1
|
Willocx D, Diamanti E, Hirsch AKH. Targeting IspD for Anti-infective and Herbicide Development: Exploring Its Role, Mechanism, and Structural Insights. J Med Chem 2025; 68:886-901. [PMID: 39749898 PMCID: PMC11770629 DOI: 10.1021/acs.jmedchem.4c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/19/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
Antimicrobial resistance (AMR) and herbicide resistance pose threats to society, necessitating novel anti-infectives and herbicides exploiting untapped modes of action like inhibition of IspD, the third enzyme in the MEP pathway. The MEP pathway is essential for a wide variety of human pathogens, including Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Plasmodium falciparum, as well as plants. Within the current perspective, we focused our attention on the third enzyme in this pathway, IspD, offering a comprehensive summary of the reported modes of inhibition and common trends, with the goal to inspire future research dedicated to this underexplored target. In addition, we included an overview of the history, catalytic mechanism, and structure of the enzyme to facilitate access to this attractive target.
Collapse
Affiliation(s)
- Daan Willocx
- Helmholtz
Institute for Pharmaceutical Research (HIPS)−Helmholtz Centre
for Infection Research (HZI), Saar-land
University, Campus E8.1, 66123Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123Saarbrücken, Germany
| | - Eleonora Diamanti
- Helmholtz
Institute for Pharmaceutical Research (HIPS)−Helmholtz Centre
for Infection Research (HZI), Saar-land
University, Campus E8.1, 66123Saarbrücken, Germany
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research (HIPS)−Helmholtz Centre
for Infection Research (HZI), Saar-land
University, Campus E8.1, 66123Saarbrücken, Germany
- Helmholtz
International Lab for Anti-Infectives, Saarland
University, Campus E8.1, 66123Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123Saarbrücken, Germany
| |
Collapse
|
2
|
Toci EM, Majumdar A, Meyers CLF. Aldehyde-based Activation of C2α-lactylthiamin Diphosphate Decarboxylation on Bacterial 1-deoxy-d-xylulose 5-phosphate Synthase. Chembiochem 2024:e202400558. [PMID: 39268973 DOI: 10.1002/cbic.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate (donor substrate) and d-glyceraldehyde 3-phosphate (d-GAP, acceptor substrate) in bacterial central metabolism. DXPS uses a ligand-gated mechanism in which binding of a small molecule "trigger" activates the first enzyme-bound intermediate, C2α-lactylThDP (LThDP), to form the reactive carbanion via LThDP decarboxylation. d-GAP is the natural acceptor substrate for DXPS and also serves a role as a trigger to induce LThDP decarboxylation in the gated step. Additionally, we have shown that O2 and d-glyceraldehyde (d-GA) can induce LThDP decarboxylation. We hypothesize this ligand-gated mechanism poises DXPS to sense and respond to cellular cues in metabolic remodeling during bacterial adaptation. Here we sought to characterize features of small molecule inducers of LThDP decarboxylation. Using a combination of CD, NMR and biochemical methods, we demonstrate that the α-hydroxy aldehyde moiety of d-GAP is sufficient to induce LThDP decarboxylation en route to DXP formation. A variety of aliphatic aldehydes also induce LThDP decarboxylation. The study highlights the capacity of DXPS to respond to different molecular cues, lending support to potential multifunctionality of DXPS and its metabolic regulation by this mechanism.
Collapse
Affiliation(s)
- Eucolona M Toci
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland, 21218, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| |
Collapse
|
3
|
Kesharwani S, Eeba, Tandi M, Agarwal N, Sundriyal S. Design and synthesis of non-hydroxamate lipophilic inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR): in silico, in vitro and antibacterial studies. RSC Adv 2024; 14:27530-27554. [PMID: 39221132 PMCID: PMC11362829 DOI: 10.1039/d4ra05083e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is a key enzyme of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway operating in several pathogens, including Mycobacterium and Plasmodium. Since a DXR homologue is not present in humans, it is an important antimicrobial target. Fosmidomycin (FSM) and its analogues inhibit DXR function by chelating the divalent metal (Mn2+ or Mg2+) in its active site via a hydroxamate metal binding group (MBG). The latter, however, enhances the polarity of molecules and is known to display metabolic instability and toxicity issues. While attempts have been made to increase the lipophilicity of FSM by substituting the linker chain and prodrug approach, very few efforts have been made to replace the hydroxamate group with other lipophilic MBGs. We report a systematic in silico and experimental investigation to identify novel MBGs for designing non-hydroxamate lipophilic DXR inhibitors. The SAR studies with selected MBG fragments identified novel inhibitors of E. Coli DXR with IC50 values ranging from 0.29 to 106 μM. The promising inhibitors were also screened against ESKAPE pathogens and M. tuberculosis.
Collapse
Affiliation(s)
- Sharyu Kesharwani
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| | - Eeba
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Mile Stone, Gurugram-Faridabad Expressway Faridabad 121001 Haryana India
| | - Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Mile Stone, Gurugram-Faridabad Expressway Faridabad 121001 Haryana India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| |
Collapse
|
4
|
Mazzone F, Hoeppner A, Reiners J, Gertzen CG, Applegate V, Abdullaziz MA, Gottstein J, Degrandi D, Wesemann M, Kurz T, Smits SH, Pfeffer K. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase as target for anti Toxoplasma gondii agents: crystal structure, biochemical characterization and biological evaluation of inhibitors. Biochem J 2024; 481:1075-1096. [PMID: 39105673 PMCID: PMC11346426 DOI: 10.1042/bcj20240110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
Toxoplasma gondii is a widely distributed apicomplexan parasite causing toxoplasmosis, a critical health issue for immunocompromised individuals and for congenitally infected foetuses. Current treatment options are limited in number and associated with severe side effects. Thus, novel anti-toxoplasma agents need to be identified and developed. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is considered the rate-limiting enzyme in the non-mevalonate pathway for the biosynthesis of the isoprenoid precursors isopentenyl pyrophosphate and dimethylallyl pyrophosphate in the parasite, and has been previously investigated for its key role as a novel drug target in some species, encompassing Plasmodia, Mycobacteria and Escherichia coli. In this study, we present the first crystal structure of T. gondii DXR (TgDXR) in a tertiary complex with the inhibitor fosmidomycin and the cofactor NADPH in dimeric conformation at 2.5 Å resolution revealing the inhibitor binding mode. In addition, we biologically characterize reverse α-phenyl-β-thia and β-oxa fosmidomycin analogues and show that some derivatives are strong inhibitors of TgDXR which also, in contrast with fosmidomycin, inhibit the growth of T. gondii in vitro. Here, ((3,4-dichlorophenyl)((2-(hydroxy(methyl)amino)-2-oxoethyl)thio)methyl)phosphonic acid was identified as the most potent anti T. gondii compound. These findings will enable the future design and development of more potent anti-toxoplasma DXR inhibitors.
Collapse
Affiliation(s)
- Flaminia Mazzone
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany
- University Hospital Düsseldorf, Düsseldorf, Germany
| | - Astrid Hoeppner
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
| | - Jens Reiners
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph G.W. Gertzen
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Violetta Applegate
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
| | - Mona A. Abdullaziz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
- National Research Centre (NRC), Dokki, Cairo, Egypt
| | - Julia Gottstein
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany
- University Hospital Düsseldorf, Düsseldorf, Germany
| | - Martina Wesemann
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Sander H.J. Smits
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany
- University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Bague D, Wang R, Hodge D, Mikati MO, Roma JS, Boshoff HI, Dailey AL, Girma M, Couch RD, Odom John AR, Dowd CS. Inhibition of DXR in the MEP pathway with lipophilic N-alkoxyaryl FR900098 analogs. RSC Med Chem 2024; 15:2422-2439. [PMID: 39026652 PMCID: PMC11253873 DOI: 10.1039/d3md00642e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
In Mycobacterium tuberculosis (Mtb) and Plasmodium falciparum (Pf), the methylerythritol phosphate (MEP) pathway is responsible for isoprene synthesis. This pathway and its products are vital to bacterial/parasitic metabolism and survival, and represent an attractive set of drug targets due to their essentiality in these pathogens but absence in humans. The second step in the MEP pathway is the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) to MEP and is catalyzed by 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR). Natural products fosmidomycin and FR900098 inhibit DXR, but are too polar to reach the desired target inside some cells, such as Mtb. Synthesized FR900098 analogs with lipophilic substitution in the position α to the phosphorous atom showed promise, resulting in increased activity against Mtb and Pf. Here, an α substitution, consisting of a 3,4-dichlorophenyl substituent, in combination with various O-linked alkylaryl substituents on the hydroxamate moiety is utilized in the synthesis of a novel series of FR900098 analogs. The purpose of the O-linked alkylaryl substituents is to further enhance DXR inhibition by extending the structure into the adjacent NADPH binding pocket, blocking the binding of both DXP and NADPH. Of the initial O-linked alkylaryl substituted analogs, compound 6e showed most potent activity against Pf parasites at 3.60 μM. Additional compounds varying the phenyl ring of 6e were synthesized. The most potent phosphonic acids, 6l and 6n, display nM activity against PfDXR and low μM activity against Pf parasites. Prodrugs of these compounds were less effective against Pf parasites but showed modest activity against Mtb cells. Data from this series of compounds suggests that this combination of substituents can be advantageous in designing a new generation of antimicrobials.
Collapse
Affiliation(s)
- Darean Bague
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| | - Ruiqin Wang
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| | - Dana Hodge
- Division of Infectious Diseases, Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Marwa O Mikati
- Department of Molecular Microbiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Jose S Roma
- Tuberculosis Research Section, LCIM, NIAID/NIH Bethesda MD 20892 USA
| | - Helena I Boshoff
- Tuberculosis Research Section, LCIM, NIAID/NIH Bethesda MD 20892 USA
| | - Allyson L Dailey
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Misgina Girma
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Robin D Couch
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Audrey R Odom John
- Division of Infectious Diseases, Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Molecular Microbiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| |
Collapse
|
6
|
Coco L, Toci EM, Chen PYT, Drennan CL, Freel Meyers CL. Potent Inhibition of E. coli DXP Synthase by a gem-Diaryl Bisubstrate Analog. ACS Infect Dis 2024; 10:1312-1326. [PMID: 38513073 PMCID: PMC11019550 DOI: 10.1021/acsinfecdis.3c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
New antimicrobial strategies are needed to address pathogen resistance to currently used antibiotics. Bacterial central metabolism is a promising target space for the development of agents that selectively target bacterial pathogens. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) converts pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to DXP, which is required for synthesis of essential vitamins and isoprenoids in bacterial pathogens. Thus, DXPS is a promising antimicrobial target. Toward this goal, our lab has demonstrated selective inhibition of Escherichia coli DXPS by alkyl acetylphosphonate (alkylAP)-based bisubstrate analogs that exploit the requirement for ternary complex formation in the DXPS mechanism. Here, we present the first DXPS structure with a bisubstrate analog bound in the active site. Insights gained from this cocrystal structure guided structure-activity relationship studies of the bisubstrate scaffold. A low nanomolar inhibitor (compound 8) bearing a gem-dibenzyl glycine moiety conjugated to the acetylphosphonate pyruvate mimic via a triazole-based linker emerged from this study. Compound 8 was found to exhibit slow, tight-binding inhibition, with contacts to E. coli DXPS residues R99 and R478 demonstrated to be important for this behavior. This work has discovered the most potent DXPS inhibitor to date and highlights a new role of R99 that can be exploited in future inhibitor designs toward the development of a novel class of antimicrobial agents.
Collapse
Affiliation(s)
- Lauren
B. Coco
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Eucolona M. Toci
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Percival Yang-Ting Chen
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Howard
Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caren L. Freel Meyers
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Wu X, Yang Z, Song C, Bu M, Li W, Duan J, Yang GF, Zhang A. Hydroxamate-Containing Bisphosphonates as Fosmidomycin Analogues: Design, Synthesis, and Proherbicide Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7684-7693. [PMID: 38532701 DOI: 10.1021/acs.jafc.3c07872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Fosmidomycin (FOS) is a natural product inhibiting the DXR enzyme in the MEP pathway and has stimulated interest for finding more suitable FOS analogues. Herein, two series of FOS analogue hydroxamate-containing bisphosphonates as proherbicides were designed, with bisphosphonate replacing the phosphonic unit in FOS while retaining the hydroxamate (BPF series) or replacing it with retro-hydroxamate (BPRF series). The BPF series were synthesized through a three-step reaction sequence including Michael addition of vinylidenebisphosphonate, N-acylation, and deprotection, and the BPRF series were synthesized with a retro-Claisen condensation incorporated into the reaction sequence. Evaluation on model plants demonstrated several compounds having considerable herbicidal activities, and in particular, compound 8m exhibited multifold activity enhancement as compared to the control FOS. The proherbicide properties were comparatively validated. Furthermore, DXR enzyme assay, dimethylallyl pyrophosphate rescue, and molecular docking verified 8m to be a promising proherbicide candidate targeting the DXR enzyme. In addition, 8m also displayed good antimalarial activities.
Collapse
Affiliation(s)
- Xin Wu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zili Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chunlin Song
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengwei Bu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Weiguo Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiang Duan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Aidong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
8
|
Toci EM, Austin SL, Majumdar A, Woodcock HL, Freel Meyers CL. Disruption of an Active Site Network Leads to Activation of C2α-Lactylthiamin Diphosphate on the Antibacterial Target 1-Deoxy-d-xylulose-5-phosphate Synthase. Biochemistry 2024; 63:671-687. [PMID: 38393327 PMCID: PMC11015862 DOI: 10.1021/acs.biochem.3c00735] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The bacterial metabolic enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and d-glyceraldehyde-3-phosphate (d-GAP). DXP is an essential bacteria-specific metabolite that feeds into the biosynthesis of isoprenoids, pyridoxal phosphate (PLP), and ThDP. DXPS catalyzes the activation of pyruvate to give the C2α-lactylThDP (LThDP) adduct that is long-lived on DXPS in a closed state in the absence of the cosubstrate. Binding of d-GAP shifts the DXPS-LThDP complex to an open state which coincides with LThDP decarboxylation. This gated mechanism distinguishes DXPS in ThDP enzymology. How LThDP persists on DXPS in the absence of cosubstrate, while other pyruvate decarboxylases readily activate LThDP for decarboxylation, is a long-standing question in the field. We propose that an active site network functions to prevent LThDP activation on DXPS until the cosubstrate binds. Binding of d-GAP coincides with a conformational shift and disrupts the network causing changes in the active site that promote LThDP activation. Here, we show that the substitution of putative network residues, as well as nearby residues believed to contribute to network charge distribution, predictably affects LThDP reactivity. Substitutions predicted to disrupt the network have the effect to activate LThDP for decarboxylation, resulting in CO2 and acetate production. In contrast, a substitution predicted to strengthen the network fails to activate LThDP and has the effect to shift DXPS toward the closed state. Network-disrupting substitutions near the carboxylate of LThDP also have a pronounced effect to shift DXPS to an open state. These results offer initial insights to explain the long-lived LThDP intermediate and its activation through disruption of an active site network, which is unique to DXPS. These findings have important implications for DXPS function in bacteria and its development as an antibacterial target.
Collapse
Affiliation(s)
- Eucolona M Toci
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven L Austin
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - H Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Pierce PG, Hartnett BE, Laughlin TM, Blain JM, Mayclin SJ, Bolejack MJ, Myers JB, Higgins TW, Dranow DM, Sullivan A, Lorimer DD, Edwards TE, Hagen TJ, Horn JR, Myler PJ. Crystal structure and biophysical characterization of IspD from Burkholderia thailandensis and Mycobacterium paratuberculosis. Acta Crystallogr F Struct Biol Commun 2024; 80:43-51. [PMID: 38305785 PMCID: PMC10836425 DOI: 10.1107/s2053230x24000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The methylerythritol phosphate (MEP) pathway is a metabolic pathway that produces the isoprenoids isopentyl pyrophosphate and dimethylallyl pyrophosphate. Notably, the MEP pathway is present in bacteria and not in mammals, which makes the enzymes of the MEP pathway attractive targets for discovering new anti-infective agents due to the reduced chances of off-target interactions leading to side effects. There are seven enzymes in the MEP pathway, the third of which is IspD. Two crystal structures of Burkholderia thailandensis IspD (BtIspD) were determined: an apo structure and that of a complex with cytidine triphosphate (CTP). Comparison of the CTP-bound BtIspD structure with the apo structure revealed that CTP binding stabilizes the loop composed of residues 13-19. The apo structure of Mycobacterium paratuberculosis IspD (MpIspD) is also reported. The melting temperatures of MpIspD and BtIspD were evaluated by circular dichroism. The moderate Tm values suggest that a thermal shift assay may be feasible for future inhibitor screening. Finally, the binding affinity of CTP for BtIspD was evaluated by isothermal titration calorimetry. These structural and biophysical data will aid in the discovery of IspD inhibitors.
Collapse
Affiliation(s)
- Phillip G. Pierce
- UCB Pharma, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA
| | - Brian E. Hartnett
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 Lincoln Highway, DeKalb, IL 60115, USA
| | - Tosha M. Laughlin
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 Lincoln Highway, DeKalb, IL 60115, USA
| | - Joy M. Blain
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 Lincoln Highway, DeKalb, IL 60115, USA
| | - Stephen J. Mayclin
- UCB Pharma, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA
| | - Madison J. Bolejack
- UCB Pharma, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA
| | - Janette B. Myers
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA
| | - Tate W. Higgins
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA
| | - David M. Dranow
- UCB Pharma, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA
| | - Amy Sullivan
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA
| | - Donald D. Lorimer
- UCB Pharma, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA
| | - Thomas E. Edwards
- UCB Pharma, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA
| | - Timothy J. Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 Lincoln Highway, DeKalb, IL 60115, USA
| | - James R. Horn
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 Lincoln Highway, DeKalb, IL 60115, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, 307 Westlake Ave N, Seattle, WA 98109, USA
- Departments of Pediatrics, Biomedical Informatics & Medical Education, and Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Zhou J, Huang D, Liu C, Hu Z, Li H, Lou S. Research Progress in Heterologous Crocin Production. Mar Drugs 2023; 22:22. [PMID: 38248646 PMCID: PMC10820313 DOI: 10.3390/md22010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Crocin is one of the most valuable components of the Chinese medicinal plant Crocus sativus and is widely used in the food, cosmetics, and pharmaceutical industries. Traditional planting of C. sativus is unable to fulfill the increasing demand for crocin in the global market, however, such that researchers have turned their attention to the heterologous production of crocin in a variety of hosts. At present, there are reports of successful heterologous production of crocin in Escherichia coli, Saccharomyces cerevisiae, microalgae, and plants that do not naturally produce crocin. Of these, the microalga Dunaliella salina, which produces high levels of β-carotene, the substrate for crocin biosynthesis, is worthy of attention. This article describes the biosynthesis of crocin, compares the features of each heterologous host, and clarifies the requirements for efficient production of crocin in microalgae.
Collapse
Affiliation(s)
- Junjie Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Danqiong Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Chenglong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Hui Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Sulin Lou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
11
|
Gutkowska M, Buszewicz D, Zajbt-Łuczniewska M, Radkiewicz M, Nowakowska J, Swiezewska E, Surmacz L. Medium-chain-length polyprenol (C45-C55) formation in chloroplasts of Arabidopsis is brassinosteroid-dependent. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154126. [PMID: 37948907 DOI: 10.1016/j.jplph.2023.154126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Brassinosteroids are important plant hormones influencing, among other processes, chloroplast development, the electron transport chain during light reactions of photosynthesis, and the Calvin-Benson cycle. Medium-chain-length polyprenols built of 9-11 isoprenoid units (C45-C55 carbons) are a class of isoprenoid compounds present in abundance in thylakoid membranes. They are synthetized in chloroplast by CPT7 gene from Calvin cycle derived precursors on MEP (methylerythritol 4-phosphate) isoprenoid biosynthesis pathway. C45-C55 polyprenols affect thylakoid membrane ultra-structure and hence influence photosynthetic apparatus performance in plants such as Arabidopsis and tomato. So far nothing is known about the hormonal or environmental regulation of CPT7 gene expression. The aim of our study was to find out if medium-chain-length polyprenol biosynthesis in plants may be regulated by hormonal cues.We found that the CPT7 gene in Arabidopsis has a BZR1 binding element (brassinosteroid dependent) in its promoter. Brassinosteroid signaling mutants in Arabidopsis accumulate a lower amount of medium-chain-length C45-C55 polyprenols than control plants. At the same time carotenoid and chlorophyll content is increased, and the amount of PsbD1A protein coming from photosystem II does not undergo a significant change. On contrary, treatment of WT plants with epi-brassinolide increases C45-C55 polyprenols content. We also report decreased transcription of MEP enzymes (besides C45-C55 polyprenols, precursors of numerous isoprenoids, e.g. phytol, carotenoids are derived from this pathway) and genes encoding biosynthesis of medium-chain-length polyprenol enzymes in brassinosteroid perception mutant bri1-116. Taken together, we document that brassinosteroids affect biosynthetic pathway of C45-C55 polyprenols.
Collapse
Affiliation(s)
- Małgorzata Gutkowska
- Institute of Biology, Warsaw University of Life Sciences, ul. Nowoursynowska 159, bldg. 37, 02-776, Warsaw, Poland.
| | - Daniel Buszewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Marta Zajbt-Łuczniewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Mateusz Radkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Julita Nowakowska
- Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
12
|
Theuretzbacher U, Blasco B, Duffey M, Piddock LJV. Unrealized targets in the discovery of antibiotics for Gram-negative bacterial infections. Nat Rev Drug Discov 2023; 22:957-975. [PMID: 37833553 DOI: 10.1038/s41573-023-00791-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 10/15/2023]
Abstract
Advances in areas that include genomics, systems biology, protein structure determination and artificial intelligence provide new opportunities for target-based antibacterial drug discovery. The selection of a 'good' new target for direct-acting antibacterial compounds is the first decision, for which multiple criteria must be explored, integrated and re-evaluated as drug discovery programmes progress. Criteria include essentiality of the target for bacterial survival, its conservation across different strains of the same species, bacterial species and growth conditions (which determines the spectrum of activity of a potential antibiotic) and the level of homology with human genes (which influences the potential for selective inhibition). Additionally, a bacterial target should have the potential to bind to drug-like molecules, and its subcellular location will govern the need for inhibitors to penetrate one or two bacterial membranes, which is a key challenge in targeting Gram-negative bacteria. The risk of the emergence of target-based drug resistance for drugs with single targets also requires consideration. This Review describes promising but as-yet-unrealized targets for antibacterial drugs against Gram-negative bacteria and examples of cognate inhibitors, and highlights lessons learned from past drug discovery programmes.
Collapse
Affiliation(s)
| | - Benjamin Blasco
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Maëlle Duffey
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Laura J V Piddock
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland.
| |
Collapse
|
13
|
Simonet B, Herrscher V, Witjaksono C, Chaignon P, Massicot F, Vasse JL, Seemann M, Behr JB. Carbohydrate-Templated Syntheses of Trifluoromethyl-Substituted MEP Analogues for the Study of the Methylerythritol Phosphate Pathway. J Org Chem 2023; 88:15832-15843. [PMID: 37917513 DOI: 10.1021/acs.joc.3c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Trifluoromethyl analogues of methylerythritol phosphate (MEP) and 2-C-methyl-erythritol 2,4-cyclodiphosphate (MEcPP), natural substrates of key enzymes from the MEP pathway, were prepared starting from d-glucose as the chiral template to secure absolute configurations. The obligate trifluoromethyl group was inserted with complete diastereoselectivity using the Ruppert-Prakash nucleophile. Target compounds were assayed against the corresponding enzymes showing that trifluoro-MEP did not disrupt IspD activity, whereas trifluoro-MEcPP induced 40% inhibition of IspG at 1 mM.
Collapse
Affiliation(s)
- Basile Simonet
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Vivien Herrscher
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Clea Witjaksono
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Philippe Chaignon
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Fabien Massicot
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Jean-Luc Vasse
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Jean-Bernard Behr
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| |
Collapse
|
14
|
Hamid R, Adam S, Lacour A, Monjas L, Köhnke J, Hirsch AKH. 1-deoxy-D-xylulose-5-phosphate synthase from Pseudomonas aeruginosa and Klebsiella pneumoniae reveals conformational changes upon cofactor binding. J Biol Chem 2023; 299:105152. [PMID: 37567475 PMCID: PMC10504544 DOI: 10.1016/j.jbc.2023.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The ESKAPE bacteria are the six highly virulent and antibiotic-resistant pathogens that require the most urgent attention for the development of novel antibiotics. Detailed knowledge of target proteins specific to bacteria is essential to develop novel treatment options. The methylerythritol-phosphate (MEP) pathway, which is absent in humans, represents a potentially valuable target for the development of novel antibiotics. Within the MEP pathway, the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) catalyzes a crucial, rate-limiting first step and a branch point in the biosynthesis of the vitamins B1 and B6. We report the high-resolution crystal structures of DXPS from the important ESKAPE pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae in both the co-factor-bound and the apo forms. We demonstrate that the absence of the cofactor thiamine diphosphate results in conformational changes that lead to disordered loops close to the active site that might be important for the design of potent DXPS inhibitors. Collectively, our results provide important structural details that aid in the assessment of DXPS as a potential target in the ongoing efforts to combat antibiotic resistance.
Collapse
Affiliation(s)
- Rawia Hamid
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Sebastian Adam
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Antoine Lacour
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Leticia Monjas
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Jesko Köhnke
- Institute of Food Chemistry, Leibniz University Hannover, Hannover, Germany; School of Chemistry, University of Glasgow, Glasgow, UK
| | - Anna K H Hirsch
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
15
|
Levendosky K, Janisch N, Quadri LEN. Comprehensive essentiality analysis of the Mycobacterium kansasii genome by saturation transposon mutagenesis and deep sequencing. mBio 2023; 14:e0057323. [PMID: 37350613 PMCID: PMC10470612 DOI: 10.1128/mbio.00573-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/24/2023] Open
Abstract
Mycobacterium kansasii (Mk) is an opportunistic pathogen that is frequently isolated from urban water systems, posing a health risk to susceptible individuals. Despite its ability to cause tuberculosis-like pulmonary disease, very few studies have probed the genetics of this opportunistic pathogen. Here, we report a comprehensive essentiality analysis of the Mk genome. Deep sequencing of a high-density library of Mk Himar1 transposon mutants revealed that 86.8% of the chromosomal thymine-adenine (TA) dinucleotide target sites were permissive to insertion, leaving 13.2% TA sites unoccupied. Our analysis identified 394 of the 5,350 annotated open reading frames (ORFs) as essential. The majority of these essential ORFs (84.8%) share essential mutual orthologs with Mycobacterium tuberculosis (Mtb). A comparative genomics analysis identified 139 Mk essential ORFs that share essential orthologs in four other species of mycobacteria. Thirteen Mk essential ORFs share orthologs in all four species that were identified as being not essential, while only two Mk essential ORFs are absent in all species compared. We used the essentiality data and a comparative genomics analysis reported here to highlight differences in essentiality between candidate Mtb drug targets and the corresponding Mk orthologs. Our findings suggest that the Mk genome encodes redundant or additional pathways that may confound validation of potential Mtb drugs and drug target candidates against the opportunistic pathogen. Additionally, we identified 57 intergenic regions containing four or more consecutive unoccupied TA sites. A disproportionally large number of these regions were located upstream of pe/ppe genes. Finally, we present an essentiality and orthology analysis of the Mk pRAW-like plasmid, pMK1248. IMPORTANCE Mk is one of the most common nontuberculous mycobacterial pathogens associated with tuberculosis-like pulmonary disease. Drug resistance emergence is a threat to the control of Mk infections, which already requires long-term, multidrug courses. A comprehensive understanding of Mk biology is critical to facilitate the development of new and more efficacious therapeutics against Mk. We combined transposon-based mutagenesis with analysis of insertion site identification data to uncover genes and other genomic regions required for Mk growth. We also compared the gene essentiality data set of Mk to those available for several other mycobacteria. This analysis highlighted key similarities and differences in the biology of Mk compared to these other species. Altogether, the genome-wide essentiality information generated and the results of the cross-species comparative genomics analysis represent valuable resources to assist the process of identifying and prioritizing potential Mk drug target candidates and to guide future studies on Mk biology.
Collapse
Affiliation(s)
- Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
- Biochemistry Program, Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
16
|
Irfan A, Faisal S, Zahoor AF, Noreen R, Al-Hussain SA, Tuzun B, Javaid R, Elhenawy AA, Zaki MEA, Ahmad S, Abdellattif MH. In Silico Development of Novel Benzofuran-1,3,4-Oxadiazoles as Lead Inhibitors of M. tuberculosis Polyketide Synthase 13. Pharmaceuticals (Basel) 2023; 16:829. [PMID: 37375776 DOI: 10.3390/ph16060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Benzofuran and 1,3,4-oxadiazole are privileged and versatile heterocyclic pharmacophores which display a broad spectrum of biological and pharmacological therapeutic potential against a wide variety of diseases. This article reports in silico CADD (computer-aided drug design) and molecular hybridization approaches for the evaluation of the chemotherapeutic efficacy of 16 S-linked N-phenyl acetamide moiety containing benzofuran-1,3,4-oxadiazole scaffolds BF1-BF16. This virtual screening was carried out to discover and assess the chemotherapeutic efficacy of BF1-BF16 structural motifs as Mycobacterium tuberculosis polyketide synthase 13 (Mtb Pks13) enzyme inhibitors. The CADD study results revealed that the benzofuran clubbed oxadiazole derivatives BF3, BF4, and BF8 showed excellent and remarkably significant binding energies against the Mtb Pks13 enzyme comparable with the standard benzofuran-based TAM-16 inhibitor. The best binding affinity scores were displayed by 1,3,4-oxadiazoles-based benzofuran scaffolds BF3 (-14.23 kcal/mol), BF4 (-14.82 kcal/mol), and BF8 (-14.11 kcal/mol), in comparison to the binding affinity score of the standard reference TAM-16 drug (-14.61 kcal/mol). 2,5-Dimethoxy moiety-based bromobenzofuran-oxadiazole derivative BF4 demonstrated the highest binding affinity score amongst the screened compounds, and was higher than the reference Pks13 inhibitor TAM-16 drug. The bindings of these three leads BF3, BF4, and BF8 were further confirmed by the MM-PBSA investigations in which they also exhibited strong bindings with the Pks13 of Mtb. Moreover, the stability analysis of these benzofuran-1,3,4-oxadiazoles in the active sites of the Pks13 enzyme was achieved through molecular dynamic (MD) simulations at 250 ns virtual simulation time, which indicated that these three in silico predicted bio-potent benzofuran tethered oxadiazole molecules BF3, BF4, and BF8 demonstrated stability with the active site of the Pks13 enzyme.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| | - Burak Tuzun
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Rakshanda Javaid
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Chemistry Department, Faculty of Science and Art, AlBaha University, Mukhwah, Al Bahah 65731, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
17
|
Wu X, Ping H, Song C, Duan J, Zhang A. Optimization synthesis of phosphorous-containing natural products fosmidomycin and FR900098. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2173756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xin Wu
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China
| | - Hongrui Ping
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China
| | - Chunlin Song
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China
| | - Jiang Duan
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China
| | - Aidong Zhang
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
18
|
Morey-León G, Andrade-Molina D, Fernández-Cadena JC, Berná L. Comparative genomics of drug-resistant strains of Mycobacterium tuberculosis in Ecuador. BMC Genomics 2022; 23:844. [PMID: 36544084 PMCID: PMC9769008 DOI: 10.1186/s12864-022-09042-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tuberculosis is a serious infectious disease affecting millions of people. In spite of efforts to reduce the disease, increasing antibiotic resistance has contributed to persist in the top 10 causes of death worldwide. In fact, the increased cases of multi (MDR) and extreme drug resistance (XDR) worldwide remains the main challenge for tuberculosis control. Whole genome sequencing is a powerful tool for predicting drug resistance-related variants, studying lineages, tracking transmission, and defining outbreaks. This study presents the identification and characterization of resistant clinical isolates of Mycobacterium tuberculosis including a phylogenetic and molecular resistance profile study by sequencing the complete genome of 24 strains from different provinces of Ecuador. RESULTS Genomic sequencing was used to identify the variants causing resistance. A total of 15/21 isolates were identified as MDR, 4/21 as pre-XDR and 2/21 as XDR, with three isolates discarded due to low quality; the main sub-lineage was LAM (61.9%) and Haarlem (19%) but clades X, T and S were identified. Of the six pre-XDR and XDR strains, it is noteworthy that five come from females; four come from the LAM sub-lineage and two correspond to the X-class sub-lineage. A core genome of 3,750 genes, distributed in 295 subsystems, was determined. Among these, 64 proteins related to virulence and implicated in the pathogenicity of M. tuberculosis and 66 possible pharmacological targets stand out. Most variants result in nonsynonymous amino acid changes and the most frequent genotypes were identified as conferring resistance to rifampicin, isoniazid, ethambutol, para-aminosalicylic acid and streptomycin. However, an increase in the resistance to fluoroquinolones was detected. CONCLUSION This work shows for the first time the variability of circulating resistant strains between men and women in Ecuador, highlighting the usefulness of genomic sequencing for the identification of emerging resistance. In this regard, we found an increase in fluoroquinolone resistance. Further sampling effort is needed to determine the total variability and associations with the metadata obtained to generate better health policies.
Collapse
Affiliation(s)
- Gabriel Morey-León
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Universidad de Guayaquil, Guayaquil, Ecuador.
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador.
| | - Derly Andrade-Molina
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Facultad de Ciencias, Unidad de Genómica Evolutiva, Universidad de La República, Montevideo, Uruguay.
| |
Collapse
|
19
|
Acyloxymethyl and alkoxycarbonyloxymethyl prodrugs of a fosmidomycin surrogate as antimalarial and antibacterial agents. Eur J Med Chem 2022; 245:114924. [DOI: 10.1016/j.ejmech.2022.114924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
|
20
|
Johnston ML, Bonett EM, DeColli AA, Freel Meyers CL. Antibacterial Target DXP Synthase Catalyzes the Cleavage of d-Xylulose 5-Phosphate: a Study of Ketose Phosphate Binding and Ketol Transfer Reaction. Biochemistry 2022; 61:1810-1823. [PMID: 35998648 PMCID: PMC9531112 DOI: 10.1021/acs.biochem.2c00274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) in a thiamin diphosphate (ThDP)-dependent manner. In addition to its role in isoprenoid biosynthesis, DXP is required for ThDP and pyridoxal phosphate biosynthesis. Due to its function as a branch-point enzyme and its demonstrated substrate and catalytic promiscuity, we hypothesize that DXPS could be key for bacterial adaptation in the dynamic metabolic landscape during infection. Prior work in the Freel Meyers laboratory has illustrated that DXPS displays relaxed specificity toward donor and acceptor substrates and varies acceptor specificity according to the donor used. We have reported that DXPS forms dihydroxyethyl (DHE)ThDP from ketoacid or aldehyde donor substrates via decarboxylation and deprotonation, respectively. Here, we tested other DHE donors and found that DXPS cleaves d-xylulose 5-phosphate (X5P) at C2-C3, producing DHEThDP through a third mechanism involving d-GAP elimination. We interrogated DXPS-catalyzed reactions using X5P as a donor substrate and illustrated (1) production of a semi-stable enzyme-bound intermediate and (2) O2, H+, and d-erythrose 4-phosphate act as acceptor substrates, highlighting a new transketolase-like activity of DXPS. Furthermore, we examined X5P binding to DXPS and suggest that the d-GAP binding pocket plays a crucial role in X5P binding and turnover. Overall, this study reveals a ketose-cleavage reaction catalyzed by DXPS, highlighting the remarkable flexibility for donor substrate usage by DXPS compared to other C-C bond-forming enzymes.
Collapse
Affiliation(s)
- Melanie L. Johnston
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eucolona M. Bonett
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Herrscher V, Witjaksono C, Buchotte M, Ferret C, Massicot F, Vasse J, Borel F, Behr J, Seemann M. Irreversible Inhibition of IspG, a Target for the Development of New Antimicrobials, by a 2‐Vinyl Analogue of its MEcPP Substrate. Chemistry 2022; 28:e202200241. [DOI: 10.1002/chem.202200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Vivien Herrscher
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Clea Witjaksono
- Equipe Chimie Biologique et Applications Thérapeutiques Institut de Chimie de Strasbourg UMR 7177 Université de Strasbourg/CNRS 4, rue Blaise Pascal 67070 Strasbourg France
| | - Marie Buchotte
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Claire Ferret
- Equipe Chimie Biologique et Applications Thérapeutiques Institut de Chimie de Strasbourg UMR 7177 Université de Strasbourg/CNRS 4, rue Blaise Pascal 67070 Strasbourg France
| | - Fabien Massicot
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Jean‐Luc Vasse
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Franck Borel
- Univ. Grenoble Alpes, CEA, CNRS, IBS 38000 Grenoble France
| | - Jean‐Bernard Behr
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques Institut de Chimie de Strasbourg UMR 7177 Université de Strasbourg/CNRS 4, rue Blaise Pascal 67070 Strasbourg France
| |
Collapse
|
22
|
Gierse RM, Oerlemans R, Reddem ER, Gawriljuk VO, Alhayek A, Baitinger D, Jakobi H, Laber B, Lange G, Hirsch AKH, Groves MR. First crystal structures of 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) from Mycobacterium tuberculosis indicate a distinct mechanism of intermediate stabilization. Sci Rep 2022; 12:7221. [PMID: 35508530 PMCID: PMC9068908 DOI: 10.1038/s41598-022-11205-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
The development of drug resistance by Mycobacterium tuberculosis and other pathogenic bacteria emphasizes the need for new antibiotics. Unlike animals, most bacteria synthesize isoprenoid precursors through the MEP pathway. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the first reaction of the MEP pathway and is an attractive target for the development of new antibiotics. We report here the successful use of a loop truncation to crystallize and solve the first DXPS structures of a pathogen, namely M. tuberculosis (MtDXPS). The main difference found to other DXPS structures is in the active site where a highly coordinated water was found, showing a new mechanism for the enamine-intermediate stabilization. Unlike other DXPS structures, a “fork-like” motif could be identified in the enamine structure, using a different residue for the interaction with the cofactor, potentially leading to a decrease in the stability of the intermediate. In addition, electron density suggesting a phosphate group could be found close to the active site, provides new evidence for the D-GAP binding site. These results provide the opportunity to improve or develop new inhibitors specific for MtDXPS through structure-based drug design.
Collapse
Affiliation(s)
- Robin M Gierse
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Rick Oerlemans
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Eswar R Reddem
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Victor O Gawriljuk
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands.,São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100-Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Dominik Baitinger
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany
| | - Harald Jakobi
- Research & Development Crop Science, Bayer AG, Industriepark Höchst, 65926, Frankfurt, Germany
| | - Bernd Laber
- Research & Development Crop Science, Bayer AG, Industriepark Höchst, 65926, Frankfurt, Germany
| | - Gudrun Lange
- Research & Development Crop Science, Bayer AG, Industriepark Höchst, 65926, Frankfurt, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany. .,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany. .,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Matthew R Groves
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands.
| |
Collapse
|
23
|
Lee YJ, Kim JK, Baek SA, Yu JS, You MK, Ha SH. Differential Regulation of an OsIspH1, the Functional 4-Hydroxy-3-Methylbut-2-Enyl Diphosphate Reductase, for Photosynthetic Pigment Biosynthesis in Rice Leaves and Seeds. FRONTIERS IN PLANT SCIENCE 2022; 13:861036. [PMID: 35498655 PMCID: PMC9044040 DOI: 10.3389/fpls.2022.861036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/10/2022] [Indexed: 06/02/2023]
Abstract
The methylerythritol 4-phosphate (MEP) pathway is responsible for providing common precursors for the biosynthesis of diverse plastidial terpenoids, including chlorophylls, carotenoids, and phytohormones, in plants. In rice (Oryza sativa), the last-step genes encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase [HDR/isoprenoid synthesis H (IspH)] have been annotated in two genes (OsIspH1 and OsIspH2) in the rice genome. The spatial transcript levels indicated that OsIspH1 is highly expressed in all tissues at different developmental stages, whereas OsIspH2 is barely expressed due to an early stop in exon 1 caused by splicing error. OsIspH1 localized into plastids and osisph1, a T-DNA inserted knockout mutant, showed an albino phenotype, indicating that OsIspH1 is the only functional gene. To elucidate the role of OsIspH1 in the MEP pathway, we created two single (H145P and K407R) and double (H145P/K407R) mutations and performed complementation tests in two hdr mutants, including Escherichia coli DLYT1 strains and osisph1 rice plants. The results showed that every single mutation retained HDR function, but a double mutation lost it, proposing that the complementary relations of two residues might be important for enzyme activity but not each residue. When overexpressed in rice plants, the double-mutated gene, OsIspH1MUT , reduced chlorophyll and carotenoid biosynthesis in the leaves and seeds. It confirmed the crucial role of OsIspH1 in plastidic terpenoid biosynthesis, revealing organ-specific differential regulation of OsIspH1 in rice plants.
Collapse
Affiliation(s)
- Yeo Jin Lee
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| | - Jae Kwang Kim
- Division of Life Sciences, Bio-Resource and Environmental Center, Incheon National University, Incheon, South Korea
| | - Seung-A Baek
- Division of Life Sciences, Bio-Resource and Environmental Center, Incheon National University, Incheon, South Korea
| | - Ji-Su Yu
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| | - Min Kyoung You
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| | - Sun-Hwa Ha
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
24
|
Mi J, Gong W, Wu X. Advances in Key Drug Target Identification and New Drug Development for Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5099312. [PMID: 35252448 PMCID: PMC8896939 DOI: 10.1155/2022/5099312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is a severe infectious disease worldwide. The increasing emergence of drug-resistant Mycobacterium tuberculosis (Mtb) has markedly hampered TB control. Therefore, there is an urgent need to develop new anti-TB drugs to treat drug-resistant TB and shorten the standard therapy. The discovery of targets of drug action will lay a theoretical foundation for new drug development. With the development of molecular biology and the success of Mtb genome sequencing, great progress has been made in the discovery of new targets and their relevant inhibitors. In this review, we summarized 45 important drug targets and 15 new drugs that are currently being tested in clinical stages and several prospective molecules that are still at the level of preclinical studies. A comprehensive understanding of the drug targets of Mtb can provide extensive insights into the development of safer and more efficient drugs and may contribute new ideas for TB control and treatment.
Collapse
Affiliation(s)
- Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
25
|
Yelamanchi SD, Arun Kumar ST, Mishra A, Keshava Prasad TS, Surolia A. Metabolite Dysregulation by Pranlukast in Mycobacterium tuberculosis. Molecules 2022; 27:1520. [PMID: 35268621 PMCID: PMC8911922 DOI: 10.3390/molecules27051520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis has been infecting millions of people worldwide over the years, causing tuberculosis. Drugs targeting distinct cellular mechanisms including synthesis of the cell wall, lipids, proteins, and nucleic acids in Mtb are currently being used for the treatment of TB. Although extensive research is being carried out at the molecular level in the infected host and pathogen, the identification of suitable drug targets and drugs remains under explored. Pranlukast, an allosteric inhibitor of MtArgJ (Mtb ornithine acetyltransferase) has previously been shown to inhibit the survival and virulence of Mtb. The main objective of this study was to identify the altered metabolic pathways and biological processes associated with the differentially expressed metabolites by PRK in Mtb. Here in this study, metabolomics was carried out using an LC-MS/MS-based approach. Collectively, 50 metabolites were identified to be differentially expressed with a significant p-value through a global metabolomic approach using a high-resolution mass spectrometer. Metabolites downstream of argJ were downregulated in the arginine biosynthetic pathway following pranlukast treatment. Predicted human protein interactors of pranlukast-treated Mtb metabolome were identified in association with autophagy, inflammation, DNA repair, and other immune-related processes. Further metabolites including N-acetylglutamate, argininosuccinate, L-arginine, succinate, ergothioneine, and L-phenylalanine were validated by multiple reaction monitoring, a targeted mass spectrometry-based metabolomic approach. This study facilitates the understanding of pranlukast-mediated metabolic changes in Mtb and holds the potential to identify novel therapeutic approaches using metabolic pathways in Mtb.
Collapse
Affiliation(s)
- Soujanya D. Yelamanchi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India; (S.D.Y.); (A.M.)
| | - Sumaithangi Thattai Arun Kumar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya University, Mangalore 575 018, India; (S.T.A.K.); (T.S.K.P.)
| | - Archita Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India; (S.D.Y.); (A.M.)
| | | | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India; (S.D.Y.); (A.M.)
| |
Collapse
|
26
|
Lu Z, Wang B, Qiu Z, Zhang R, Zheng J, Jia Z. YdfD, a Lysis Protein of the Qin Prophage, Is a Specific Inhibitor of the IspG-Catalyzed Step in the MEP Pathway of Escherichia coli. Int J Mol Sci 2022; 23:ijms23031560. [PMID: 35163484 PMCID: PMC8835842 DOI: 10.3390/ijms23031560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022] Open
Abstract
Bacterial cryptic prophage (defective prophage) genes are known to drastically influence host physiology, such as causing cell growth arrest or lysis, upon expression. Many phages encode lytic proteins to destroy the cell envelope. As natural antibiotics, only a few lysis target proteins were identified. ydfD is a lytic gene from the Qin cryptic prophage that encodes a 63-amino-acid protein, the ectopic expression of which in Escherichia coli can cause nearly complete cell lysis rapidly. The bacterial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is responsible for synthesizing the isoprenoids uniquely required for sustaining bacterial growth. In this study, we provide evidence that YdfD can interact with IspG, a key enzyme involved in the MEP pathway, both in vivo and in vitro. We show that intact YdfD is required for the interaction with IspG to perform its lysis function and that the mRNA levels of ydfD increase significantly under certain stress conditions. Crucially, the cell lysis induced by YdfD can be abolished by the overexpression of ispG or the complementation of the IspG enzyme catalysis product methylerythritol 2,4-cyclodiphosphate. We propose that YdfD from the Qin cryptic prophage inhibits IspG to block the MEP pathway, leading to a compromised cell membrane and cell wall biosynthesis and eventual cell lysis.
Collapse
Affiliation(s)
- Zhifang Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
| | - Biying Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
| | - Zhiyu Qiu
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
| | - Ruiling Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
- Correspondence: (J.Z.); (Z.J.)
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Correspondence: (J.Z.); (Z.J.)
| |
Collapse
|
27
|
Zhu D, Johannsen S, Masini T, Simonin C, Haupenthal J, Illarionov B, Andreas A, Awale M, Gierse RM, van der Laan T, van der Vlag R, Nasti R, Poizat M, Buhler E, Reiling N, Müller R, Fischer M, Reymond JL, Hirsch AKH. Discovery of novel drug-like antitubercular hits targeting the MEP pathway enzyme DXPS by strategic application of ligand-based virtual screening. Chem Sci 2022; 13:10686-10698. [PMID: 36320685 PMCID: PMC9491098 DOI: 10.1039/d2sc02371g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022] Open
Abstract
In the present manuscript, we describe how we successfully used ligand-based virtual screening (LBVS) to identify two small-molecule, drug-like hit classes with excellent ADMET profiles against the difficult to address microbial enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). In the fight against antimicrobial resistance (AMR), it has become increasingly important to address novel targets such as DXPS, the first enzyme of the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, which affords the universal isoprenoid precursors. This pathway is absent in humans but essential for pathogens such as Mycobacterium tuberculosis, making it a rich source of drug targets for the development of novel anti-infectives. Standard computer-aided drug-design tools, frequently applied in other areas of drug development, often fail for targets with large, hydrophilic binding sites such as DXPS. Therefore, we introduce the concept of pseudo-inhibitors, combining the benefits of pseudo-ligands (defining a pharmacophore) and pseudo-receptors (defining anchor points in the binding site), for providing the basis to perform a LBVS against M. tuberculosis DXPS. Starting from a diverse set of reference ligands showing weak inhibition of the orthologue from Deinococcus radiodurans DXPS, we identified three structurally unrelated classes with promising in vitro (against M. tuberculosis DXPS) and whole-cell activity including extensively drug-resistant strains of M. tuberculosis. The hits were validated to be specific inhibitors of DXPS and to have a unique mechanism of inhibition. Furthermore, two of the hits have a balanced profile in terms of metabolic and plasma stability and display a low frequency of resistance development, making them ideal starting points for hit-to-lead optimization of antibiotics with an unprecedented mode of action. We identified two drug-like antitubercular hits with submicromolar inhibition constants against the target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) with a new mode of action and promising activity against drug-resistant tuberculosis.![]()
Collapse
Affiliation(s)
- Di Zhu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Sandra Johannsen
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
| | - Tiziana Masini
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Céline Simonin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry Grindelallee 117 20146 Hamburg Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
| | - Mahendra Awale
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Robin M Gierse
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Tridia van der Laan
- Department of Mycobacteria, National Institute of Public Health and the Environment (RIVM), Diagnostics and Laboratory Surveillance (IDS) Infectious Diseases Research Antonie van Leeuwenhoeklaan 9 3721 MA Bilthoven The Netherlands
| | - Ramon van der Vlag
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Rita Nasti
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Mael Poizat
- Symeres Kadijk 3 9747 AT Groningen The Netherlands
| | - Eric Buhler
- Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité Bâtiment Condorcet 75205 Paris Cedex 13 France
| | - Norbert Reiling
- RG Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center Borstel Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems Borstel Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Helmholtz International Lab for Anti-infectives Campus Building E8.1 66123 Saarbrücken Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry Grindelallee 117 20146 Hamburg Germany
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
- Helmholtz International Lab for Anti-infectives Campus Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
28
|
Hui X, Zhu BR, Wu LL, Gao WY, Li YM, Jia Q, Li H. Inhibitory Activity of Proanthocyanidins Against Escherichia coli 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is a key enzyme in the methylerythritol phosphate pathway for terpenoid biosynthesis. Furthermore, it is an ideal target for the screening of novel antibiotics because it is present in causative organisms, but absent from humans. To identify more lipophilic DXR inhibitors from natural resources, we tested the DXR inhibitory activity of five proanthocyanidins in this study. The results indicated that all these compounds specifically restrained the activity of DXR, with procyanid B2 exhibiting a relatively low effect against DXR (IC50 ∼ 305 μM) and procyanid C1 displaying moderate activity (IC50 75.1 μM). The other three compounds cinnamtannin A2, cinnamtannin B1, and cinnamtannin D1 (IC50 ∼ 89.3, 105.0, and 97.8 μM, respectively) showed DXR inhibitory effects that were slightly weaker than that of procyanid C1. In addition, based on the initial characterization, the structure–activity relationship of this series of compounds against DXR is discussed.
Collapse
Affiliation(s)
- Xian Hui
- Northwest University, Xi’an, China
- The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bo-Rong Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long-Long Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Yi-Ming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Jia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Heng Li
- Northwest University, Xi’an, China
| |
Collapse
|
29
|
Girma M, Ball HS, Wang X, Brothers RC, Jackson ER, Meyers MJ, Dowd CS, Couch RD. Mechanism of Action of N-Acyl and N-Alkoxy Fosmidomycin Analogs: Mono- and Bisubstrate Inhibition of IspC from Plasmodium falciparum, a Causative Agent of Malaria. ACS OMEGA 2021; 6:27630-27639. [PMID: 34722963 PMCID: PMC8552233 DOI: 10.1021/acsomega.1c01711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/09/2021] [Indexed: 06/01/2023]
Abstract
Malaria is a global health threat that requires immediate attention. Malaria is caused by the protozoan parasite Plasmodium, the most severe form of which is Plasmodium falciparum. The methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis is essential to the survival of many human pathogens, including P. falciparum, but is absent in humans, and thus shows promise as a new antimalarial drug target. The enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) catalyzes the first committed step in the MEP pathway. In addition to a divalent cation (Mg2+), the enzyme requires the substrates 1-deoxy-D-xylulose 5-phosphate (DXP) and NADPH to catalyze its reaction. We designed N-alkoxy and N-acyl fosmidomycin analogs to inhibit the activity of P. falciparum IspC in a bisubstrate manner. Enzyme assays reveal that the N-alkoxy fosmidomycin analogs have a competitive mode of inhibition relative to both the DXP- and NADPH-binding sites, confirming a bisubstrate mode of inhibition. In contrast, the N-acyl fosmidomycin analogs demonstrate competitive inhibition with respect to DXP but uncompetitive inhibition with respect to NADPH, indicating monosubstrate inhibitory activity. Our results will have a positive impact on the discovery of novel antimalarial drugs.
Collapse
Affiliation(s)
- Misgina
B. Girma
- Department
of Chemistry and Biochemistry, George Mason
University, Manassas, Virginia 20110, United States
| | - Haley S. Ball
- Department
of Chemistry and Biochemistry, George Mason
University, Manassas, Virginia 20110, United States
| | - Xu Wang
- Progenra
Inc., Malvern, Pennsylvania 19355, United States
| | - Robert C. Brothers
- Department
of Chemistry, The George Washington University, Washington, District of
Columbia 20052, United
States
| | - Emily R. Jackson
- Department
of Chemistry, The George Washington University, Washington, District of
Columbia 20052, United
States
| | - Marvin J. Meyers
- Department
of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, United States
| | - Cynthia S. Dowd
- Department
of Chemistry, The George Washington University, Washington, District of
Columbia 20052, United
States
| | - Robin D. Couch
- Department
of Chemistry and Biochemistry, George Mason
University, Manassas, Virginia 20110, United States
| |
Collapse
|
30
|
Scherpenzeel M, Conte F, Büll C, Ashikov A, Hermans E, Willems A, Tol W, Kragt E, Noga M, Moret EE, Heise T, Langereis JD, Rossing E, Zimmermann M, Rubio-Gozalbo ME, de Jonge MI, Adema GJ, Zamboni N, Boltje T, Lefeber DJ. Dynamic tracing of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs. Glycobiology 2021; 32:239-250. [PMID: 34939087 PMCID: PMC8966471 DOI: 10.1093/glycob/cwab106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/14/2022] Open
Abstract
Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact cellular metabolism over time are mostly lacking. We combined ion-pair ultrahigh performance liquid chromatography–triple quadrupole mass spectrometry mass spectrometry using tributyl- and triethylamine buffers for sensitive analysis of sugar metabolites in cells and organisms and identified low abundant nucleotide sugars, such as UDP-arabinose in human cell lines and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Furthermore, MOE revealed that propargyloxycarbonyl (Poc)-labeled ManNPoc was metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, time-course analysis of the effect of antitumor compound 3Fax-NeuNAc by incubation of B16-F10 melanoma cells with N-acetyl-D-[UL-13C6]glucosamine revealed full depletion of endogenous ManNAc 6-phosphate and CMP-NeuNAc within 24 h. Thus, dynamic tracing of sugar metabolic pathways provides a general approach to reveal time-dependent insights into the metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects.
Collapse
Affiliation(s)
- Monique Scherpenzeel
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,GlycoMScan B.V., Kloosterstraat 9, RE0329, 5349 AB Oss, The Netherlands
| | - Federica Conte
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Christian Büll
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Angel Ashikov
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Esther Hermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Anke Willems
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Walinka Tol
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Else Kragt
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Marek Noga
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Ed E Moret
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Torben Heise
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Radboud Center for Infectious Diseases, Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Emiel Rossing
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | | | - M Estela Rubio-Gozalbo
- Department of Clinical Genetics, department of Pediatrics, Maastricht University Medical Centre, Universiteitssingel 50, P.O. Box 616, box 16, 6200 MD, Maastricht, The Netherlands
| | - Marien I de Jonge
- Radboud Center for Infectious Diseases, Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Thomas Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Structural and biophysical characterization of the Burkholderia pseudomallei IspF inhibitor L-tryptophan hydroxamate. Bioorg Med Chem Lett 2021; 48:128273. [PMID: 34298132 DOI: 10.1016/j.bmcl.2021.128273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022]
Abstract
The enzyme 2-methylerythritol 2,4-cyclodiphosphate synthase, IspF, is essential for the biosynthesis of isoprenoids in most bacteria, some eukaryotic parasites, and the plastids of plant cells. The development of inhibitors that target IspF may lead to novel classes of anti-infective agents or herbicides. Enantiomers of tryptophan hydroxamate were synthesized and evaluated for binding to Burkholderia pseudomallei (Bp) IspF. The L-isomer possessed the highest potency, binding BpIspF with a KD of 36 µM and inhibited BpIspF activity 55% at 120 µM. The high-resolution crystal structure of the L-tryptophan hydroxamate (3)/BpIspF complex revealed a non-traditional mode of hydroxamate binding where the ligand interacts with the active site zinc ion through the primary amine. In addition, two hydrogen bonds are formed with active site groups, and the indole group is buried within the hydrophobic pocket composed of side chains from the 60 s/70 s loop. Along with the co-crystal structure, STD NMR studies suggest the methylene group and indole ring are potential positions for optimization to enhance binding potency.
Collapse
|
32
|
Johnston ML, Freel Meyers CL. Revealing Donor Substrate-Dependent Mechanistic Control on DXPS, an Enzyme in Bacterial Central Metabolism. Biochemistry 2021; 60:929-939. [PMID: 33660509 PMCID: PMC8015787 DOI: 10.1021/acs.biochem.1c00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Indexed: 11/28/2022]
Abstract
The thiamin diphosphate-dependent enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the formation of DXP from pyruvate (donor) and d-glyceraldehyde 3-phosphate (d-GAP, acceptor). DXPS is essential in bacteria but absent in human metabolism, highlighting it as a potential antibacterial drug target. The enzyme possesses unique structural and mechanistic features that enable development of selective inhibition strategies and raise interesting questions about DXPS function in bacterial pathogens. DXPS distinguishes itself within the ThDP enzyme class by its exceptionally large active site and random sequential mechanism in DXP formation. In addition, DXPS displays catalytic promiscuity and relaxed acceptor substrate specificity, yet previous studies have suggested a preference for pyruvate as the donor substrate when d-GAP is the acceptor substrate. However, such donor specificity studies are potentially hindered by a lack of knowledge about specific, alternative donor-acceptor pairs. In this study, we exploited the promiscuous oxygenase activity of DXPS to uncover alternative donor substrates for DXPS. Characterization of glycolaldehyde, hydroxypyruvate, and ketobutyrate as donor substrates revealed differences in stabilization of enzyme-bound intermediates and acceptor substrate usage, illustrating the influence of the donor substrate on reaction mechanism and acceptor specificity. In addition, we found that DXPS prevents abortive acetyl-ThDP formation from a DHEThDP carbanion/enamine intermediate, similar to transketolase, supporting the potential physiological relevance of this intermediate on DXPS. Taken together, these results offer clues toward alternative roles for DXPS in bacterial pathogen metabolism.
Collapse
Affiliation(s)
- Melanie L. Johnston
- Department of Pharmacology and Molecular Sciences,
Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, United States
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences,
Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, United States
| |
Collapse
|
33
|
Vitense P, Kasbohm E, Klassen A, Gierschner P, Trefz P, Weber M, Miekisch W, Schubert JK, Möbius P, Reinhold P, Liebscher V, Köhler H. Detection of Mycobacterium avium ssp. paratuberculosis in Cultures From Fecal and Tissue Samples Using VOC Analysis and Machine Learning Tools. Front Vet Sci 2021; 8:620327. [PMID: 33614764 PMCID: PMC7887282 DOI: 10.3389/fvets.2021.620327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Analysis of volatile organic compounds (VOCs) is a novel approach to accelerate bacterial culture diagnostics of Mycobacterium avium subsp. paratuberculosis (MAP). In the present study, cultures of fecal and tissue samples from MAP-infected and non-suspect dairy cattle and goats were explored to elucidate the effects of sample matrix and of animal species on VOC emissions during bacterial cultivation and to identify early markers for bacterial growth. The samples were processed following standard laboratory procedures, culture tubes were incubated for different time periods. Headspace volume of the tubes was sampled by needle trap-micro-extraction, and analyzed by gas chromatography-mass spectrometry. Analysis of MAP-specific VOC emissions considered potential characteristic VOC patterns. To address variation of the patterns, a flexible and robust machine learning workflow was set up, based on random forest classifiers, and comprising three steps: variable selection, parameter optimization, and classification. Only a few substances originated either from a certain matrix or could be assigned to one animal species. These additional emissions were not considered informative by the variable selection procedure. Classification accuracy of MAP-positive and negative cultures of bovine feces was 0.98 and of caprine feces 0.88, respectively. Six compounds indicating MAP presence were selected in all four settings (cattle vs. goat, feces vs. tissue): 2-Methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, heptanal, isoprene, and 2-heptanone. Classification accuracies for MAP growth-scores ranged from 0.82 for goat tissue to 0.89 for cattle feces. Misclassification occurred predominantly between related scores. Seventeen compounds indicating MAP growth were selected in all four settings, including the 6 compounds indicating MAP presence. The concentration levels of 2,3,5-trimethylfuran, 2-pentylfuran, 1-propanol, and 1-hexanol were indicative for MAP cultures before visible growth was apparent. Thus, very accurate classification of the VOC samples was achieved and the potential of VOC analysis to detect bacterial growth before colonies become visible was confirmed. These results indicate that diagnosis of paratuberculosis can be optimized by monitoring VOC emissions of bacterial cultures. Further validation studies are needed to increase the robustness of indicative VOC patterns for early MAP growth as a pre-requisite for the development of VOC-based diagnostic analysis systems.
Collapse
Affiliation(s)
- Philipp Vitense
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Elisa Kasbohm
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Anne Klassen
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Peter Gierschner
- Department of Anaesthesia and Intensive Care, University Medicine Rostock, Rostock, Germany
| | - Phillip Trefz
- Department of Anaesthesia and Intensive Care, University Medicine Rostock, Rostock, Germany
| | - Michael Weber
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Wolfram Miekisch
- Department of Anaesthesia and Intensive Care, University Medicine Rostock, Rostock, Germany
| | - Jochen K Schubert
- Department of Anaesthesia and Intensive Care, University Medicine Rostock, Rostock, Germany
| | - Petra Möbius
- National Reference Laboratory for Paratuberculosis, Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Volkmar Liebscher
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Heike Köhler
- National Reference Laboratory for Paratuberculosis, Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
34
|
Khusro A, Aarti C, Elghandour MM, Salem AZ. Potential targets in quest for new antitubercular drugs: Implications of computational approaches for end-TB strategy. A MECHANISTIC APPROACH TO MEDICINES FOR TUBERCULOSIS NANOTHERAPY 2021:229-260. [DOI: 10.1016/b978-0-12-819985-5.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Butman HS, Kotzé TJ, Dowd CS, Strauss E. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Front Cell Infect Microbiol 2020; 10:605662. [PMID: 33384970 PMCID: PMC7770189 DOI: 10.3389/fcimb.2020.605662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.
Collapse
Affiliation(s)
- Hailey S. Butman
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Timothy J. Kotzé
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
36
|
Non-hydroxamate inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR): A critical review and future perspective. Eur J Med Chem 2020; 213:113055. [PMID: 33303239 DOI: 10.1016/j.ejmech.2020.113055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022]
Abstract
1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the second step of the non-mevalonate (or MEP) pathway that functions in several organisms and plants for the synthesis of isoprenoids. DXR is essential for the survival of multiple pathogenic bacteria/parasites, including those that cause tuberculosis and malaria in humans. DXR function is inhibited by fosmidomycin (1), a natural product, which forms a chelate with the active site divalent metal (Mg2+/Mn2+) through its hydroxamate metal-binding group (MBG). Most of the potent DXR inhibitors are structurally similar to 1 and retain hydroxamate despite the unfavourable pharmacokinetic and toxicity profile of the latter. We provide our perspective on the lack of non-hydroxamate DXR inhibitors. We also highlight the fundamental flaws in the design of MBG in these molecules, primarily responsible for their failure to inhibit DXR. We also suggest that for designing next-generation non-hydroxamate DXR inhibitors, approaches followed for other metalloenzymes targets may be exploited.
Collapse
|
37
|
Huang H, Han YS, Chen J, Shi LY, Wei LL, Jiang TT, Yi WJ, Yu Y, Li ZB, Li JC. The novel potential biomarkers for multidrug-resistance tuberculosis using UPLC-Q-TOF-MS. Exp Biol Med (Maywood) 2020; 245:501-511. [PMID: 32046521 DOI: 10.1177/1535370220903464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The lack of rapid and efficient diagnostics impedes largely the epidemic control of multidrug-resistant tuberculosis, and might misguide the therapeutic strategies as well. This study aimed to identify novel multidrug-resistant tuberculosis biomarkers to improve the early intervention, symptomatic treatment and control of the prevalence of multidrug-resistant tuberculosis. The serum small molecule metabolites in healthy controls, patients with drug-susceptible tuberculosis, and patients with multidrug-resistant tuberculosis were screened using ultra-high-performance liquid chromatography combined with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The differentially abundant metabolites were filtered out through multidimensional statistical analysis and bioinformatics analysis. Compared with drug-susceptible tuberculosis patients and healthy controls, the levels of 13 metabolites in multidrug-resistant tuberculosis patients altered. Among them, the most significant changes were found in N1-Methyl-2-pyridone-5-carboxamide (N1M2P5C), 1-Myristoyl-sn-glycerol-3-phosphocholine (MG3P), Caprylic acid (CA), and D-Xylulose (DX). And a multidrug-resistant tuberculosis/drug-susceptible tuberculosis differential diagnostic model was built based on these four metabolites, achieved the accuracy, sensitivity, and specificity of 0.928, 86.7%, and 86.7%, respectively. The enrichment analysis of metabolic pathways showed that the phospholipid remodeling of cell membranes was active in multidrug-resistant tuberculosis patients. In addition, in patients with tuberculosis, the metabolites of dipalmitoyl phosphatidylcholine (DPPC), a major component of pulmonary surfactant, were down-regulated. N1M2P5C, MG3P, CA, and DX may have the potential to serve as novel multidrug-resistant tuberculosis biomarkers. This research provides a preliminary experimental basis to further investigate potential multidrug-resistant tuberculosis biomarkers. Impact statement The MDR-TB incidence remains high, making the effective control of TB epidemic yet challenging. Rapid and accurate diagnosis is vitally important for improving the therapeutic efficacy and controlling the prevalence of drug resistance TB. Metabolomics has dramatic potential to distinguish MDR-TB and DS-TB. N1M2P5C, MG3P, CA, and DX that we identified in this study might have potential as novel MDR-TB biomarkers. The phospholipid remodeling of cell membranes was highly active in MDR-TB. The DPPC metabolites in TB were significantly down-regulated. This work aimed to investigate potential MDR-TB biomarkers to enhance the clinical diagnostic efficacy. The metabolic pathway distinctly altered in MDR-TB might provide novel targets to develop new anti-TB drugs.
Collapse
Affiliation(s)
- Huai Huang
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yu-Shuai Han
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Jing Chen
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, China
| | - Li-Liang Wei
- Department of Pneumology, Shaoxing University Affiliated Hospital, Shaoxing 312099, China
| | - Ting-Ting Jiang
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Wen-Jing Yi
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Yi Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Bin Li
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Ji-Cheng Li
- Medical Research Center, Yue Bei People's Hospital, Shaoguan 512025, China.,Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
38
|
Riggs-Shute SD, Falkinham JO, Yang Z. Construction and Use of Transposon MycoTetOP 2 for Isolation of Conditional Mycobacteria Mutants. Front Microbiol 2020; 10:3091. [PMID: 32038540 PMCID: PMC6985430 DOI: 10.3389/fmicb.2019.03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
Mycobacteria are unique in many aspects of their biology. The development of genetic tools to identify genes critical for their growth by forward genetic analysis holds great promises to advance our understanding of their cellular, physiological and biochemical processes. Here we report the development of a novel transposon, MycoTetOP 2, to aid the identification of such genes by direct transposon mutagenesis. This mariner-based transposon contains nested anhydrotetracycline (ATc)-inducible promoters to drive transcription outward from both of its ends. In addition, it includes the Escherichia coli R6Kγ origin to facilitate the identification of insertion sites. MycoTetOP 2 was placed in a shuttle plasmid with a temperature-sensitive DNA replication origin in mycobacteria. This allows propagation of mycobacteria harboring the plasmid at a permissive temperature. The resulting population of cells can then be subjected to a temperature shift to select for transposon mutants. This transposon and its delivery system, once constructed, were tested in the fast-growing model Mycobacterium smegmatis and 13 mutants with ATc-dependent growth were isolated. The identification of the insertion sites in these mutants led to nine unique genetic loci with genes critical for essential processes in both M. smegmatis and Mycobacterium tuberculosis. These results demonstrate that MycoTetOP 2 and its delivery vector provide valuable tools for the studies of mycobacteria by forward genetics.
Collapse
Affiliation(s)
- Sarah D. Riggs-Shute
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biology, Tidewater Community College, Portsmouth, VA, United States
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
39
|
Chen PYT, DeColli AA, Freel Meyers CL, Drennan CL. X-ray crystallography-based structural elucidation of enzyme-bound intermediates along the 1-deoxy-d-xylulose 5-phosphate synthase reaction coordinate. J Biol Chem 2019; 294:12405-12414. [PMID: 31239351 PMCID: PMC6699841 DOI: 10.1074/jbc.ra119.009321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/16/2019] [Indexed: 01/07/2023] Open
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) uses thiamine diphosphate (ThDP) to convert pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) into 1-deoxy-d-xylulose 5-phosphate (DXP), an essential bacterial metabolite. DXP is not utilized by humans; hence, DXPS has been an attractive antibacterial target. Here, we investigate DXPS from Deinococcus radiodurans (DrDXPS), showing that it has similar kinetic parameters Kmd-GAP and Kmpyruvate (54 ± 3 and 11 ± 1 μm, respectively) and comparable catalytic activity (kcat = 45 ± 2 min-1) with previously studied bacterial DXPS enzymes and employing it to obtain missing structural data on this enzyme family. In particular, we have determined crystallographic snapshots of DrDXPS in two states along the reaction coordinate: a structure of DrDXPS bound to C2α-phosphonolactylThDP (PLThDP), mimicking the native pre-decarboxylation intermediate C2α-lactylThDP (LThDP), and a native post-decarboxylation state with a bound enamine intermediate. The 1.94-Å-resolution structure of PLThDP-bound DrDXPS delineates how two active-site histidine residues stabilize the LThDP intermediate. Meanwhile, the 2.40-Å-resolution structure of an enamine intermediate-bound DrDXPS reveals how a previously unknown 17-Å conformational change removes one of the two histidine residues from the active site, likely triggering LThDP decarboxylation to form the enamine intermediate. These results provide insight into how the bi-substrate enzyme DXPS limits side reactions by arresting the reaction on the less reactive LThDP intermediate when its cosubstrate is absent. They also offer a molecular basis for previous low-resolution experimental observations that correlate decarboxylation of LThDP with protein conformational changes.
Collapse
Affiliation(s)
- Percival Yang-Ting Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alicia A. DeColli
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, To whom correspondence may be addressed:
Dept. of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205. Tel.:
410-502-4807; Fax:
410-955-3023; E-mail:
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, A Howard Hughes Medical Institute investigator and a senior fellow of the Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR). To whom correspondence may be addressed:
Depts. of Biology and Chemistry, Massachusetts Institute of Technology, 31 Ames St., Bldg. 68-680, Cambridge, MA 02139. Tel.:
617-253-5622; Fax:
617-258-7847; E-mail:
| |
Collapse
|
40
|
Heidel KM, Dowd CS. Phosphonate prodrugs: an overview and recent advances. Future Med Chem 2019; 11:1625-1643. [PMID: 31469328 PMCID: PMC6722485 DOI: 10.4155/fmc-2018-0591] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023] Open
Abstract
Phosphonates, often used as isosteric replacements for phosphates, can provide important interactions with an enzyme. Due to their high charge at physiological pH, however, permeation into cells can be a challenge. Protecting phosphonates as prodrugs has shown promise in drug delivery. Thus, a variety of structures and cleavage/activation mechanisms exist, enabling release of the active compound. This review describes the structural diversity of these pro-moieties, relevant cleavage mechanisms and recent advances in the design of phosphonate prodrugs.
Collapse
Affiliation(s)
- Kenneth M Heidel
- Department of Chemistry, George Washington University, Washington, DC 20052, USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
41
|
Munier M, Tritsch D, Lièvremont D, Rohmer M, Grosdemange-Billiard C. Synthesis and biological evaluation of aryl phosphoramidate prodrugs of fosfoxacin and its derivatives. Bioorg Chem 2019; 89:103012. [PMID: 31174039 DOI: 10.1016/j.bioorg.2019.103012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Aryl phosphoramidate prodrugs of fosfoxacin derivatives 15a-b and 8a-b were synthesized and investigated for their ability to target bacteria. No growth inhibition was observed neither for Mycobacterium smegmatis nor for Escherichia coli on solid medium, demonstrating the absence of release of the active compounds in the bacterial cells. Investigation of the stability of the prodrugs and their multienzymatic cleavage in abiotic and biotic conditions showed that the use of aryl phosphoramidate prodrug approach to deliver non-nucleotides compounds is not obvious and might not be appropriate for an antimicrobial drug.
Collapse
Affiliation(s)
- Mathilde Munier
- Laboratoire Chimie et Biochimie de Molécules Bioactives - Université de Strasbourg/CNRS, UMR 7177, Institut Le Bel, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Denis Tritsch
- Laboratoire Chimie et Biochimie de Molécules Bioactives - Université de Strasbourg/CNRS, UMR 7177, Institut Le Bel, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Didier Lièvremont
- Laboratoire Chimie et Biochimie de Molécules Bioactives - Université de Strasbourg/CNRS, UMR 7177, Institut Le Bel, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Michel Rohmer
- Laboratoire Chimie et Biochimie de Molécules Bioactives - Université de Strasbourg/CNRS, UMR 7177, Institut Le Bel, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Catherine Grosdemange-Billiard
- Laboratoire Chimie et Biochimie de Molécules Bioactives - Université de Strasbourg/CNRS, UMR 7177, Institut Le Bel, 4 rue Blaise Pascal, 67081 Strasbourg, France.
| |
Collapse
|
42
|
Courtens C, Risseeuw M, Caljon G, Maes L, Cos P, Martin A, Van Calenbergh S. Double prodrugs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorg Med Chem Lett 2019; 29:1232-1235. [PMID: 30879839 DOI: 10.1016/j.bmcl.2019.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/10/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
A series of eleven double prodrug derivatives of a fosmidomycin surrogate were synthesized and investigated for their ability to inhibit in vitro growth of P. falciparum and M. tuberculosis. A pivaloyloxymethyl (POM) phosphonate prodrug modification was combined with various prodrug derivatisations of the hydroxamate moiety. The majority of compounds showed activity comparable with or inferior to fosmidomycin against P. falciparum. N-benzyl substituted carbamate prodrug 6f was the most active antimalarial analog with an IC50 value of 0.64 µM. Contrary to fosmidomycin and parent POM-prodrug 5, 2-nitrofuran and 2-nitrothiophene prodrugs 6i and 6j displayed promising antitubercular activities.
Collapse
Affiliation(s)
- Charlotte Courtens
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Martijn Risseeuw
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Anandi Martin
- Medical Microbiology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Avenue Hippocrate 55, B-1200 Woluwe-Saint-Lambert, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
43
|
Phosphonodiamidate prodrugs of N-alkoxy analogs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorg Med Chem Lett 2019; 29:1051-1053. [PMID: 30857749 DOI: 10.1016/j.bmcl.2019.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 11/23/2022]
Abstract
A series of N-alkoxy analogs of a l-leucine ethyl ester phosphonodiamidate prodrug of a fosmidomycin surrogate were synthesized and investigated for their ability to inhibit in vitro growth of P. falciparum and M. tuberculosis. These compounds originate by merging a previously reported successful phosphonate derivatisation with favorable modifications of the hydroxamate moiety. None of the synthesized compounds showed enhanced activity against either P. falciparum or M. tuberculosis in comparison with the parent free hydroxamate analog.
Collapse
|
44
|
Iwanejko J, Brol A, Szyja B, Daszkiewicz M, Wojaczyńska E, Olszewski TK. Hydrophosphonylation of chiral hexahydroquinoxalin-2(1H)-one derivatives as an effective route to new bicyclic compounds: Aminophosphonates, enamines and imines. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Amino acid based prodrugs of a fosmidomycin surrogate as antimalarial and antitubercular agents. Bioorg Med Chem 2019; 27:729-747. [DOI: 10.1016/j.bmc.2019.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/03/2019] [Accepted: 01/13/2019] [Indexed: 12/29/2022]
|
46
|
Courtens C, Risseeuw M, Caljon G, Cos P, Van Calenbergh S. Acyloxybenzyl and Alkoxyalkyl Prodrugs of a Fosmidomycin Surrogate as Antimalarial and Antitubercular Agents. ACS Med Chem Lett 2018; 9:986-989. [PMID: 30344904 DOI: 10.1021/acsmedchemlett.8b00223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
Two classes of prodrugs of a fosmidomycin surrogate were synthesized and investigated for their ability to inhibit in vitro growth of P. falciparum and M. tuberculosis. To this end, a novel efficient synthesis route was developed involving a cross metathesis reaction as a key step. Alkoxyalkyl prodrugs show decent antimalarial activities, but acyloxybenzyl prodrugs proved to be the most interesting and show enhanced antimalarial and antitubercular activity. The most active antimalarial analogues show low nanomolar IC50 values.
Collapse
Affiliation(s)
- Charlotte Courtens
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Martijn Risseeuw
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|