang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Bing Niu
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
45
|
Tripathi A, Choubey PK, Sharma P, Seth A, Saraf P, Shrivastava SK. Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer’s disease. Bioorg Chem 2020; 95:103506. [DOI: 10.1016/j.bioorg.2019.103506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/12/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
|
46
|
Tripathi A, Choubey PK, Sharma P, Seth A, Tripathi PN, Tripathi MK, Prajapati SK, Krishnamurthy S, Shrivastava SK. Design and development of molecular hybrids of 2-pyridylpiperazine and 5-phenyl-1,3,4-oxadiazoles as potential multifunctional agents to treat Alzheimer's disease. Eur J Med Chem 2019; 183:111707. [DOI: 10.1016/j.ejmech.2019.111707] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 01/04/2023]
|