1
|
Gabaldón-Figueira JC, Martinez-Peinado N, Escabia E, Ros-Lucas A, Chatelain E, Scandale I, Gascon J, Pinazo MJ, Alonso-Padilla J. State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Res Rep Trop Med 2023; 14:1-19. [PMID: 37337597 PMCID: PMC10277022 DOI: 10.2147/rrtm.s415273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Chagas disease is the most important protozoan infection in the Americas, and constitutes a significant public health concern throughout the world. Development of new medications against its etiologic agent, Trypanosoma cruzi, has been traditionally slow and difficult, lagging in comparison with diseases caused by other kinetoplastid parasites. Among the factors that explain this are the incompletely understood mechanisms of pathogenesis of T. cruzi infection and its complex set of interactions with the host in the chronic stage of the disease. These demand the performance of a variety of in vitro and in vivo assays as part of any drug development effort. In this review, we discuss recent breakthroughs in the understanding of the parasite's life cycle and their implications in the search for new chemotherapeutics. For this, we present a framework to guide drug discovery efforts against Chagas disease, considering state-of-the-art preclinical models and recently developed tools for the identification and validation of molecular targets.
Collapse
Affiliation(s)
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Elisa Escabia
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - María-Jesús Pinazo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Abstract
Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.
Collapse
|
3
|
Vaz-Rodrigues R, Mazuecos L, de la Fuente J. Current and Future Strategies for the Diagnosis and Treatment of the Alpha-Gal Syndrome (AGS). J Asthma Allergy 2022; 15:957-970. [PMID: 35879928 PMCID: PMC9307871 DOI: 10.2147/jaa.s265660] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
The α-Gal syndrome (AGS) is a pathognomonic immunoglobulin E (IgE)-mediated delayed anaphylaxis in foods containing the oligosaccharide galactose-α-1,3-galactose (α-Gal) such as mammalian meat or dairy products. Clinical presentation of AGS can also comprise immediate hypersensitivity due to anticancer therapy, gelatin-containing vaccines or mammalian serum-based antivenom. The IgE initial sensitization is caused by hard-bodied tick bites and symptomatic individuals typically develop delayed pruritus, urticaria, angioedema, anaphylaxis, malaise or gut-related symptoms. Due to inapparent presentation, delayed reactions and a wide variety of patients´ clinical history, the AGS diagnosis and treatment remain challenging. This review covers not only current diagnostic methods used for AGS such as the skin prick test (SPT), the oral food challenge (OFC), anti-α-Gal IgE levels measurement and the basophil activation test (BAT), but also potentially relevant next-generation diagnostic tools like the mast cell activation test (MAT), the histamine-release (HR) assay, omics technologies and model-based reasoning (MBR). Moreover, it focuses on the therapeutical medical and non-medical methods available and current research methods that are being applied in order to elucidate the molecular, physiological and immune mechanisms underlying this allergic disorder. Lastly, future treatment and preventive tools are also discussed, being of utmost importance for the identification of tick salivary molecules, with or without α-Gal modifications, that trigger IgE sensitivity as they could be the key for further vaccine development. Bearing in mind climate change, the tick-host paradigm will shift towards an increasing number of AGS cases in new regions worldwide, which will pose new challenges for clinicians in the future.
Collapse
Affiliation(s)
- Rita Vaz-Rodrigues
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, 13005, Spain
| | - Lorena Mazuecos
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, 13005, Spain
| | - José de la Fuente
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, 13005, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
4
|
Rodrigues da Cunha GM, Azevedo MA, Nogueira DS, Clímaco MDC, Valencia Ayala E, Jimenez Chunga JA, La Valle RJY, da Cunha Galvão LM, Chiari E, Brito CRN, Soares RP, Nogueira PM, Fujiwara RT, Gazzinelli R, Hincapie R, Chaves CS, Oliveira FMS, Finn MG, Marques AF. α-Gal immunization positively impacts Trypanosoma cruzi colonization of heart tissue in a mouse model. PLoS Negl Trop Dis 2021; 15:e0009613. [PMID: 34314435 PMCID: PMC8345864 DOI: 10.1371/journal.pntd.0009613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/06/2021] [Accepted: 06/30/2021] [Indexed: 01/03/2023] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is considered endemic in more than 20 countries but lacks both an approved vaccine and limited treatment for its chronic stage. Chronic infection is most harmful to human health because of long-term parasitic infection of the heart. Here we show that immunization with a virus-like particle vaccine displaying a high density of the immunogenic α-Gal trisaccharide (Qβ-αGal) induced several beneficial effects concerning acute and chronic T. cruzi infection in α1,3-galactosyltransferase knockout mice. Approximately 60% of these animals were protected from initial infection with high parasite loads. Vaccinated animals also produced high anti-αGal IgG antibody titers, improved IFN-γ and IL-12 cytokine production, and controlled parasitemia in the acute phase at 8 days post-infection (dpi) for the Y strain and 22 dpi for the Colombian strain. In the chronic stage of infection (36 and 190 dpi, respectively), all of the vaccinated group survived, showing significantly decreased heart inflammation and clearance of amastigote nests from the heart tissue.
Collapse
Affiliation(s)
| | - Maíra Araújo Azevedo
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, Brazil
| | - Denise Silva Nogueira
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, Brazil
| | | | | | - Juan Atilio Jimenez Chunga
- Universidad Nacional Mayor de San Marcos, Faculdad de Ciencias Biologicas, Escuela Profesional de Microbiología y Parasitología—Laboratorio de Parasitología en Fauna Silvestre y Zoonosis, Lima, Peru
| | - Raul Jesus Ynocente La Valle
- Universidad Nacional Mayor de San Marcos, Faculdad de Ciencias Biologicas, Escuela Profesional de Microbiología y Parasitología—Laboratorio de Parasitología en Fauna Silvestre y Zoonosis, Lima, Peru
| | | | - Egler Chiari
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, Brazil
| | - Carlos Ramon Nascimento Brito
- Universidade Federal do Rio Grande do Norte—Centro de Ciências da Saúde—Departamento de Análises Clínicas e Toxicológicas, Natal, Brazil
| | | | | | | | - Ricardo Gazzinelli
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, Brazil
- Instituto René Rachou/FIOCRUZ–MG, Belo Horizonte, Brazil
| | - Robert Hincapie
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Carlos-Sanhueza Chaves
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | | | - M. G. Finn
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | | |
Collapse
|
5
|
Boussamet L, Montassier E, Soulillou JP, Berthelot L. Anti α1-3Gal antibodies and Gal content in gut microbiota in immune disorders and multiple sclerosis. Clin Immunol 2021; 235:108693. [PMID: 33556564 DOI: 10.1016/j.clim.2021.108693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023]
Abstract
Recent observations suggest that Gal antigen content in gut microbiota and anti-Gal antibody response may influence inflammation in immune related disorders. In this review we summarized the current knowledge on antibody response to the Gal epitope in various immune disorders. We discuss the origin of Gal antigen associated to gut microbiota. In multiple sclerosis, the possible mechanisms by which the altered microbiota and/or circulating anti-Gal level could affect the immune response in this disease are presented.
Collapse
Affiliation(s)
- Léo Boussamet
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France
| | - Emmanuel Montassier
- Microbiota Hosts Antibiotics and Bacterial Resistances (MiHAR), Université de Nantes, Nantes, France; Service des urgences, CHU de Nantes, Nantes, France
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France
| | - Laureline Berthelot
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU de Nantes, Nantes, France.
| |
Collapse
|
6
|
Dobrochaeva K, Khasbiullina N, Shilova N, Knirel Y, Obukhova P, Nokel A, Kunetskiy R, Tsygankova S, Bello-Gil D, Costa C, Mañez R, Bovin N. Specificity profile of αGal antibodies in αGalT KO mice as probed with comprehensive printed glycan array: Comparison with human anti-Galili antibodies. Xenotransplantation 2021; 28:e12672. [PMID: 33432698 DOI: 10.1111/xen.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The α1,3-galactosyltransferase gene-knockout (GalT KO) mice are able to produce natural anti-αGal antibodies apparently without any specific immunization. GalT KO mice are commonly used as a model immunological system for studying anti-αGal responses to Gal-positive xenografts in human. In this study, we compared the specificity of mouse and human αGal antibodies to realize the adequacy of the murine model. METHODS Using hapten-specific affinity chromatography antibodies against Galα1-3Galβ1-4GlcNAcβ epitope were isolated from both human and GalT KO mice blood sera. Specificity of isolated antibodies was determined using a printed glycan array (PGA) containing 400 mammalian glycans and 200 bacterial polysaccharides. RESULTS The quantity of isolated specific anti-Galα antibodies corresponds to a content of <0.2% of total Ig, which is an order of magnitude lower than that generally assumed for both human and murine peripheral blood immunoglobulin, with a high predominance of IgM over IgG (95% vs 5%). Analysis using a printed glycan array has demonstrated that (a) antibodies from both species bind not only the Galα1-3Galβ1-4GlcNAcβ epitope, but also unrelated glycans; (b) particularly, for human (but not mouse) antibodies the best binders appear to be bacterial polysaccharides; (c) the profile of mouse antibodies is broader, it is noteworthy that they recognize a variety of human blood group B epitopes and even glycans without the α-galactosyl residue. CONCLUSIONS We believe that the mouse model should be used cautiously in xenotransplantation experiments when the fine epitope specificity of antibodies is critical.
Collapse
Affiliation(s)
- Kira Dobrochaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nailya Khasbiullina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Nadezhda Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia.,Semiotik LLC, Moscow, Russia
| | - Yuriy Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Polina Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alexey Nokel
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia.,Semiotik LLC, Moscow, Russia
| | - Roman Kunetskiy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Tsygankova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Bello-Gil
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Cristina Costa
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Rafael Mañez
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Engineering, Computer & Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
7
|
Hils M, Wölbing F, Hilger C, Fischer J, Hoffard N, Biedermann T. The History of Carbohydrates in Type I Allergy. Front Immunol 2020; 11:586924. [PMID: 33163001 PMCID: PMC7583601 DOI: 10.3389/fimmu.2020.586924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Although first described decades ago, the relevance of carbohydrate specific antibodies as mediators of type I allergy had not been recognized until recently. Previously, allergen specific IgE antibodies binding to carbohydrate epitopes were considered to demonstrate a clinically irrelevant cross-reactivity. However, this changed following the discovery of type I allergies specifically mediated by oligosaccharide structures. Especially the emerging understanding of red meat allergy characterized by IgE directed to the oligosaccharide alpha-gal showed that carbohydrate-mediated reactions can result in life threatening systemic anaphylaxis which in contrast to former assumptions proves a high clinical relevance of some carbohydrate allergens. Within the scope of this review article, we illustrate the historical development of carbohydrate-allergen-research, reaching from only diagnostically relevant crossreactive-carbohydrate-determinants to clinically important antigens mediating type I allergy. Focusing on clinical and immunological features of the alpha-gal syndrome, we highlight the discovery of oligosaccharides as potentially highly immunogenic antigens and mediators of type I allergy, report what is known about the route of sensitization and the immunological mechanisms involved in sensitization and elicitation phase of allergic responses as well as currently available diagnostic and therapeutic tools. Finally, we briefly report on carbohydrates being involved in type I allergies different from alpha-gal.
Collapse
Affiliation(s)
- Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wölbing
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nils Hoffard
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
- Clinical Unit Allergology, Helmholtz Zentrum München, German Research Center for Environmental 10 Health GmbH, Neuherberg, Germany
| |
Collapse
|