1
|
Xia Z, Xiang H, Shi YM. Bacterial Secondary Metabolites Embedded in Producer Cell Membranes and Antibiotics Targeting Their Biosynthesis. ChemMedChem 2024; 19:e202400469. [PMID: 39287217 DOI: 10.1002/cmdc.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
The bacterial cell membrane primarily houses lipids, carbohydrates, and proteins forming a barrier and interface that maintains cellular integrity, supports homeostasis, and senses environmental changes. Compared to lipid components and excreted secondary metabolites, compounds embedded in the producer cell membrane are often overlooked due to their low abundance and niche-specific functions. The accumulation of findings has led to an increased appreciation of their crucial roles in bacterial cell biochemistry, physiology, and ecology, as well as their impact on mutualistic and pathogenic bacteria-eukaryote interactions. This review highlights the structures, biosynthesis, regulation, and ecological functions of membrane-embedded secondary metabolites. It also discusses antibiotics that target their biosynthetic pathways, aiming to inspire the development of antibiotics specific to pathogenic bacteria without harming human cells.
Collapse
Affiliation(s)
- Zhao Xia
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Xiang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ming Shi
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Caletková O, Pinčeková L, Nováčiková J, Gyepes R, Olejníková P, Pôbiš P, Kanďárová H, Berkeš D. A novel 1-benzoazepine-derived Michael acceptor and its hetero-adducts active against MRSA. Org Biomol Chem 2024; 22:9394-9402. [PMID: 39480656 DOI: 10.1039/d4ob01501k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Multidrug-resistant bacterial infections continue to be a rising global health concern. Herein, we describe the development of a novel class of 3-substituted benzoazepinedione derivatives with promising antibacterial activity. The pivotal compound, benzoazepinedione carboxylate 9, represents a highly electrophilic Michael acceptor, enabling divergent access to a wide range of thia-, aza-, oxa-, and phospha-Michael adducts. Notably, most prepared compounds exhibited potent antibacterial activity against both drug-susceptible and drug-resistant strains of Staphylococcus aureus (MIC90 of up to 2 μg mL-1). The cytotoxicity assessment in the VERO6 cell line revealed that thia-adduct 10d (IC50 of 36.5 μg mL-1) exhibits lower toxicity compared to its parent electrophile 9 (IC50 of 14.3 μg mL-1), which is in agreement with the hypothesis of covalently modified prodrugs. Additionally, stability studies of the prepared compounds in CD3OD and a DMSO-PBS mixture confirmed that thia-Michael adducts 10 are stable under neutral conditions while dynamic under mildly basic conditions. Moreover, 3D reconstructed tissue models (human lung epithelial EpiAirway™ and a human small intestine model) did not exhibit a viability decrease below 80% of the untreated control at all concentrations tested, indicating tolerance to higher concentrations of potential drugs and prodrugs.
Collapse
Affiliation(s)
- Oľga Caletková
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Lucia Pinčeková
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
- Department of Chemistry, Faculty of Education, Trnava University, Priemyselná 4, 918 43 Trnava, Slovakia
| | - Jana Nováčiková
- Central Laboratories, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Peter Pôbiš
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Helena Kanďárová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dušan Berkeš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
3
|
Avci FG. Unraveling bacterial stress responses: implications for next-generation antimicrobial solutions. World J Microbiol Biotechnol 2024; 40:285. [PMID: 39073503 PMCID: PMC11286680 DOI: 10.1007/s11274-024-04090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
The accelerated spread of antimicrobial-resistant bacteria has caused a serious health problem and rendered antimicrobial treatments ineffective. Innovative approaches are crucial to overcome the health threat posed by resistant pathogens and prevent the emergence of untreatable infections. Triggering stress responses in bacteria can diminish susceptibility to various antimicrobials by inducing resistance mechanisms. Therefore, a thorough understanding of stress response control, especially in relation to antimicrobial resistance, offers valuable perspectives for innovative and efficient therapeutic approaches to combat antimicrobial resistance. The aim of this study was to evaluate the stress responses of 8 different bacteria by analyzing reporter metabolites, around which significant alterations were observed, using a pathway-driven computational approach. For this purpose, the transcriptomic data that the bacterial pathogens were grown under 11 different stress conditions mimicking the human host environments were integrated with the genome-scale metabolic models of 8 pathogenic species (Enterococcus faecalis OG1R, Escherichia coli EPEC O127:H6 E2348/69, Escherichia coli ETEC H10407, Escherichia coli UPEC 536, Klebsiella pneumoniae MGH 78578, Pseudomonas aeruginosa PAO1, Staphylococcus aureus MRSA252, and Staphylococcus aureus MSSA476). The resulting reporter metabolites were enriched in multiple metabolic pathways, with cofactor biosynthesis being the most important. The results of this study will serve as a guide for the development of antimicrobial agents as they provide a first insight into potential drug targets.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Türkiye.
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
4
|
Choi SR, Narayanasamy P. In Vitro and In Vivo Antimicrobial Activity of an Oxidative Stress-Mediated Bicyclic Menaquinone Biosynthesis Inhibitor against MRSA. ACS Infect Dis 2023; 9:2016-2024. [PMID: 37655755 DOI: 10.1021/acsinfecdis.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Menaquinone (MK) is an essential component in the oxidative phosphorylation pathway of Gram-positive bacteria. Drugs targeting enzymes involved in MK biosynthesis can prevent electron transfer, which leads to ATP starvation and thereby death of microorganisms. Previously, we reported a series of MenA inhibitors and demonstrated their antimicrobial activity against Gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA) and mycobacteria. These inhibitors were developed by mimicking demethylmenaquinone, a product of MenA enzymatic reaction in MK biosynthesis. In this study, compound NM4, MK biosynthesis inhibitor, inhibited the formation of MRSA biofilm and it was screened against 1952 transposon mutants to elucidate mechanisms of action; however, no resistant mutants were found. Also, compound NM4 induced the production of reactive oxygen species (ROS) by blocking electron transfer in the oxidative phosphorylation pathway as observed by MRSA growth recovery using various ROS scavengers. An oxygen consumption assay also showed that NM4 blocks the oxygen consumption by MRSA, but the addition of menaquinone (MK) restores growth of MRSA. The NM4-treated MRSA induced the expression of catalase by more than 25%, as quantified by the native gel. A pulmonary murine model exhibited that NM4 significantly reduced bacterial lung load in mice without toxicity. An NM4-resistant USA300 strain was developed to attempt to identify the targets participating in the mechanism of resistance. Our results support that respiration and oxidative phosphorylation are potential targets for developing antimicrobial agents against MRSA. Altogether, our findings suggest the potential use of MK biosynthesis inhibitors as an effective antimicrobial agent against MRSA.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
5
|
Sehim AE, Amin BH, Yosri M, Salama HM, Alkhalifah DH, Alwaili MA, Abd Elghaffar RY. GC-MS Analysis, Antibacterial, and Anticancer Activities of Hibiscus sabdariffa L. Methanolic Extract: In Vitro and In Silico Studies. Microorganisms 2023; 11:1601. [PMID: 37375103 DOI: 10.3390/microorganisms11061601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of bacteria that are resistant to several antibiotics has represented a serious hazard to human health globally. Bioactive metabolites from medicinal plants have a wide spectrum of therapeutic possibilities against resistant bacteria. Therefore, this study was performed to investigate the antibacterial efficacy of various extracts of three medicinal plants as Salvia officinalis L., Ziziphus spina-christi L., and Hibiscus sabdariffa L. against pathogenic Gram-negative Enterobacter cloacae (ATCC13047), Pseudomonas aeruginosa (RCMB008001), Escherichia coli (RCMB004001), and Gram-positive Staphylococcus aureus (ATCC 25923), bacteria using the agar-well diffusion method. Results revealed that, out of the three examined plant extracts, the methanol extract of H. sabdariffa L. was the most effective against all tested bacteria. The highest growth inhibition (39.6 ± 0.20 mm) was recorded against E. coli. Additionally, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the methanol extract of H. sabdariffa were detected in the case of all tested bacteria. Moreover, an antibiotic susceptibility test revealed that all tested bacteria showed multidrug resistance (MDR). While 50% of tested bacteria were sensitive and 50% were intermediately sensitive to piperacillin/tazobactam (TZP) based on the inhibition zone but still less than the extract. Synergistic assay demonstrated the promising role of using a combination of H. sabdariffa L. and (TZP) against tested bacteria. A surface investigation using a scanning electron microscope of the E. coli treated with TZP, extract, or a combination of the two revealed extremely considerable bacterial cell death. In addition, H. sabdariffa L. has a promising anticancer role versus Caco-2 cells with IC50 of 17.51 ± 0.07 µg/mL and minimal cytotoxicity upon testing versus Vero cells with CC50 of 165.24 ± 0.89 µg/mL. Flow cytometric analysis confirmed that H. sabdariffa extract significantly increased the apoptotic rate of Caco-2-treated cells compared to the untreated group. Furthermore, GC-MS analysis confirmed the existence of various bioactive components in the methanol hibiscus extract. Utilizing molecular docking with the MOE-Dock tool, binding interactions between n-Hexadecanoic acid, hexadecanoic acid-methyl ester, and oleic acid, 3-hydroxypropyl ester were evaluated against the target crystal structures of E. coli (MenB) (PDB ID:3T88) and the structure of cyclophilin of a colon cancer cell line (PDB ID: 2HQ6). The observed results provide insight into how molecular modeling methods might inhibit the tested substances, which may have applications in the treatment of E. coli and colon cancer. Thus, H. sabdariffa methanol extract is a promising candidate to be further investigated for developing alternative natural therapies for infection treatment.
Collapse
Affiliation(s)
- Amira E Sehim
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Basma H Amin
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Hanaa M Salama
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42521, Egypt
| | - Dalal Hussien Alkhalifah
- Department of Biology, Collage of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Maha Abdullah Alwaili
- Department of Biology, Collage of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rasha Y Abd Elghaffar
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
6
|
Stanborough T, Ho NAT, Bulloch EMM, Bashiri G, Dawes SS, Akazong EW, Titterington J, Allison TM, Jiao W, Johnston JM. Allosteric inhibition of Staphylococcus aureus MenD by 1,4-dihydroxy naphthoic acid: a feedback inhibition mechanism of the menaquinone biosynthesis pathway. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220035. [PMID: 36633276 PMCID: PMC9835592 DOI: 10.1098/rstb.2022.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Menaquinones (MKs) are electron carriers in bacterial respiratory chains. In Staphylococcus aureus (Sau), MKs are essential for aerobic and anaerobic respiration. As MKs are redox-active, their biosynthesis likely requires tight regulation to prevent disruption of cellular redox balance. We recently found that the Mycobacterium tuberculosis MenD, the first committed enzyme of the MK biosynthesis pathway, is allosterically inhibited by the downstream metabolite 1,4-dihydroxy-2-naphthoic acid (DHNA). To understand if this is a conserved mechanism in phylogenetically distant genera that also use MK, we investigated whether the Sau-MenD is allosterically inhibited by DHNA. Our results show that DHNA binds to and inhibits the SEPHCHC synthase activity of Sau-MenD enzymes. We identified residues in the DHNA binding pocket that are important for catalysis (Arg98, Lys283, Lys309) and inhibition (Arg98, Lys283). Furthermore, we showed that exogenous DHNA inhibits the growth of Sau, an effect that can be rescued by supplementing the growth medium with MK-4. Our results demonstrate that, despite a lack of strict conservation of the DHNA binding pocket between Mtb-MenD and Sau-MenD, feedback inhibition by DHNA is a conserved mechanism in Sau-MenD and hence the Sau MK biosynthesis pathway. These findings may have implications for the development of anti-staphylococcal agents targeting MK biosynthesis. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Tamsyn Stanborough
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
| | - Ngoc Anh Thu Ho
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Esther M. M. Bulloch
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ghader Bashiri
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephanie S. Dawes
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Etheline W. Akazong
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James Titterington
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
| | - Timothy M. Allison
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jodie M. Johnston
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Naclerio GA, Onyedibe KI, Karanja CW, Aryal UK, Sintim HO. Comparative Studies to Uncover Mechanisms of Action of N-(1,3,4-Oxadiazol-2-yl)benzamide Containing Antibacterial Agents. ACS Infect Dis 2022; 8:865-877. [PMID: 35297603 PMCID: PMC9188027 DOI: 10.1021/acsinfecdis.1c00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drug-resistant bacterial pathogens still cause high levels of mortality annually despite the availability of many antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is especially problematic, and the rise in resistance to front-line treatments like vancomycin and linezolid calls for new chemical modalities to treat chronic and relapsing MRSA infections. Halogenated N-(1,3,4-oxadiazol-2-yl)benzamides are an interesting class of antimicrobial agents, which have been described by multiple groups to be effective against different bacterial pathogens. The modes of action of a few N-(1,3,4-oxadiazol-2-yl)benzamides have been elucidated. For example, oxadiazoles KKL-35 and MBX-4132 have been described as inhibitors of trans-translation (a ribosome rescue pathway), while HSGN-94 was shown to inhibit lipoteichoic acid (LTA). However, other similarly halogenated N-(1,3,4-oxadiazol-2-yl)benzamides neither inhibit trans-translation nor LTA biosynthesis but are potent antimicrobial agents. For example, HSGN-220, -218, and -144 are N-(1,3,4-oxadiazol-2-yl)benzamides that are modified with OCF3, SCF3, or SF5 and have remarkable minimum inhibitory concentrations ranging from 1 to 0.06 μg/mL against MRSA clinical isolates and show a low propensity to develop resistance to MRSA over 30 days. The mechanism of action of these highly potent oxadiazoles is however unknown. To provide insights into how these halogenated N-(1,3,4-oxadiazol-2-yl)benzamides inhibit bacterial growth, we performed global proteomics and RNA expression analysis of some essential genes of S. aureus treated with HSGN-220, -218, and -144. These studies revealed that the oxadiazoles HSGN-220, -218, and -144 are multitargeting antibiotics that regulate menaquinone biosynthesis and other essential proteins like DnaX, Pol IIIC, BirA, LexA, and DnaC. In addition, these halogenated N-(1,3,4-oxadiazol-2-yl)benzamides were able to depolarize bacterial membranes and regulate siderophore biosynthesis and heme regulation. Iron starvation appears to be part of the mechanism of action that led to bacterial killing. This study demonstrates that N-(1,3,4-oxadiazol-2-yl)benzamides are indeed privileged scaffolds for the development of antibacterial agents and that subtle modifications lead to changes to the mechanism of action.
Collapse
Affiliation(s)
- George A. Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kenneth I. Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases, West Lafayette, Indiana 47907, United States
| | - Caroline W. Karanja
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Herman O. Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Musa A, Alamry KA, Hussein MA, Abdulrahman I. Antifouling Performance of Cellulose Acetate Films Based on a New Benzoxazine Derivative. ChemistrySelect 2021. [DOI: 10.1002/slct.202100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abdulrahman Musa
- Chemistry Department Faculty of Science King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Khalid A. Alamry
- Chemistry Department Faculty of Science King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department Faculty of Science King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Polymer Chemistry Lab. Chemistry Department Assiut University Assiut 71516 Egypt
| | - Idris Abdulrahman
- Department of Marine Biology Faculty of Marine Sciences King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
9
|
Choi SR, Narayanasamy P. Synthesis, optimization, in vitro and in vivo study of bicyclic substituted amine as MenA inhibitor. Bioorg Med Chem Lett 2021; 47:128203. [PMID: 34139327 DOI: 10.1016/j.bmcl.2021.128203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
Menaquinone (MK) plays essential role in the electron transport chain (ETC), suggesting MK biosynthesis enzymes as potential targets for drug development. Previously, we demonstrated that Methicillin-resistant Staphylococcus aureus (MRSA) is susceptible to naphthol-based compounds which were developed by mimicking demethylmenaquinone, a product of MenA enzymatic reaction. Here, a series of new MenA inhibitors (4-19) were synthesized and evaluated as MenA inhibitors in this study. The inhibitors were designed to improve growth inhibitory activity against MRSA. Among the MenA inhibitors, bicyclic substituted amine 3 showed MIC of 3 µg/mL, and alkenyl substituted amine 11 showed MIC of 8 µg/mL against USA300. Regrowth of MRSA was observed on addition of MK when exposed to 8 µg/mL of inhibitor 11, supporting inhibition of MK biosynthesis. However, inhibitor 11 did not show efficacy in treating USA300 infected C. elegans up to 25 µg/mL concentration. However, all infected C. elegans survived when exposed to a bicyclic substituted amine 3. Hence, a bicyclic substituted amine was tested in mice for tolerability and biodistribution and observed 100% tolerable and high level of compound accumulation in lungs.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
10
|
Johnston JM, Bulloch EM. Advances in menaquinone biosynthesis: sublocalisation and allosteric regulation. Curr Opin Struct Biol 2020; 65:33-41. [PMID: 32634692 DOI: 10.1016/j.sbi.2020.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/31/2022]
Abstract
Menaquinones (vitamin K2) are a family of redox-active small molecules with critical functions across all domains of life, including energy generation in bacteria and bone health in humans. The enzymes involved in menaquinone biosynthesis also have bioengineering applications and are potential antimicrobial drug targets. New insights into the essential roles of menaquinones, and their potential to cause redox-related toxicity, have highlighted the need for this pathway to be tightly controlled. Here, we provide an overview of our current understanding of the classical menaquinone biosynthesis pathway in bacteria. We also review recent discoveries on protein-level allostery and sublocalisation of membrane-bound enzymes that have provided insight into the regulation of flux through this biosynthetic pathway.
Collapse
Affiliation(s)
- Jodie M Johnston
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, and Maurice Wilkins Centre for MolecularBiodiscovery, University of Canterbury, Christchurch 8041, New Zealand.
| | - Esther Mm Bulloch
- Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for MolecularBiodiscovery, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
11
|
Johnson ME, Fung LWM. Structural approaches to pathway-specific antimicrobial agents. Transl Res 2020; 220:114-121. [PMID: 32105648 PMCID: PMC7293926 DOI: 10.1016/j.trsl.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
This perspective provides an overview of the evolution of antibiotic discovery from a largely phenotypic-based effort, through an intensive structure-based design focus, to a more holistic approach today. The current focus on antibiotic development incorporates assay and discovery conditions that replicate the host environment as much as feasible. They also incorporate several strategies, including target identification and validation within the whole cell environment, a variety of target deconvolution methods, and continued refinement of structure-based design approaches.
Collapse
Affiliation(s)
- Michael E Johnson
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois.
| | - Leslie W-M Fung
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
12
|
Shabalin IG, Gritsunov A, Hou J, Sławek J, Miks CD, Cooper DR, Minor W, Christendat D. Structural and biochemical analysis of Bacillus anthracis prephenate dehydrogenase reveals an unusual mode of inhibition by tyrosine via the ACT domain. FEBS J 2019; 287:2235-2255. [PMID: 31750992 DOI: 10.1111/febs.15150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/05/2019] [Accepted: 11/19/2019] [Indexed: 01/19/2023]
Abstract
Tyrosine biosynthesis via the shikimate pathway is absent in humans and other animals, making it an attractive target for next-generation antibiotics, which is increasingly important due to the looming proliferation of multidrug-resistant pathogens. Tyrosine biosynthesis is also of commercial importance for the environmentally friendly production of numerous compounds, such as pharmaceuticals, opioids, aromatic polymers, and petrochemical aromatics. Prephenate dehydrogenase (PDH) catalyzes the penultimate step of tyrosine biosynthesis in bacteria: the oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate. The majority of PDHs are competitively inhibited by tyrosine and consist of a nucleotide-binding domain and a dimerization domain. Certain PDHs, including several from pathogens on the World Health Organization priority list of antibiotic-resistant bacteria, possess an additional ACT domain. However, biochemical and structural knowledge was lacking for these enzymes. In this study, we successfully established a recombinant protein expression system for PDH from Bacillus anthracis (BaPDH), the causative agent of anthrax, and determined the structure of a BaPDH ternary complex with NAD+ and tyrosine, a binary complex with tyrosine, and a structure of an isolated ACT domain dimer. We also conducted detailed kinetic and biophysical analyses of the enzyme. We show that BaPDH is allosterically regulated by tyrosine binding to the ACT domains, resulting in an asymmetric conformation of the BaDPH dimer that sterically prevents prephenate binding to either active site. The presented mode of allosteric inhibition is unique compared to both the competitive inhibition established for other PDHs and to the allosteric mechanisms for other ACT-containing enzymes. This study provides new structural and mechanistic insights that advance our understanding of tyrosine biosynthesis in bacteria. ENZYMES: Prephenate dehydrogenase from Bacillus anthracis (PDH): EC database ID: 1.3.1.12. DATABASES: Coordinates and structure factors have been deposited in the Protein Data Bank (PDB) with accession numbers PDB ID: 6U60 (BaPDH complex with NAD+ and tyrosine), PDB ID: 5UYY (BaPDH complex with tyrosine), and PDB ID: 5V0S (BaPDH isolated ACT domain dimer). The diffraction images are available at http://proteindiffraction.org with DOIs: https://doi.org/10.18430/M35USC, https://doi.org/10.18430/M35UYY, and https://doi.org/10.18430/M35V0S.
Collapse
Affiliation(s)
- Ivan G Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, USA
| | - Artyom Gritsunov
- Department of Cell and Systems Biology, University of Toronto, ON, Canada
| | - Jing Hou
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, USA
| | - Joanna Sławek
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, USA.,Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Charles D Miks
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - David R Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, USA
| | - Dinesh Christendat
- Department of Cell and Systems Biology, University of Toronto, ON, Canada
| |
Collapse
|
13
|
Das S, Batra S, Gupta PP, Kumar M, Srivastava VK, Jyoti A, Singh N, Kaushik S. Identification and evaluation of quercetin as a potential inhibitor of naphthoate synthase from Enterococcus faecalis. J Mol Recognit 2019; 32:e2802. [PMID: 31353747 DOI: 10.1002/jmr.2802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
Enterococcus faecalis is a gram-positive, rod-shape bacteria responsible for around 65% to 80% of all enterococcal nosocomial infections. It is multidrug resistant (MDR) bacterium resistant to most of the first-line antibiotics. Due to the emergence of MDR strains, there is an urgent need to find novel targets to develop new antibacterial drugs against E. faecalis. In this regard, we have identified naphthoate synthase (1,4-dihydroxy-2-naphthoyl-CoA synthase, EC: 4.1.3.36; DHNS) as an anti-E. faecalis target, as it is an essential enzyme for menaquinone (vitamin K2 ) synthetic pathway in the bacterium. Thus, inhibiting naphtholate synthase may consequently inhibit the bacteria's growth. In this regard, we report here cloning, expression, purification, and preliminary structural studies of naphthoate synthase along with in silico modeling, molecular dynamic simulation of the model and docking studies of naphthoate synthase with quercetin, a plant alkaloid. Biochemical studies have indicated quercetin, a plant flavonoid as the potential lead compound to inhibit catalytic activity of EfDHNS. Quercetin binding has also been validated by spectrofluorimetric studies in order to confirm the bindings of the ligand compound with EfDHNS at ultralow concentrations. Reported studies may provide a base for structure-based drug development of antimicrobial compounds against E. faecalis.
Collapse
Affiliation(s)
- Satyajeet Das
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sagar Batra
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Pramodkumar P Gupta
- School of Biotechnology and Bioinformatics, DY Patil Deemed to be University, Navi Mumbai, India
| | - Mukesh Kumar
- School of Medicine, Case Western reserve University, Cleveland, Ohio
| | | | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
14
|
Novel enzymology in futalosine-dependent menaquinone biosynthesis. Curr Opin Chem Biol 2018; 47:134-141. [DOI: 10.1016/j.cbpa.2018.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
|
15
|
Two active site arginines are critical determinants of substrate binding and catalysis in MenD: a thiamine-dependent enzyme in menaquinone biosynthesis. Biochem J 2018; 475:3651-3667. [DOI: 10.1042/bcj20180548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022]
Abstract
The bacterial enzyme MenD, or 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC) synthase, catalyzes an essential Stetter reaction in menaquinone (vitamin K2) biosynthesis via thiamine diphosphate (ThDP)-bound tetrahedral post-decarboxylation intermediates. The detailed mechanism of this intermediate chemistry, however, is still poorly understood, but of significant interest given that menaquinone is an essential electron transporter in many pathogenic bacteria. Here, we used site-directed mutagenesis, enzyme kinetic assays, and protein crystallography to reveal an active–inactive intermediate equilibrium in MenD catalysis and its modulation by two conserved active site arginine residues. We observed that these conserved residues play a key role in shifting the equilibrium to the active intermediate by orienting the C2-succinyl group of the intermediates through strong ionic hydrogen bonding. We found that when this interaction is moderately weakened by amino acid substitutions, the resulting proteins are catalytically competent with the C2-succinyl group taking either the active or the inactive orientation in the post-decarboxylation intermediate. When this hydrogen-bonding interaction was strongly weakened, the succinyl group was re-oriented by 180° relative to the native intermediate, resulting in the reversal of the stereochemistry at the reaction center that disabled catalysis. Interestingly, this inactive intermediate was formed with a distinct kinetic behavior, likely as a result of a non-native mode of enzyme–substrate interaction. The mechanistic insights gained from these findings improve our understanding of the new ThDP-dependent catalysis. More importantly, the non-native-binding site of the inactive MenD intermediate uncovered here provides a new target for the development of antibiotics.
Collapse
|
16
|
Qin M, Song H, Dai X, Chan C, Chan W, Guo Z. Single‐Turnover Kinetics Reveal a Distinct Mode of Thiamine Diphosphate‐Dependent Catalysis in Vitamin K Biosynthesis. Chembiochem 2018; 19:1514-1522. [DOI: 10.1002/cbic.201800143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Mingming Qin
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Haigang Song
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Present address: Division of Structural BiologyWellcome Trust Centre of Human GenomicsUniversity of Oxford Roosevelt Drive Oxford OX3 7BN UK
| | - Xin Dai
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Chi‐Kong Chan
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Environmental Science ProgramThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Wan Chan
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Environmental Science ProgramThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Zhihong Guo
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| |
Collapse
|
17
|
Abstract
Prenylquinones are isoprenoid compounds with a characteristic quinone structure and isoprenyl tail that are ubiquitous in almost all living organisms. There are four major prenylquinone classes: ubiquinone (UQ), menaquinone (MK), plastoquinone (PQ), and rhodoquinone (RQ). The quinone structure and isoprenyl tail length differ among organisms. UQ, PQ, and RQ contain benzoquinone, while MK contains naphthoquinone. UQ, MK, and RQ are involved in oxidative phosphorylation, while PQ functions in photosynthetic electron transfer. Some organisms possess two types of prenylquinones; Escherichia coli has UQ8 and MK8, and Caenorhabditis elegans has UQ9 and RQ9. Crystal structures of most of the enzymes involved in MK synthesis have been solved. Studies on the biosynthesis and functions of quinones have advanced recently, including for phylloquinone (PhQ), which has a phytyl moiety instead of an isoprenyl tail. Herein, the synthesis and applications of prenylquinones are reviewed.
Collapse
Affiliation(s)
- Makoto Kawamukai
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| |
Collapse
|
18
|
Koehn J, Magallanes ES, Peters BJ, Beuning CN, Haase AA, Zhu MJ, Rithner CD, Crick DC, Crans DC. A Synthetic Isoprenoid Lipoquinone, Menaquinone-2, Adopts a Folded Conformation in Solution and at a Model Membrane Interface. J Org Chem 2018; 83:275-288. [PMID: 29168636 PMCID: PMC5759649 DOI: 10.1021/acs.joc.7b02649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 11/29/2022]
Abstract
Menaquinones (naphthoquinones, MK) are isoprenoids that play key roles in the respiratory electron transport system of some prokaryotes by shuttling electrons between membrane-bound protein complexes acting as electron acceptors and donors. Menaquinone-2 (MK-2), a truncated MK, was synthesized, and the studies presented herein characterize the conformational and chemical properties of the hydrophobic MK-2 molecule. Using 2D NMR spectroscopy, we established for the first time that MK-2 has a folded conformation defined by the isoprenyl side-chain folding back over the napthoquinone in a U-shape, which depends on the specific environmental conditions found in different solvents. We used molecular mechanics to illustrate conformations found by the NMR experiments. The measured redox potentials of MK-2 differed in three organic solvents, where MK-2 was most easily reduced in DMSO, which may suggest a combination of solvent effect (presumably in part because of differences in dielectric constants) and/or conformational differences of MK-2 in different organic solvents. Furthermore, MK-2 was found to associate with the interface of model membranes represented by Langmuir phospholipid monolayers and Aerosol-OT (AOT) reverse micelles. MK-2 adopts a slightly different U-shaped conformation within reverse micelles compared to within solution, which is in sharp contrast to the extended conformations illustrated in literature for MKs.
Collapse
Affiliation(s)
- Jordan
T. Koehn
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Estela S. Magallanes
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Benjamin J. Peters
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Cheryle N. Beuning
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Allison A. Haase
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Michelle J. Zhu
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Christopher D. Rithner
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Dean C. Crick
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Debbie C. Crans
- Chemistry
Department, Cell and Molecular Biology Program,
and Microbiology, Immunology,
and Pathology Department, Colorado State
University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
19
|
Boersch M, Rudrawar S, Grant G, Zunk M. Menaquinone biosynthesis inhibition: a review of advancements toward a new antibiotic mechanism. RSC Adv 2018; 8:5099-5105. [PMID: 35542397 PMCID: PMC9078190 DOI: 10.1039/c7ra12950e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/20/2018] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
Menaquinone is essential in electron transport and ATP generation in all Gram-positive, and anaerobically respiring Gram-negative bacteria. Inhibition of menaquinone production at different steps of the biosynthesis pathway has shown promising novel antibacterial action.
Collapse
Affiliation(s)
- M. Boersch
- School of Pharmacy and Pharmacology
- Griffith University
- Gold Coast
- Australia
- Quality Use of Medicines Network
| | - S. Rudrawar
- School of Pharmacy and Pharmacology
- Griffith University
- Gold Coast
- Australia
- Quality Use of Medicines Network
| | - G. Grant
- School of Pharmacy and Pharmacology
- Griffith University
- Gold Coast
- Australia
- Quality Use of Medicines Network
| | - M. Zunk
- School of Pharmacy and Pharmacology
- Griffith University
- Gold Coast
- Australia
- Quality Use of Medicines Network
| |
Collapse
|
20
|
Choi SR, Frandsen J, Narayanasamy P. Novel long-chain compounds with both immunomodulatory and MenA inhibitory activities against Staphylococcus aureus and its biofilm. Sci Rep 2017; 7:40077. [PMID: 28071679 PMCID: PMC5223195 DOI: 10.1038/srep40077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/30/2016] [Indexed: 01/22/2023] Open
Abstract
Menaquinone (MK) biosynthesis pathway is a potential target for evaluating antimicrobials in gram-positive bacteria. Here, 1,4-dihydroxy-2-naphthoate prenyltransferase (MenA) was targeted to reduce methicillin-resistant Staphylococcus aureus (MRSA) growth. MenA inhibiting, long chain-based compounds were designed, synthesized and evaluated against MRSA and menaquinone utilizing bacteria in aerobic conditions. The results showed that these bacteria were susceptible to most of the compounds. Menaquinone (MK-4) supplementation rescued MRSA growth, suggesting these compounds inhibit MK biosynthesis. 3a and 7c exhibited promising inhibitory activities with MICs ranging 1-8 μg/mL against MRSA strains. The compounds did not facilitate small colony variant formation. These compounds also inhibited the biofilm growth by MRSA at high concentration. Compounds 3a, 6b and 7c displayed a promising extracellular bactericidal activity against MRSA at concentrations equal to and four-fold less than their respective MICs. We also observed cytokines released from THP-1 macrophages treated with compounds 3a, 6b and 7c and found decreases in TNF-α and IL-6 release and increase in IL-1β. These data provide evidence that MenA inhibitors act as TNF-α and IL-6 inhibitors, raising the potential for development and application of these compounds as potential immunomodulatory agents.
Collapse
Affiliation(s)
- Seoung-ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Joel Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
21
|
Evans CE, Matarlo JS, Tonge PJ, Tan DS. Stereoselective Synthesis, Docking, and Biological Evaluation of Difluoroindanediol-Based MenE Inhibitors as Antibiotics. Org Lett 2016; 18:6384-6387. [PMID: 27978658 PMCID: PMC5171203 DOI: 10.1021/acs.orglett.6b03272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
A stereoselective
synthesis has been developed to provide all four
side-chain stereoisomers of difluoroindanediol 2, the
mixture of which was previously identified as an inhibitor of the o-succinylbenzoate-CoA synthetase MenE in bacterial menaquinone
biosynthesis, having promising in vitro activity against methicillin-resistant Staphylococcus aureus and Mycobacterium tuberculosis. Only the (1R,3S)-diastereomer
inhibited the biochemical activity of MenE, consistent with computational
docking studies, and this diastereomer also exhibited in vitro antibacterial
activity comparable to that of the mixture. However, mechanism-of-action
studies suggest that this inhibitor and its diastereomers may act
via other mechanisms beyond inhibition of menaquinone biosynthesis.
Collapse
Affiliation(s)
- Christopher E Evans
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Joe S Matarlo
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.,Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794, United States
| | - Peter J Tonge
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.,Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States
| | - Derek S Tan
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States.,Chemical Biology Program and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| |
Collapse
|
22
|
Paudel A, Hamamoto H, Panthee S, Sekimizu K. Menaquinone as a potential target of antibacterial agents. Drug Discov Ther 2016; 10:123-8. [DOI: 10.5582/ddt.2016.01041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology
- Genome Pharmaceuticals Institute Co., Ltd
| |
Collapse
|