1
|
Hamodin AG, Elgammal WE, Eid AM, Ibrahim AG. Synthesis, characterization, and biological evaluation of new chitosan derivative bearing diphenyl pyrazole moiety. Int J Biol Macromol 2023:125180. [PMID: 37290547 DOI: 10.1016/j.ijbiomac.2023.125180] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
This work reports the synthesis of a new pyrazole derivative by reacting 5-amino-1,3-diphenyl pyrazole with succinic anhydride and bearing the product chemically on the chitosan chains via amide linkage to achieve a new chitosan derivative (DPPS-CH). The prepared chitosan derivative was analyzed by IR, NMR, elemental analysis, XRD, TGA-DTG, and SEM. As compared with chitosan, DPPS-CH showed an amorphous and porous structure. Coats-Redfern results showed that the thermal activation energy for the first decomposition of DPPS-CH is 43.72 KJ mol-1 lower than that required for chitosan (88.32 KJ mol-1), indicating the accelerating effect of DPPS on the thermal decomposition of DPPS-CH. The DPPS-CH manifested a powerful wide spectrum antimicrobial potential against pathogenic gram-positive and gram-negative bacteria and Candida albicans at minute concentrations (MIC = 50 μg mL-1) compared to chitosan (MIC = 100 μg mL-1). The MTT assay proved the toxic properties of DPPS-CH against a cancer cell line (MCF-7) at a minute concentration (IC50 = 15.14 μg mL-1) while affecting normal cells (WI-38) at seven times this concentration (IC50 = 107.8 μg mL-1). According to the current findings, the chitosan derivative developed in this work appears to be a promising material for use in biological domains.
Collapse
Affiliation(s)
- Ahmed G Hamodin
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Walid E Elgammal
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed G Ibrahim
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
2
|
Donaire-Arias A, Montagut AM, Puig de la Bellacasa R, Estrada-Tejedor R, Teixidó J, Borrell JI. 1 H-Pyrazolo[3,4- b]pyridines: Synthesis and Biomedical Applications. Molecules 2022; 27:2237. [PMID: 35408636 PMCID: PMC9000541 DOI: 10.3390/molecules27072237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Pyrazolo[3,4-b]pyridines are a group of heterocyclic compounds presenting two possible tautomeric forms: the 1H- and 2H-isomers. More than 300,000 1H-pyrazolo[3,4-b]pyridines have been described which are included in more than 5500 references (2400 patents) up to date. This review will cover the analysis of the diversity of the substituents present at positions N1, C3, C4, C5, and C6, the synthetic methods used for their synthesis, starting from both a preformed pyrazole or pyridine, and the biomedical applications of such compounds.
Collapse
Affiliation(s)
| | | | | | | | | | - José I. Borrell
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain; (A.D.-A.); (A.M.M.); (R.P.d.l.B.); (R.E.-T.); (J.T.)
| |
Collapse
|
3
|
Desai NC, Bhatt K, Monapara J, Pandit U, Khedkar VM. Conventional and Microwave-Assisted Synthesis, Antitubercular Activity, and Molecular Docking Studies of Pyrazole and Oxadiazole Hybrids. ACS OMEGA 2021; 6:28270-28284. [PMID: 34723024 PMCID: PMC8552481 DOI: 10.1021/acsomega.1c04411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/24/2021] [Indexed: 05/12/2023]
Abstract
Microwave-assisted organic reaction enhancement (MORE) has become more important in synthetic organic chemistry for efficient resource utilization. In this study, we synthesized bioactive compounds using both traditional and microwave methods. Microwave-assisted synthesis takes less time and produces higher yields and quality than conventional approaches. We reported the synthesis of N'-(1-(2-(3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)-5-phenyl-1,3,4-oxadiazol-3(2H)-yl)ethylidene) substituted hydrazides (4a-t). We also tested them against two strains: M. tuberculosis H37Ra and M. bovis BCG. Against M. tuberculosis H37Ra, the compounds 4e, 4h, 4k, 4p, and 4s were the most effective. Compounds 4f, 4g, and 4s showed significant activity against M. bovis BCG. The structures of newly synthesized molecules were determined using spectral methods. Furthermore, molecular docking investigations into the active site of mycobacterial InhA yielded well-clustered solutions for these compounds' binding modalities producing a binding affinity in the range of -10.366 to -8.037. Theoretical results were in good accord with the observed experimental values. The docking score of compound 4e was -10.366, and the Glide energy was -66.459 kcal/mol.
Collapse
Affiliation(s)
- Nisheeth C. Desai
- Division
of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat 364002, India
| | - Kandarp Bhatt
- Division
of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat 364002, India
| | - Jahnvi Monapara
- Division
of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat 364002, India
| | - Unnat Pandit
- Special
Centre for Systems Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Vijay M. Khedkar
- Department
of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune, Maharashtra 411048, India
| |
Collapse
|
4
|
Aggarwal R, Singh G, Kumar S. Molecular iodine mediated transition-metal-free oxidative dehydrogenation of 4,7-dihydropyrazolo[3,4-b]pyridines. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1985142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ranjana Aggarwal
- CSIR-National Institute of Science Communication and Policy Research (CSIR-NIScPR) Pusa Gate, K.S. Krishnan Marg, New Delhi, India
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Gulshan Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
5
|
Medishetti N, Kale A, Nanubolu JB, Atmakur K. Iron(III)chloride induced synthesis of pyrazolopyridines & quinolines. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1810275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nagaraju Medishetti
- Fluoro & Agro Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ashok Kale
- Fluoro & Agro Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jagadeesh Babu Nanubolu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Krishnaiah Atmakur
- Fluoro & Agro Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Hawas SS, El-Gohary NS, Gabr MT, Shaaban MI, El-Ashmawy MB. Synthesis, molecular docking, antimicrobial, antiquorum-sensing and antiproliferative activities of new series of pyrazolo[3,4- b]pyridine analogs. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1618873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Samia S. Hawas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Nadia S. El-Gohary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Moustafa T. Gabr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA
| | - Mona I. Shaaban
- Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mahmoud B. El-Ashmawy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
El-Gohary N, Gabr M, Shaaban M. Synthesis, molecular modeling and biological evaluation of new pyrazolo[3,4-b]pyridine analogs as potential antimicrobial, antiquorum-sensing and anticancer agents. Bioorg Chem 2019; 89:102976. [DOI: 10.1016/j.bioorg.2019.102976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023]
|
8
|
Korotaev VY, Kutyashev IB, Barkov AY, Sosnovskikh VY. Recent advances in the chemistry of 3-nitro-2H- and 3-nitro-4H-chromenes. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Shaabani A, Nazeri MT, Afshari R. 5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis. Mol Divers 2018; 23:751-807. [PMID: 30552550 DOI: 10.1007/s11030-018-9902-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022]
Abstract
5-Amino-pyrazoles have proven to be a class of fascinating and privileged organic tools for the construction of diverse heterocyclic or fused heterocyclic scaffolds. This review presents comprehensively the applications of 5-amino-pyrazoles as versatile synthetic building blocks in the synthesis of remarkable organic molecules with an emphasis on versatile functionalities. Following a brief introduction of synthesis methods, planning strategies to construct organic compounds, particularly diverse heterocyclic scaffolds, such as poly-substituted heterocyclic compounds and fused heterocyclic compounds via 5-amino-pyrazoles, have been summarized. Fused heterocycles are classified as bicyclic, tricyclic, tetracyclic, and spiro-fused pyrazole derivatives. These outstanding compounds synthesized via wide variety of approaches include conventional reactions, one-pot multi-component reactions, cyclocondensation, cascade/tandem protocols, and coupling reactions. 5-Amino-pyrazoles represent a class of promising functional reagents, similar to the biologically active compounds, highlighted with diverse applications especially in the field of pharmaceutics and medicinal chemistry. Notably, this critical review covers the articles published from 1981 to 2018.
Collapse
Affiliation(s)
- Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran
| | - Ronak Afshari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran
| |
Collapse
|
10
|
Design, synthesis, antimicrobial, antiquorum-sensing and antitumor evaluation of new series of pyrazolopyridine derivatives. Eur J Med Chem 2018; 157:729-742. [DOI: 10.1016/j.ejmech.2018.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
|
11
|
El-Gohary N, Shaaban M. New pyrazolopyridine analogs: Synthesis, antimicrobial, antiquorum-sensing and antitumor screening. Eur J Med Chem 2018; 152:126-136. [DOI: 10.1016/j.ejmech.2018.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/31/2018] [Accepted: 04/10/2018] [Indexed: 01/12/2023]
|
12
|
Aggarwal R, Kumar S. 5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines. Beilstein J Org Chem 2018; 14:203-242. [PMID: 29441143 PMCID: PMC5789427 DOI: 10.3762/bjoc.14.15] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
The condensation of 5-aminopyrazole with various bielectrophilic moieties results in the formation of pyrazoloazines, an interesting array of fused heterocyclic systems. The development of new synthetic routes towards pyrazoloazines for their biological and medicinal exploration is an attractive area for researchers throughout the world. The present review focuses on various synthetic methods developed in the last decade for the synthesis of differently substituted pyrazoloazines by a broad range of organic reactions by means of 5-aminopyrazole as a precursor.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| |
Collapse
|