1
|
Bravo P, Bizzarri L, Steinbrunn D, Lohse J, Hirsch AKH, Mäser P, Rottmann M, Hahne H. Integral Solvent-Induced Protein Precipitation for Target-Engagement Studies in Plasmodium falciparum. ACS Infect Dis 2024; 10:4073-4086. [PMID: 39631773 DOI: 10.1021/acsinfecdis.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The limited understanding of the mechanism of action (MoA) of several antimalarials and the rise of drug resistance toward existing malaria therapies emphasizes the need for new strategies to uncover the molecular target of compounds in Plasmodium falciparum. Integral solvent-induced protein precipitation (iSPP) is a quantitative mass spectrometry-based (LC-MS/MS) proteomics technique. The iSPP leverages the change in solvent-induced denaturation of the drug-bound protein relative to its unbound state, allowing identification of the direct drug-protein target without the need to modify the drug. Here, we demonstrate proof-of-concept of iSPP in P. falciparum (Pf) lysate. At first, we profiled the solvent-induced denaturation behavior of the Pf proteome, generating denaturation curves and determining the melting concentration (CM) of 2712 proteins. We then assessed the extent of stabilization of three antimalarial target proteins in multiple organic solvent gradients, allowing for a rational selection of an optimal solvent gradient. Subsequently, we validated iSPP by successfully showing target-engagement of several standard antimalarials. The iSPP assay allows the testing of multiple conditions within reasonable LC-MS/MS measurement time. Furthermore, it requires a minimal amount of protein input, reducing culturing time and simplifying protein extraction. We envision that iSPP will be useful as a complementary tool for MoA studies for next-generation antimalarials.
Collapse
Affiliation(s)
- Patricia Bravo
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Universität Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Lorenzo Bizzarri
- OmicScouts GmbH, Lise-Meitner-Straße 30, D-85354 Freising, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, D-66123 Saarbrücken, Germany
| | - Dominik Steinbrunn
- OmicScouts GmbH, Lise-Meitner-Straße 30, D-85354 Freising, Germany
- TUM School of Natural Sciences, Department of Bioscience, Technical University of Munich, Center for Functional Protein Assemblies (CPA), D-85748 Garching bei München, Germany
| | - Jonas Lohse
- OmicScouts GmbH, Lise-Meitner-Straße 30, D-85354 Freising, Germany
| | - Anna K H Hirsch
- Department of Pharmacy, Saarland University, Campus E8.1, D-66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8.1, D-66123 Saarbrücken, Germany
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Universität Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Universität Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Hannes Hahne
- OmicScouts GmbH, Lise-Meitner-Straße 30, D-85354 Freising, Germany
| |
Collapse
|
2
|
Caldwell N, Peet C, Miller P, Colon BL, Taylor MG, Cocco M, Dawson A, Lukac I, Teixeira JE, Robinson L, Frame L, Seizova S, Damerow S, Tamaki F, Post J, Riley J, Mutter N, Hanna JC, Ferguson L, Hu X, Tinti M, Forte B, Norcross NR, Campbell PS, Svensen N, Caldwell FC, Jansen C, Postis V, Read KD, Huston CD, Gilbert IH, Baragaña B, Pawlowic MC. Cryptosporidium lysyl-tRNA synthetase inhibitors define the interplay between solubility and permeability required to achieve efficacy. Sci Transl Med 2024; 16:eadm8631. [PMID: 39441903 DOI: 10.1126/scitranslmed.adm8631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Cryptosporidiosis is a diarrheal disease caused by infection with Cryptosporidium spp. parasites and is a leading cause of death in malnourished children worldwide. The only approved treatment, nitazoxanide, has limited efficacy in this at-risk patient population. Additional safe therapeutics are urgently required to tackle this unmet medical need. However, the development of anti-cryptosporidial drugs is hindered by a lack of understanding of the optimal compound properties required to treat this gastrointestinal infection. To address this knowledge gap, a diverse set of potent lysyl-tRNA synthetase inhibitors was profiled to identify optimal physicochemical and pharmacokinetic properties required for efficacy in a chronic mouse model of infection. The results from this comprehensive study illustrated the importance of balancing solubility and permeability to achieve efficacy in vivo. Our results establish in vitro criteria for solubility and permeability that are predictive of compound efficacy in vivo to guide the optimization of anti-cryptosporidial drugs. Two compounds from chemically distinct series (DDD489 and DDD508) were identified as demonstrating superior efficacy and prioritized for further evaluation. Both compounds achieved marked parasite reduction in immunocompromised mouse models and a disease-relevant calf model of infection. On the basis of these promising data, these compounds have been selected for progression to preclinical safety studies, expanding the portfolio of potential treatments for this neglected infectious disease.
Collapse
Affiliation(s)
- Nicola Caldwell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Caroline Peet
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter Miller
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT 05401, USA
| | - Beatrice L Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Malcolm G Taylor
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mattia Cocco
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alice Dawson
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Iva Lukac
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jose E Teixeira
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT 05401, USA
| | - Lee Robinson
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Laura Frame
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Simona Seizova
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sebastian Damerow
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Fabio Tamaki
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - John Post
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jennifer Riley
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicole Mutter
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jack C Hanna
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Liam Ferguson
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Xiao Hu
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Neil R Norcross
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter S Campbell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nina Svensen
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Flora C Caldwell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Chimed Jansen
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Vincent Postis
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kevin D Read
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christopher D Huston
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT 05401, USA
| | - Ian H Gilbert
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mattie C Pawlowic
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
3
|
Wall RJ, MacGowan SA, Hallyburton I, Syed AJ, Ajay Castro S, Dey G, Milne R, Patterson S, Phelan J, Wiedemar N, Wyllie S. ResMAP-a saturation mutagenesis platform enabling parallel profiling of target-specific resistance-conferring mutations in Plasmodium. mBio 2024; 15:e0170824. [PMID: 39191404 PMCID: PMC11481570 DOI: 10.1128/mbio.01708-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
New and improved drugs are required for the treatment and ultimate eradication of malaria. The efficacy of front-line therapies is now threatened by emerging drug resistance; thus, new tools to support the development of drugs with a lower propensity for resistance are needed. Here, we describe the development of a RESistance Mapping And Profiling (ResMAP) platform for the identification of resistance-conferring mutations in Plasmodium drug targets. Proof-of-concept studies focused on interrogating the antimalarial drug target, Plasmodium falciparum lysyl tRNA synthetase (PfKRS). Saturation mutagenesis was used to construct a plasmid library encoding all conceivable mutations within a 20-residue span at the base of the PfKRS ATP-binding pocket. The superior transfection efficiency of Plasmodium knowlesi was exploited to generate a high coverage parasite library expressing PfKRS bearing all possible amino acid changes within this region of the enzyme. The selection of the library with PfKRS inhibitors, cladosporin and DDD01510706, successfully identified multiple resistance-conferring substitutions. Genetic validation of a subset of these mutations confirmed their direct role in resistance, with computational modeling used to dissect the structural basis of resistance. The application of ResMAP to inform the development of resistance-resilient antimalarials of the future is discussed. IMPORTANCE An increase in treatment failures for malaria highlights an urgent need for new tools to understand and minimize the spread of drug resistance. We describe the development of a RESistance Mapping And Profiling (ResMAP) platform for the identification of resistance-conferring mutations in Plasmodium spp, the causative agent of malaria. Saturation mutagenesis was used to generate a mutation library containing all conceivable mutations for a region of the antimalarial-binding site of a promising drug target, Plasmodium falciparum lysyl tRNA synthetase (PfKRS). Screening of this high-coverage library with characterized PfKRS inhibitors revealed multiple resistance-conferring substitutions including several clinically relevant mutations. Genetic validation of these mutations confirmed resistance of up to 100-fold and computational modeling dissected their role in drug resistance. We discuss potential applications of this data including the potential to design compounds that can bypass the most serious resistance mutations and future resistance surveillance.
Collapse
Affiliation(s)
- Richard J. Wall
- Wellcome Center for Anti-infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Stuart A. MacGowan
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Irene Hallyburton
- Drug Discovery Unit, Wellcome Center for Anti-infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Aisha J. Syed
- Wellcome Center for Anti-infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Sowmya Ajay Castro
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gourav Dey
- Wellcome Center for Anti-infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Rachel Milne
- Wellcome Center for Anti-infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Stephen Patterson
- Wellcome Center for Anti-infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Jody Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Natalie Wiedemar
- Wellcome Center for Anti-infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Center for Anti-infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
4
|
Giannangelo C, Challis MP, Siddiqui G, Edgar R, Malcolm TR, Webb CT, Drinkwater N, Vinh N, Macraild C, Counihan N, Duffy S, Wittlin S, Devine SM, Avery VM, De Koning-Ward T, Scammells P, McGowan S, Creek DJ. Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as an antimalarial strategy. eLife 2024; 13:RP92990. [PMID: 38976500 PMCID: PMC11230628 DOI: 10.7554/elife.92990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.
Collapse
Affiliation(s)
- Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Matthew P Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Rebecca Edgar
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Tess R Malcolm
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Chaille T Webb
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Nyssa Drinkwater
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Natalie Vinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Christopher Macraild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Natalie Counihan
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Sandra Duffy
- Discovery Biology, Centre for Cellular Phenomics, Griffith UniversityNathanAustralia
| | - Sergio Wittlin
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Shane M Devine
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, The University of MelbourneParkvilleAustralia
| | - Vicky M Avery
- Discovery Biology, Centre for Cellular Phenomics, Griffith UniversityNathanAustralia
- School of Environment and Science, Griffith UniversityNathanAustralia
| | - Tania De Koning-Ward
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Peter Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Sheena McGowan
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| |
Collapse
|
5
|
Aguado M, Carvalho S, Valdés-Tresanco ME, Lin D, Padilla-Mejia N, Corpas-Lopez V, Tesařová M, Lukeš J, Gray D, González-Bacerio J, Wyllie S, Field MC. Identification and Validation of Compounds Targeting Leishmania major Leucyl-Aminopeptidase M17. ACS Infect Dis 2024; 10:2002-2017. [PMID: 38753953 PMCID: PMC11184559 DOI: 10.1021/acsinfecdis.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Leishmaniasis is a neglected tropical disease; there is currently no vaccine and treatment is reliant upon a handful of drugs suffering from multiple issues including toxicity and resistance. There is a critical need for development of new fit-for-purpose therapeutics, with reduced toxicity and targeting new mechanisms to overcome resistance. One enzyme meriting investigation as a potential drug target in Leishmania is M17 leucyl-aminopeptidase (LAP). Here, we aimed to chemically validate LAP as a drug target in L. major through identification of potent and selective inhibitors. Using RapidFire mass spectrometry, the compounds DDD00057570 and DDD00097924 were identified as selective inhibitors of recombinant Leishmania major LAP activity. Both compounds inhibited in vitro growth of L. major and L. donovani intracellular amastigotes, and overexpression of LmLAP in L. major led to reduced susceptibility to DDD00057570 and DDD00097924, suggesting that these compounds specifically target LmLAP. Thermal proteome profiling revealed that these inhibitors thermally stabilized two M17 LAPs, indicating that these compounds selectively bind to enzymes of this class. Additionally, the selectivity of the inhibitors to act on LmLAP and not against the human ortholog was demonstrated, despite the high sequence similarities LAPs of this family share. Collectively, these data confirm LmLAP as a promising therapeutic target for Leishmania spp. that can be selectively inhibited by drug-like small molecules.
Collapse
Affiliation(s)
- Mirtha
E. Aguado
- Center
for Protein Studies, Faculty of Biology, University of Havana, 10400 Havana, Cuba
| | - Sandra Carvalho
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
| | | | - De Lin
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
| | - Norma Padilla-Mejia
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
| | - Victoriano Corpas-Lopez
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
| | - Martina Tesařová
- Institute
of Parasitology, Biology Centre, Czech Academy
of Sciences, 37005 České Budějovice, Czech Republic
| | - Julius Lukeš
- Institute
of Parasitology, Biology Centre, Czech Academy
of Sciences, 37005 České Budějovice, Czech Republic
- Faculty
of Sciences, University of South Bohemia, 37005 České
Budějovice, Czech Republic
| | - David Gray
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
| | - Jorge González-Bacerio
- Center
for Protein Studies, Faculty of Biology, University of Havana, 10400 Havana, Cuba
| | - Susan Wyllie
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
| | - Mark C. Field
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
- Institute
of Parasitology, Biology Centre, Czech Academy
of Sciences, 37005 České Budějovice, Czech Republic
| |
Collapse
|
6
|
Creek D, Giannangelo C, Challis M, Siddiqui G, Edgar R, Malcolm T, Webb C, Drinkwater N, Vinh N, MacRaild C, Counihan N, Duffy S, Wittlin S, Devine S, Avery V, de Koning-Ward T, Scammells P, McGowan S. Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as an antimalarial strategy. RESEARCH SQUARE 2024:rs.3.rs-3251230. [PMID: 38746424 PMCID: PMC11092810 DOI: 10.21203/rs.3.rs-3251230/v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum ( Pf A-M1) and Plasmodium vivax ( Pv A-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets Pf A-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on Pf A-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of Pf A-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.
Collapse
|
7
|
Wirjanata G, Lin J, Dziekan JM, El Sahili A, Chung Z, Tjia S, Binte Zulkifli NE, Boentoro J, Tham R, Jia LS, Go KD, Yu H, Partridge A, Olsen D, Prabhu N, Sobota RM, Nordlund P, Lescar J, Bozdech Z. Identification of an inhibitory pocket in falcilysin provides a new avenue for malaria drug development. Cell Chem Biol 2024; 31:743-759.e8. [PMID: 38593807 DOI: 10.1016/j.chembiol.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/02/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine. Enzymatic assays showed that these compounds can inhibit FLN proteolytic activity. Their interaction with FLN was explored systematically by isothermal titration calorimetry and X-ray crystallography, revealing a shared hydrophobic pocket in the catalytic chamber of the enzyme. Characterization of transgenic cell lines with lowered FLN expression demonstrated statistically significant increases in susceptibility toward MK-4815, MMV000848, and several quinolines. Importantly, the hydrophobic pocket of FLN appears amenable to inhibition and the structures reported here can guide the development of novel drugs against malaria.
Collapse
Affiliation(s)
- Grennady Wirjanata
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Jianqing Lin
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Infectious Diseases Labs & Singapore Immunology Network, Agency for Science, Technology and Research, 138648 Singapore, Singapore
| | - Jerzy Michal Dziekan
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore
| | - Zara Chung
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - Josephine Boentoro
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Roy Tham
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Lai Si Jia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Ka Diam Go
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - David Olsen
- Merck & Co., Inc., West Point, PA 19486, USA
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 637551, Singapore.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore.
| |
Collapse
|
8
|
Hanna JC, Corpas-Lopez V, Seizova S, Colon BL, Bacchetti R, Hall GMJ, Sands EM, Robinson L, Baragaña B, Wyllie S, Pawlowic MC. Mode of action studies confirm on-target engagement of lysyl-tRNA synthetase inhibitor and lead to new selection marker for Cryptosporidium. Front Cell Infect Microbiol 2023; 13:1236814. [PMID: 37600947 PMCID: PMC10436570 DOI: 10.3389/fcimb.2023.1236814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Cryptosporidiosis is a leading cause of diarrheal-associated morbidity and mortality, predominantly affecting children under 5 years old in low-and-middle-income countries. There is no effective treatment and no vaccine. New therapeutics are emerging from drug discovery efforts. It is critical that mode of action studies are performed alongside drug discovery to ensure the best clinical outcomes. Unfortunately, technology to identify and validate drug targets for Cryptosporidium is severely lacking. Methods We used C. parvum lysyl-tRNA synthetase (CpKRS) and DDD01510706 as a target-compound pair to develop both chemical and genetic tools for mode of action studies for Cryptosporidium. We adapted thermal proteome profiling (TPP) for Cryptosporidium, an unbiased approach for target identification. Results Using TPP we identified the molecular target of DDD01510706 and confirm that it is CpKRS. Genetic tools confirm that CpKRS is expressed throughout the life cycle and that this target is essential for parasite survival. Parasites genetically modified to over-express CpKRS or parasites with a mutation at the compound-binding site are resistant to treatment with DDD01510706. We leveraged these mutations to generate a second drug selection marker for genetic modification of Cryptosporidium, KRSR. This second selection marker is interchangeable with the original selection marker, NeoR, and expands the range of reverse genetic approaches available to study parasite biology. Due to the sexual nature of the Cryptosporidium life cycle, parental strains containing different drug selection markers can be crossed in vivo. Discussion Selection with both drug markers produces highly efficient genetic crosses (>99% hybrid progeny), paving the way for forward genetics approaches in Cryptosporidium.
Collapse
Affiliation(s)
- Jack C. Hanna
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Victor Corpas-Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Simona Seizova
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ross Bacchetti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Grant M. J. Hall
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Emma M. Sands
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lee Robinson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mattie C. Pawlowic
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
9
|
Caldwell N, Afshar R, Baragaña B, Bustinduy AL, Caffrey CR, Collins JJ, Fusco D, Garba A, Gardner M, Gomes M, Hoffmann KF, Hsieh M, Lo NC, McNamara CW, Nono JK, Padalino G, Read KD, Roestenberg M, Spangenberg T, Specht S, Gilbert IH. Perspective on Schistosomiasis Drug Discovery: Highlights from a Schistosomiasis Drug Discovery Workshop at Wellcome Collection, London, September 2022. ACS Infect Dis 2023; 9:1046-1055. [PMID: 37083395 PMCID: PMC10186373 DOI: 10.1021/acsinfecdis.3c00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 04/22/2023]
Abstract
In September 2022, the Drug Discovery Unit at the University of Dundee, UK, organised an international meeting at the Wellcome Collection in London to explore the current clinical situation and challenges associated with treating schistosomiasis. The aim of this meeting was to discuss the need for new treatments in view of the clinical situation and to ascertain what the key requirements would be for any potential new anti-schistosomals. This information will be essential to inform ongoing drug discovery efforts for schistosomiasis. We also discussed the potential drug discovery pathway and associated criteria for progressing compounds to the clinic. To date, praziquantel (PZQ) is the only drug available to treat all species causing schistosomiasis, but it is often unable to completely clear parasites from an infected patient, partially due to its inactivity against juvenile worms. PZQ-mediated mass drug administration campaigns conducted in endemic areas (e.g., sub-Saharan Africa, where schistosomiasis is primarily prevalent) have contributed to reducing the burden of disease but will not eliminate the disease as a public health problem. The potential for Schistosoma to develop resistance towards PZQ, as the sole treatment available, could become a concern. Consequently, new anthelmintic medications are urgently needed, and this Perspective aims to capture some of the learnings from our discussions on the key criteria for new treatments.
Collapse
Affiliation(s)
- Nicola Caldwell
- Wellcome
Centre for Anti-Infectives Research, Drug Discovery Unit, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Rana Afshar
- Global
Health Institute of Merck, a subsidiary of Merck KGaA, Darmstadt,
Germany, Ares Trading
S.A., Route de Crassier 1, 1262 Eysins, Switzerland
| | - Beatriz Baragaña
- Wellcome
Centre for Anti-Infectives Research, Drug Discovery Unit, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Amaya L. Bustinduy
- Department
of Clinical Research, London School of Hygiene
& Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Conor R. Caffrey
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, California 92093, United States
| | - James J. Collins
- Department
of Pharmacology, UT Southwestern Medical
Center, Forest Park Road, Dallas, Texas 75235, United States
| | - Daniela Fusco
- Department
of Infectious Disease Epidemiology, Bernhard
Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
- German
Center for Infection Research (DZIF), Hamburg-Borstel-Lübeck-Riems, 38124 Brunswick, Germany
| | - Amadou Garba
- Department
of Control of Neglected Tropical Diseases, World Health Organization, 1202 Geneva, Switzerland
| | - Mark Gardner
- Salvensis
Ltd., 27 New Dover Rd., Canterbury, Kent CT1 3DN, United Kingdom
| | - Mireille Gomes
- Global
Health Institute of Merck, a subsidiary of Merck KGaA, Darmstadt,
Germany, Ares Trading
S.A., Route de Crassier 1, 1262 Eysins, Switzerland
| | - Karl F. Hoffmann
- Department
of Life Sciences (DLS), Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, United Kingdom
| | - Michael Hsieh
- Division
of Urology, Children’s National Hospital, and Department of
Urology, George Washington University, Washington, D.C. 20010, United States
| | - Nathan C. Lo
- Division
of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, California 94110, United States
| | - Case W. McNamara
- Calibr,
a division of Scripps Research, North Torrey Pines Road, La Jolla, California 92037, United States
| | - Justin Komguep Nono
- Unit
of Immunobiology and Helminth Infections, Institute of Medical Research
and Medicinal Plant Studies (IMPM), Ministry
of Scientific Research and Innovation, Yaoundé 13033, Cameroon
| | - Gilda Padalino
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, United
Kingdom
| | - Kevin D. Read
- Wellcome
Centre for Anti-Infectives Research, Drug Discovery Unit, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Meta Roestenberg
- Department
of Parasitology and Department of Infectious Diseases, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Thomas Spangenberg
- Global
Health Institute of Merck, a subsidiary of Merck KGaA, Darmstadt,
Germany, Ares Trading
S.A., Route de Crassier 1, 1262 Eysins, Switzerland
| | - Sabine Specht
- Drugs for Neglected Diseases Initiative, 1202 Geneva, Switzerland
| | - Ian H. Gilbert
- Wellcome
Centre for Anti-Infectives Research, Drug Discovery Unit, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
10
|
Smith RJ, Milne R, Lopez VC, Wiedemar N, Dey G, Syed AJ, Patterson S, Wyllie S. Chemical pulldown combined with mass spectrometry to identify the molecular targets of antimalarials in cell-free lysates. STAR Protoc 2023; 4:102002. [PMID: 36609153 PMCID: PMC9841287 DOI: 10.1016/j.xpro.2022.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 01/08/2023] Open
Abstract
Here, we provide a protocol using chemical pulldown combined with mass spectrometry (LC-MS/MS) to identify drug targets in Plasmodium falciparum. This approach works upon the principle that a resin-bound inhibitor selectively binds its molecular target(s) in cell-free lysates. We describe the preparation of drug beads and P. falciparum lysate, followed by chemical pulldown, sample fractionation, and LC-MS/MS analysis. We then detail how to identify specifically bound proteins by comparing protein enrichment in DMSO-treated relative to drug-treated lysates via quantitative proteomics. For complete details on the use and execution of this protocol, please refer to Milne et al. (2022).1.
Collapse
Affiliation(s)
- Robert J Smith
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Rachel Milne
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoriano Corpas Lopez
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Natalie Wiedemar
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Gourav Dey
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Aisha J Syed
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Stephen Patterson
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | - Susan Wyllie
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
11
|
Moloney A, Maple HJ. Developing, Choosing, and Using the Chemical Toolbox for Infectious Diseases Research. ACS Infect Dis 2023; 9:2-4. [PMID: 36511756 DOI: 10.1021/acsinfecdis.2c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scientific progress is built on "what went before". As research in a field or discipline progresses, laying strong and scientifically correct foundations for each incremental discovery ultimately accelerates progress. The importance of "research tools" (e.g., chemical probes, antibodies, assays) that underpin researchers' efforts to probe and understand biological systems and pathways should therefore not be underestimated. Appropriate validation, protocol development, and ultimately availability of research tools are critical, in parallel with education on the appropriate selection and use of these tools.
Collapse
Affiliation(s)
- Alex Moloney
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Bristol BS11 9QD, U.K
| | - Hannah J Maple
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Bristol BS11 9QD, U.K
| |
Collapse
|
12
|
Challis MP, Devine SM, Creek DJ. Current and emerging target identification methods for novel antimalarials. Int J Parasitol Drugs Drug Resist 2022; 20:135-144. [PMID: 36410177 PMCID: PMC9771836 DOI: 10.1016/j.ijpddr.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
New antimalarial compounds with novel mechanisms of action are urgently needed to combat the recent rise in antimalarial drug resistance. Phenotypic high-throughput screens have proven to be a successful method for identifying new compounds, however, do not provide mechanistic information about the molecular target(s) responsible for antimalarial action. Current and emerging target identification methods such as in vitro resistance generation, metabolomics screening, chemoproteomic approaches and biophysical assays measuring protein stability across the whole proteome have successfully identified novel drug targets. This review provides an overview of these techniques, comparing their strengths and weaknesses and how they can be utilised for antimalarial target identification.
Collapse
Affiliation(s)
- Matthew P. Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Shane M. Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia,Corresponding author. Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|