1
|
Fraser M, Curtis B, Phillips P, Yates PA, Lam KS, Netzel O, van Dooren GG, Ingmundson A, Matuschewski K, McLeod MD, Maier AG. Harnessing cholesterol uptake of malaria parasites for therapeutic applications. EMBO Mol Med 2024; 16:1515-1532. [PMID: 38862600 PMCID: PMC11251039 DOI: 10.1038/s44321-024-00087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024] Open
Abstract
Parasites, such as the malaria parasite P. falciparum, are critically dependent on host nutrients. Interference with nutrient uptake can lead to parasite death and, therefore, serve as a successful treatment strategy. P. falciparum parasites cannot synthesise cholesterol, and instead source this lipid from the host. Here, we tested whether cholesterol uptake pathways could be 'hijacked' for optimal drug delivery to the intracellular parasite. We found that fluorescent cholesterol analogues were delivered from the extracellular environment to the intracellular parasite. We investigated the uptake and inhibitory effects of conjugate compounds, where proven antimalarial drugs (primaquine and artesunate) were attached to steroids that mimic the structure of cholesterol. These conjugated antimalarial drugs improved the inhibitory effects against multiple parasite lifecycle stages, multiple parasite species, and drug-resistant parasites, whilst also lowering the toxicity to human host cells. Steroids with introduced peroxides also displayed antimalarial activity. These results provide a proof-of-concept that cholesterol mimics can be developed as a drug delivery system against apicomplexan parasites with the potential to improve drug efficacy, increase therapeutic index, and defeat drug resistance.
Collapse
Affiliation(s)
- Merryn Fraser
- Research School of Biology, The Australian National University, Canberra, 2601, Australia
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, 10115, Germany
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Blake Curtis
- Research School of Chemistry, The Australian National University, Canberra, 2601, Australia
- Metabolism of Microbial Pathogens, Robert Koch Institute, Berlin, 13353, Germany
| | - Patrick Phillips
- Research School of Biology, The Australian National University, Canberra, 2601, Australia
| | - Patrick A Yates
- Research School of Chemistry, The Australian National University, Canberra, 2601, Australia
| | - Kwong Sum Lam
- Research School of Biology, The Australian National University, Canberra, 2601, Australia
| | - Otto Netzel
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, 10115, Germany
| | - Giel G van Dooren
- Research School of Biology, The Australian National University, Canberra, 2601, Australia
| | - Alyssa Ingmundson
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, 10115, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, 10115, Germany
| | - Malcolm D McLeod
- Research School of Chemistry, The Australian National University, Canberra, 2601, Australia.
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra, 2601, Australia.
| |
Collapse
|
2
|
Ence CC, Uddin T, Borrel J, Mittal P, Xie H, Zoller J, Sharma A, Comer E, Schreiber SL, Melillo B, Sibley LD, Chatterjee AK. Bicyclic Pyrrolidine Inhibitors of Toxoplasma gondii Phenylalanine t-RNA Synthetase with Antiparasitic Potency In Vitro and Brain Exposure. ACS Infect Dis 2024; 10:2212-2221. [PMID: 38743643 PMCID: PMC11299587 DOI: 10.1021/acsinfecdis.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Previous studies have shown that bicyclic azetidines are potent and selective inhibitors of apicomplexan phenylalanine tRNA synthetase (PheRS), leading to parasite growth inhibition in vitro and in vivo, including in models of Toxoplasma infection. Despite these useful properties, additional optimization is required for the development of efficacious treatments of toxoplasmosis from this inhibitor series, in particular, to achieve optimal exposure in the brain. Here, we describe a series of PheRS inhibitors built on a new bicyclic pyrrolidine core scaffold designed to retain the exit-vector geometry of the isomeric bicyclic azetidine core scaffold while offering avenues to sample diverse chemical space. Relative to the parent series, bicyclic pyrrolidines retain reasonable potency and target selectivity for parasite PheRS vs host. Further structure-activity relationship studies revealed that the introduction of aliphatic groups improved potency and ADME and PK properties, including brain exposure. The identification of this new scaffold provides potential opportunities to extend the analogue series to further improve selectivity and potency and ultimately deliver a novel, efficacious treatment of toxoplasmosis.
Collapse
Affiliation(s)
| | - Taher Uddin
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Julien Borrel
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Payal Mittal
- Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
- ICMR-NIMR, Sector-8, Dwarka, New Delhi-110077, India, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Han Xie
- Calibr at Scripps Research, La Jolla, CA 92037, USA
| | - Jochen Zoller
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Amit Sharma
- Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Eamon Comer
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bruno Melillo
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | | |
Collapse
|
3
|
Vijayasurya, Gupta S, Shah S, Pappachan A. Drug repurposing for parasitic protozoan diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:23-58. [PMID: 38942539 DOI: 10.1016/bs.pmbts.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Protozoan parasites are major hazards to human health, society, and the economy, especially in equatorial regions of the globe. Parasitic diseases, including leishmaniasis, malaria, and others, contribute towards majority of morbidity and mortality. Around 1.1 million people die from these diseases annually. The lack of licensed vaccinations worsens the worldwide impact of these diseases, highlighting the importance of safe and effective medications for their prevention and treatment. However, the appearance of drug resistance in parasites continuously affects the availability of medications. The demand for novel drugs motivates global antiparasitic drug discovery research, necessitating the implementation of many innovative ways to maintain a continuous supply of promising molecules. Drug repurposing has come out as a compelling tool for drug development, offering a cost-effective and efficient alternative to standard de novo approaches. A thorough examination of drug repositioning candidates revealed that certain drugs may not benefit significantly from their original indications. Still, they may exhibit more pronounced effects in other disorders. Furthermore, certain medications can produce a synergistic effect, resulting in enhanced therapeutic effectiveness when given together. In this chapter, we outline the approaches employed in drug repurposing (sometimes referred to as drug repositioning), propose novel strategies to overcome these hurdles and fully exploit the promise of drug repurposing. We highlight a few major human protozoan diseases and a range of exemplary drugs repurposed for various protozoan infections, providing excellent outcomes for each disease.
Collapse
Affiliation(s)
- Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Smit Shah
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
4
|
Jiang T, Godinez-Macias KP, Collins JE, Lee JW, Wendt KL, Carolino K, Chakrabarti D, Cichewicz RH, Winzeler EA. Identification of fungal natural products with potent inhibition in Toxoplasma gondii. Microbiol Spectr 2024; 12:e0414223. [PMID: 38421191 PMCID: PMC10986609 DOI: 10.1128/spectrum.04142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
In an effort to identify novel compounds with potent inhibition against Toxoplasma gondii, a phenotypic screen was performed utilizing a library of 683 pure compounds derived primarily from terrestrial and marine fungi. An initial screen with a fixed concentration of 5 µM yielded 91 hits with inhibition comparable to an equal concentration of artemisinin. These compounds were then triaged based on known biological and chemical concerns and liabilities. From these, 49 prioritized compounds were tested in a dose response format with T. gondii and human foreskin fibroblasts (HFFs) for cytotoxicity. Ten compounds were identified with an IC50 less than 150 nM and a selectivity index (SI) greater than 100. An additional eight compounds demonstrated submicromolar IC50 and SI values equal to or greater than 35. While the majority of these scaffolds have been previously implicated against apicomplexan parasites, their activities in T. gondii were largely unknown. Herein, we report the T. gondii activity of these compounds with chemotypes including xanthoquinodins, peptaibols, heptelidic acid analogs, and fumagillin analogs, with multiple compounds demonstrating exceptional potency in T. gondii and limited toxicity to HFFs at the highest concentrations tested. IMPORTANCE Current therapeutics for treating toxoplasmosis remain insufficient, demonstrating high cytotoxicity, poor bioavailability, limited efficacy, and drug resistance. Additional research is needed to develop novel compounds with high efficacy and low cytotoxicity. The success of artemisinin and other natural products in treating malaria highlights the potential of natural products as anti-protozoan therapeutics. However, the exploration of natural products in T. gondii drug discovery has been less comprehensive, leaving untapped potential. By leveraging the resources available for the malaria drug discovery campaign, we conducted a phenotypic screen utilizing a set of natural products previously screened against Plasmodium falciparum. Our study revealed 18 compounds with high potency and low cytotoxicity in T. gondii, including four novel scaffolds with no previously reported activity in T. gondii. These new scaffolds may serve as starting points for the development of toxoplasmosis therapeutics but could also serve as tool compounds for target identification studies using chemogenomic approach.
Collapse
Affiliation(s)
- Tiantian Jiang
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Karla P. Godinez-Macias
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jennifer E. Collins
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women’s University, Seoul, Republic of Korea
| | - Karen L. Wendt
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Krypton Carolino
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Ence CC, Uddin T, Borrel J, Mittal P, Xie H, Zoller J, Sharma A, Comer E, Schreiber SL, Melillo B, Sibley LD, Chatterjee AK. Bicyclic pyrrolidine inhibitors of Toxoplasma gondii phenylalanine t-RNA synthetase with antiparasitic potency in vitro and brain exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582607. [PMID: 38464220 PMCID: PMC10925249 DOI: 10.1101/2024.02.28.582607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Previous studies have shown that bicyclic azetidines are potent and selective inhibitors of apicomplexan phenylalanine tRNA synthetase (PheRS), leading to parasite growth inhibition in vitro and in vivo, including in models of Toxoplasma infection. Despite these useful properties, additional optimization is required for the development of efficacious treatments of toxoplasmosis from this inhibitor series, in particular to achieve sufficient exposure in the brain. Here, we describe a series of PheRS inhibitors built on a new bicyclic pyrrolidine core scaffold designed to retain the exit-vector geometry of the isomeric bicyclic azetidine core scaffold while offering avenues to sample diverse chemical space. Relative to the parent series, bicyclic pyrrolidines retain reasonable potency and target selectivity for parasite PheRS vs. host. Further structure-activity relationship studies revealed that the introduction of aliphatic groups improved potency, ADME and PK properties, including brain exposure. The identification of this new scaffold provides potential opportunities to extend the analog series to further improve selectivity and potency and ultimately deliver a novel, efficacious treatment of toxoplasmosis.
Collapse
Affiliation(s)
| | - Taher Uddin
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Julien Borrel
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Payal Mittal
- Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
- ICMR-NIMR, Sector-8, Dwarka, New Delhi-110077, India, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Han Xie
- Calibr at Scripps Research, La Jolla, CA 92037, USA
| | - Jochen Zoller
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Amit Sharma
- Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Eamon Comer
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bruno Melillo
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | | |
Collapse
|
6
|
Diethelm LTH, Ramos ABDSB, de Lorena GB, Trajano BI, do Espírito Santo RD, de Menezes RPB, Scotti MT, Colombo FA, Marques MJ, Correia CRD, Reimão JQ. First Description of Marinoquinoline Derivatives' Activity against Toxoplasma gondii. Pharmaceutics 2024; 16:262. [PMID: 38399316 PMCID: PMC10891983 DOI: 10.3390/pharmaceutics16020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Toxoplasmosis is a globally prevalent zoonotic disease with significant clinical implications, including neurotoxoplasmosis, a leading cause of cerebral lesions in AIDS patients. The current pharmacological treatments for toxoplasmosis face clinical limitations, necessitating the urgent development of new therapeutics. Natural sources have yielded diverse bioactive compounds, serving as the foundation for clinically used derivatives. The exploration of marine bacteria-derived natural products has led to marinoquinolines, which feature a pyrroloquinoline core and demonstrate in vitro and in vivo anti-Plasmodium activity. This study investigates the in vitro anti-Toxoplasma gondii potential of six marinoquinoline derivatives. Additionally, it conducts absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions, and evaluates the in vivo efficacy of one selected compound. The compounds displayed half-maximal effective concentration (EC50) values between 1.31 and 3.78 µM and half-maximal cytotoxic concentration (CC50) values ranging from 4.16 to 30.51 µM, resulting in selectivity indices (SI) from 3.18 to 20.85. MQ-1 exhibiting the highest in vitro SI, significantly reduced tachyzoite numbers in the peritoneum of RH-infected Swiss mice when it was orally administered at 12.5 mg/kg/day for eight consecutive days. Also, MQ-1 significantly reduced the cerebral parasite burden in chronically ME49 infected C57BL/6 mice when it was orally administered at 25 mg/kg/day for 10 consecutive days. These findings underscore the promising anti-T. gondii activity of marinoquinolines and their potential as novel therapeutic agents against this disease.
Collapse
Affiliation(s)
- Luiza Tamie Hirata Diethelm
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil
| | - Amanda Bruno da Silva Bellini Ramos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Brazil; (A.B.d.S.B.R.); (F.A.C.); (M.J.M.)
| | - Giovanna Braga de Lorena
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil
| | - Bruna Inácio Trajano
- Institute of Chemistry, State University of Campinas, Campinas 13083-970, Brazil (R.D.d.E.S.); (C.R.D.C.)
| | | | - Renata Priscila Barros de Menezes
- Programa de Pós-Graduacão em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil (M.T.S.)
| | - Marcus Tullius Scotti
- Programa de Pós-Graduacão em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil (M.T.S.)
| | - Fabio Antonio Colombo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Brazil; (A.B.d.S.B.R.); (F.A.C.); (M.J.M.)
| | - Marcos José Marques
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Brazil; (A.B.d.S.B.R.); (F.A.C.); (M.J.M.)
| | | | - Juliana Quero Reimão
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil
| |
Collapse
|
7
|
Rinkenberger N, Rosenberg A, Radke JB, Bhushan J, Tomita T, Weiss LM, Sibley LD. Susceptibility of Toxoplasma gondii to autophagy in human cells relies on multiple interacting parasite loci. mBio 2024; 15:e0259523. [PMID: 38095418 PMCID: PMC10790690 DOI: 10.1128/mbio.02595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 01/04/2024] Open
Abstract
IMPORTANCE Autophagy is a process used by cells to recycle organelles and macromolecules and to eliminate intracellular pathogens. Previous studies have shown that some stains of Toxoplasma gondii are resistant to autophagy-dependent growth restriction, while others are highly susceptible. Although it is known that autophagy-mediated control requires activation by interferon gamma, the basis for why parasite strains differ in their susceptibility is unknown. Our findings indicate that susceptibility involves at least five unlinked parasite genes on different chromosomes, including several secretory proteins targeted to the parasite-containing vacuole and exposed to the host cell cytosol. Our findings reveal that susceptibility to autophagy-mediated growth restriction relies on differential recognition of parasite proteins exposed at the host-pathogen interface, thus identifying a new mechanism for cell-autonomous control of intracellular pathogens.
Collapse
Affiliation(s)
- Nicholas Rinkenberger
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Joshua B. Radke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jaya Bhushan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
8
|
Vydyam P, Pal AC, Renard I, Chand M, Kumari V, Gennaro JC, Mamoun CB. Tafenoquine-Atovaquone Combination Achieves Radical Cure and Confers Sterile Immunity in Experimental Models of Human Babesiosis. J Infect Dis 2024; 229:161-172. [PMID: 38169301 PMCID: PMC10786256 DOI: 10.1093/infdis/jiad315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 01/05/2024] Open
Abstract
Human babesiosis is a potentially fatal tick-borne disease caused by intraerythrocytic Babesia parasites. The emergence of resistance to recommended therapies highlights the need for new and more effective treatments. Here we demonstrate that the 8-aminoquinoline antimalarial drug tafenoquine inhibits the growth of different Babesia species in vitro, is highly effective against Babesia microti and Babesia duncani in mice and protects animals from lethal infection caused by atovaquone-sensitive and -resistant B. duncani strains. We further show that a combination of tafenoquine and atovaquone achieves cure with no recrudescence in both models of human babesiosis. Interestingly, elimination of B. duncani infection in animals following drug treatment also confers immunity to subsequent challenge. Altogether, the data demonstrate superior efficacy of tafenoquine plus atovaquone combination over current therapies for the treatment of human babesiosis and highlight its potential in providing protective immunity against Babesia following parasite clearance.
Collapse
Affiliation(s)
- Pratap Vydyam
- Department of Infectious Diseases, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Anasuya C Pal
- Department of Infectious Diseases, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Isaline Renard
- Department of Infectious Diseases, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Meenal Chand
- Department of Infectious Diseases, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Vandana Kumari
- Department of Infectious Diseases, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Joseph C Gennaro
- Department of Infectious Diseases, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Choukri Ben Mamoun
- Department of Infectious Diseases, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
9
|
dos Santos M, Oliveira Costa AL, Vaz GHDS, de Souza GCA, Vitor RWDA, Martins-Duarte ÉS. Medicines for Malaria Venture Pandemic Box In Vitro Screening Identifies Compounds Highly Active against the Tachyzoite Stage of Toxoplasma gondii. Trop Med Infect Dis 2023; 8:510. [PMID: 38133442 PMCID: PMC10747034 DOI: 10.3390/tropicalmed8120510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Toxoplasmosis is a disease that causes high mortality in immunocompromised individuals, such as AIDS patients, and sequelae in congenitally infected newborns. Despite its great medical importance, there are few treatments available and these are associated with adverse events and resistance. In this work, after screening the drugs present in the Medicines for Malaria Venture Pandemic Box, we found new hits with anti-Toxoplasma gondii activity. Through our analysis, we selected twenty-three drugs or drug-like compounds that inhibited the proliferation of T. gondii tachyzoites in vitro by more than 50% at a concentration of 1 µM after seven days of treatment. Nineteen of these compounds have never been reported active before against T. gondii. Inhibitory curves showed that most of these drugs were able to inhibit parasite replication with IC50 values on the nanomolar scale. To better understand the unprecedented effect of seven compounds against T. gondii tachyzoites, an ultrastructural analysis was carried out using transmission electron microscopy. Treatment with 0.25 µM verdinexor, 3 nM MMV1580844, and 0.25 µM MMV019724 induced extensive vacuolization, complete ultrastructural disorganization, and lytic effects in the parasite, respectively, and all of them showed alterations in the division process. Treatment with 1 µM Eberconazole, 0.5 µM MMV1593541, 1 µM MMV642550, 1 µM RWJ-67657, and 1 µM URMC-099-C also caused extensive vacuolization in the parasite. The activity of these drugs against intracellular tachyzoites supports the idea that the drugs selected in the Pandemic Box could be potential future drugs for the treatment of acute toxoplasmosis.
Collapse
Affiliation(s)
- Mike dos Santos
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (G.H.d.S.V.)
| | - Andréia Luiza Oliveira Costa
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (G.H.d.S.V.)
| | - Guilherme Henrique de Souza Vaz
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (G.H.d.S.V.)
| | - Gabriela Carolina Alves de Souza
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (G.H.d.S.V.)
| | - Ricardo Wagner de Almeida Vitor
- Laboratório de Toxoplasmose, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Érica S. Martins-Duarte
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (G.H.d.S.V.)
| |
Collapse
|
10
|
dos Santos BR, Ramos ABDSB, de Menezes RPB, Scotti MT, Colombo FA, Marques MJ, Reimão JQ. Anti- Toxoplasma gondii screening of MMV pandemic response box and evaluation of RWJ-67657 efficacy in chronically infected mice. Parasitology 2023; 150:1226-1235. [PMID: 37859414 PMCID: PMC10941209 DOI: 10.1017/s0031182023000999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Toxoplasmosis is a significant public health concern with limited therapeutic options. The medicines for malaria venture (MMV) developed the pandemic response box (PRB) containing 400 drug-like molecules with broad pathogen activity. The aim of this work is to evaluate PRB compounds for their anti-Toxoplasma gondii activity and identify promising candidates for further evaluation. Screening identified 42 selective compounds with half effective concentration (EC50) ranging from 2.4 to 913.1 nm and half cytotoxic concentration (CC50) ranging from 6 μm to >50 μm. Selectivity index (SI) values (CC50/EC50) ranged from 11 to 17 708. Based on its in silico and in vitro profile and its commercial availability, RWJ-67657 was selected for further studies. Molecular docking analysis showed RWJ-67657 is predicted to bind to T. gondii p38 mitogen-activated protein kinase (TgMAPK). Oral administration of RWJ-67657 (20 mg kg day−1/10 days) significantly reduced parasite burden in chronically infected mice compared to mock-treated group (P < 0.01). These findings highlight the PRB as a promising source for anti-T. gondii compounds, with several showing favourable drug properties, including MMV1634492, MMV002731, MMV1634491, MMV1581551, MMV011565, MMV1581558, MMV1578577, MMV233495 and MMV1580482, firstly described here as anti-T. gondii agents. RWJ-67657 emerges as a valuable drug candidate for experimental chronic cerebral toxoplasmosis therapy.
Collapse
Affiliation(s)
- Bruna Ramos dos Santos
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Jundiaí, Brazil
| | | | - Renata Priscila Barros de Menezes
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa, Brazil
| | - Marcus Tullius Scotti
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa, Brazil
| | - Fábio Antônio Colombo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Marcos José Marques
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Juliana Quero Reimão
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Jundiaí, Brazil
| |
Collapse
|
11
|
Dos Santos BR, Ramos ABDSB, de Menezes RPB, Scotti MT, Colombo FA, Marques MJ, Reimão JQ. Repurposing the Medicines for Malaria Venture's COVID Box to discover potent inhibitors of Toxoplasma gondii, and in vivo efficacy evaluation of almitrine bismesylate (MMV1804175) in chronically infected mice. PLoS One 2023; 18:e0288335. [PMID: 37418497 DOI: 10.1371/journal.pone.0288335] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023] Open
Abstract
Toxoplasmosis, caused by the obligate intracellular parasite Toxoplasma gondii, affects about one-third of the world's population and can cause severe congenital, neurological and ocular issues. Current treatment options are limited, and there are no human vaccines available to prevent transmission. Drug repurposing has been effective in identifying anti-T. gondii drugs. In this study, the screening of the COVID Box, a compilation of 160 compounds provided by the "Medicines for Malaria Venture" organization, was conducted to explore its potential for repurposing drugs to combat toxoplasmosis. The objective of the present work was to evaluate the compounds' ability to inhibit T. gondii tachyzoite growth, assess their cytotoxicity against human cells, examine their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, and investigate the potential of one candidate drug through an experimental chronic model of toxoplasmosis. Early screening identified 29 compounds that could inhibit T. gondii survival by over 80% while keeping human cell survival up to 50% at a concentration of 1 μM. The Half Effective Concentrations (EC50) of these compounds ranged from 0.04 to 0.92 μM, while the Half Cytotoxic Concentrations (CC50) ranged from 2.48 to over 50 μM. Almitrine was chosen for further evaluation due to its favorable characteristics, including anti-T. gondii activity at nanomolar concentrations, low cytotoxicity, and ADMET properties. Administering almitrine bismesylate (Vectarion®) orally at dose of 25 mg/kg/day for ten consecutive days resulted in a statistically significant (p < 0.001) reduction in parasite burden in the brains of mice chronically infected with T. gondii (ME49 strain). This was determined by quantifying the RNA of living parasites using real-time PCR. The presented results suggest that almitrine may be a promising drug candidate for additional experimental studies on toxoplasmosis and provide further evidence of the potential of the MMV collections as a valuable source of drugs to be repositioned for infectious diseases.
Collapse
Affiliation(s)
- Bruna Ramos Dos Santos
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí, Brazil
| | | | - Renata Priscila Barros de Menezes
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Marcus Tullius Scotti
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Fábio Antônio Colombo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Brazil
| | - Marcos José Marques
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Brazil
| | - Juliana Quero Reimão
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí, Brazil
| |
Collapse
|
12
|
Xu Q, Duan YY, Pan M, Jin QW, Tao JP, Huang SY. In Vitro Evaluation Reveals Effect and Mechanism of Artemether against Toxoplasma gondii. Metabolites 2023; 13:metabo13040476. [PMID: 37110135 PMCID: PMC10145583 DOI: 10.3390/metabo13040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Due to the limited effectiveness of existing drugs for the treatment of toxoplasmosis, there is a dire need for the discovery of new therapeutic options. Artemether is an important drug for malaria and several studies have indicated that it also exhibits anti-T. gondii activity. However, its specific effect and mechanisms are still not clear. To elucidate its specific role and potential mechanism, we first evaluated its cytotoxicity and anti-Toxoplasma effect on human foreskin fibroblast cells, and then analyzed its inhibitory activity during T. gondii invasion and intracellular proliferation. Finally, we examined its effect on mitochondrial membrane potential and reactive oxygen species (ROS) in T. gondii. The CC50 value of artemether was found to be 866.4 μM, and IC50 was 9.035 μM. It exhibited anti-T. gondii activity and inhibited the growth of T. gondii in a dose-dependent manner. We also found that the inhibition occurred primarily in intracellular proliferation, achieved by reducing the mitochondrial membrane integrity of T. gondii and stimulating ROS production. These findings suggest that the mechanism of artemether against T. gondii is related to a change in the mitochondrial membrane and the increase in ROS production, which may provide a theoretical basis for optimizing artemether derivatives and further improving their anti-Toxoplasma efficacy.
Collapse
Affiliation(s)
- Qiong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Yin-Yan Duan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jian-Ping Tao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
13
|
Sumithaa C, Ganeshpandian M. Half-Sandwich Ruthenium Arene Complexes Bearing Clinically Approved Drugs as Ligands: The Importance of Metal-Drug Synergism in Metallodrug Design. Mol Pharm 2023; 20:1453-1479. [PMID: 36802711 DOI: 10.1021/acs.molpharmaceut.2c01027] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A novel strategy in metallodrug discovery today is incorporating clinically approved drugs into metal complexes as coordinating ligands. Using this strategy, various drugs have been repurposed to prepare organometallic complexes to overcome the resistance of drugs and to design promising alternatives to currently available metal-based drugs. Notably, the combination of organoruthenium moiety and clinical drug in a single molecule has been shown, in some instances, to enhance pharmacological activity and reduce toxicity in comparison to the parent drug. Thus, for the past two decades, there has been increasing interest in exploiting metal-drug synergism to develop multifunctional organoruthenium drug candidates. Herein, we summarized the recent reports of rationally designed half-sandwich Ru(arene) complexes containing different FDA-approved drugs. This review also focuses on the mode of coordination of drugs, ligand-exchange kinetics, mechanism of action, and structure-activity relationship of organoruthenated complexes containing drugs. We hope this discussion may serve to shed light on future developments in ruthenium-based metallopharmaceuticals.
Collapse
Affiliation(s)
- Chezhiyan Sumithaa
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| |
Collapse
|
14
|
Howieson VM, Zeng J, Kloehn J, Spry C, Marchetti C, Lunghi M, Varesio E, Soper A, Coyne AG, Abell C, van Dooren GG, Saliba KJ. Pantothenate biosynthesis in Toxoplasma gondii tachyzoites is not a drug target. INTERNATIONAL JOURNAL FOR PARASITOLOGY: DRUGS AND DRUG RESISTANCE 2023; 22:1-8. [PMID: 37004488 PMCID: PMC10102396 DOI: 10.1016/j.ijpddr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Toxoplasma gondii is a pervasive apicomplexan parasite that can cause severe disease and death in immunocompromised individuals and the developing foetus. The treatment of toxoplasmosis often leads to serious side effects and novel drugs and drug targets are therefore actively sought. In 2014, Mageed and colleagues suggested that the T. gondii pantothenate synthetase, the enzyme responsible for the synthesis of the vitamin B5 (pantothenate), the precursor of the important cofactor, coenzyme A, is a good drug target. Their conclusion was based on the ability of potent inhibitors of the M. tuberculosis pantothenate synthetase to inhibit the proliferation of T. gondii tachyzoites. They also reported that the inhibitory effect of the compounds could be antagonised by supplementing the medium with pantothenate, supporting their conclusion that the compounds were acting on the intended target. Contrary to these observations, we find that compound SW314, one of the compounds used in the Mageed et al. study and previously shown to be active against M. tuberculosis pantothenate synthetase in vitro, is inactive against the T. gondii pantothenate synthetase and does not inhibit tachyzoite proliferation, despite gaining access into the parasite in situ. Furthermore, we validate the recent observation that the pantothenate synthetase gene in T. gondii can be disrupted without detrimental effect to the survival of the tachyzoite-stage parasite in the presence or absence of extracellular pantothenate. We conclude that the T. gondii pantothenate synthetase is not essential during the tachyzoite stage of the parasite and it is therefore not a target for drug discovery against T. gondii tachyzoites.
Collapse
|
15
|
β-Glucan ameliorates anxiety-like behavior in mice chronically infected with the Toxoplasma gondii Wh6 strain. Parasitol Res 2022; 121:3513-3521. [PMID: 36163518 DOI: 10.1007/s00436-022-07675-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Chronic Toxoplasma gondii (T. gondii) infection has been revealed to be a risk factor for neuropsychiatric diseases, including anxiety. However, there is no intervention strategy. The present study aimed to investigate the protective effect of β-glucan on T. gondii Wh6 strain-induced anxiety-like behavior in mice. The anxiety mouse model was established by infection with 10 cysts of the T. gondii Wh6 strain. β-Glucan was intraperitoneally administered 2 weeks before infection. Open field and elevated plus maze tests were performed to assess anxiety-like behavior. In the open field test, Wh6-infected mice spent less time in the central zone and had fewer entries into the central zone. In the elevated plus maze test, the infection reduced the frequency and time of head entries in the open arms. These results showed that Wh6 causes anxiety-like behavior in mice. Interestingly, the administration of β-glucan significantly ameliorated anxiety-like behavioral performance. The present study shows that β-glucan can alleviate the anxiety-like behavior induced by chronic T. gondii infection in mice, which indicates that β-glucan may be a potential drug candidate for treating T. gondii-related mental disorders, including anxiety.
Collapse
|
16
|
Cajazeiro DC, Toledo PPM, de Sousa NF, Scotti MT, Reimão JQ. Drug Repurposing Based on Protozoan Proteome: In Vitro Evaluation of In Silico Screened Compounds against Toxoplasma gondii. Pharmaceutics 2022; 14:1634. [PMID: 36015260 PMCID: PMC9414507 DOI: 10.3390/pharmaceutics14081634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Toxoplasma gondii is a protozoan that infects up to a third of the world's population. This parasite can cause serious problems, especially if a woman is infected during pregnancy, when toxoplasmosis can cause miscarriage, or serious complications to the baby, or in an immunocompromised person, when the infection can possibly affect the patient's eyes or brain. To identify potential drug candidates that could counter toxoplasmosis, we selected 13 compounds which were pre-screened in silico based on the proteome of T. gondii to be evaluated in vitro against the parasite in a cell-based assay. Among the selected compounds, three demonstrated in vitro anti-T. gondii activity in the nanomolar range (almitrine, bortezomib, and fludarabine), and ten compounds demonstrated anti-T. gondii activity in the micromolar range (digitoxin, digoxin, doxorubicin, fusidic acid, levofloxacin, lomefloxacin, mycophenolic acid, ribavirin, trimethoprim, and valproic acid). Almitrine demonstrated a Selectivity Index (provided by the ratio between the Half Cytotoxic Concentration against human foreskin fibroblasts and the Half Effective Concentration against T. gondii tachyzoites) that was higher than 47, whilst being considered a lead compound against T. gondii. Almitrine showed interactions with the Na+/K+ ATPase transporter for Homo sapiens and Mus musculus, indicating a possible mechanism of action of this compound.
Collapse
Affiliation(s)
- Débora Chaves Cajazeiro
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil
| | - Paula Pereira Marques Toledo
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil
| | - Natália Ferreira de Sousa
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa 58051-900, Brazil
| | - Marcus Tullius Scotti
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa 58051-900, Brazil
| | - Juliana Quero Reimão
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil
| |
Collapse
|
17
|
Gamea GA, Elmehy DA, Salama AM, Soliman NA, Afifi OK, Elkaliny HH, Abo El gheit RE, El-Ebiary AA, Tahoon DM, Elkholy RA, Shoeib SM, Eleryan MA, Younis SS. Direct and indirect antiparasitic effects of chloroquine against the virulent RH strain of Toxoplasma gondii: An experimental study. Acta Trop 2022; 232:106508. [PMID: 35568067 DOI: 10.1016/j.actatropica.2022.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Toxoplasmosis is a deleterious parasitic disease with harmful impact on both humans and animals. The present study was carried out to evaluate the antiparasitic effect of chloroquine (CQ), spiramycin (SP), and combination of both against the highly virulent RH HXGPRT (-) strain of Toxoplasma gondii (T. gondii) and to explore the mechanisms underlying such effect. METHODS We counted the tachyzoites in the peritoneal fluid and liver smears of mice and performed scanning and transmission electron microscopy and immunofluorescence staining of tachyzoites. Moreover, relative caspase 3 gene expression was measured by real time polymerase chain reaction of liver tissues and immunoassay of anti-apoptotic markers [B cell lymphoma-2 (Bcl-2) and X-chromosome linked inhibitor of apoptosis (XIAP)] and interferon gamma (IFN-γ) was done in liver tissues by ELISA. In addition, we estimated serum levels of aspartate transaminase (AST) and alanine transaminase (ALT) and performed histopathological examination of liver sections for scoring of inflammation. RESULTS We found that both CQ and CQ/SP combination significantly reduced parasitic load in the peritoneal fluid and liver smears, induced apical disruption of tachyzoites, triggered host cell apoptosis through elevation of relative caspase 3 gene expression and suppression of both Bcl-2 and XIAP. Also, they upregulated IFN-γ level, reduced serum AST and ALT, and ameliorated liver inflammation. CONCLUSIONS Either of CQ and CQ/SP combination was more effective than SP alone against T. gondii with the CQ/SP combination being more efficient. Therefore, adding CQ to other anti-Toxoplasma therapeutic regimens may be considered in future research.
Collapse
|
18
|
Calero-Bernal R, Fernández-Escobar M, Katzer F, Su C, Ortega-Mora LM. Unifying Virulence Evaluation in Toxoplasma gondii: A Timely Task. Front Cell Infect Microbiol 2022; 12:868727. [PMID: 35573788 PMCID: PMC9097680 DOI: 10.3389/fcimb.2022.868727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Toxoplasma gondii, a major zoonotic pathogen, possess a significant genetic and phenotypic diversity that have been proposed to be responsible for the variation in clinical outcomes, mainly related to reproductive failure and ocular and neurological signs. Different T. gondii haplogroups showed strong phenotypic differences in laboratory mouse infections, which provide a suitable model for mimicking acute and chronic infections. In addition, it has been observed that degrees of virulence might be related to the physiological status of the host and its genetic background. Currently, mortality rate (lethality) in outbred laboratory mice is the most significant phenotypic marker, which has been well defined for the three archetypal clonal types (I, II and III) of T. gondii; nevertheless, such a trait seems to be insufficient to discriminate between different degrees of virulence of field isolates. Many other non-lethal parameters, observed both in in vivo and in vitro experimental models, have been suggested as highly informative, yielding promising discriminatory power. Although intra-genotype variations have been observed in phenotypic characteristics, there is no clear picture of the phenotypes circulating worldwide; therefore, a global overview of T. gondii strain mortality in mice is presented here. Molecular characterization has been normalized to some extent, but this is not the case for the phenotypic characterization and definition of virulence. The present paper proposes a baseline (minimum required information) for the phenotypic characterization of T. gondii virulence and intends to highlight the needs for consistent methods when a panel of T. gondii isolates is evaluated for virulence.
Collapse
Affiliation(s)
- Rafael Calero-Bernal
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Rafael Calero-Bernal, ; Luis Miguel Ortega-Mora,
| | - Mercedes Fernández-Escobar
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Frank Katzer
- Disease Control Department, Moredun Research Institute, Edinburgh, United Kingdom
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Rafael Calero-Bernal, ; Luis Miguel Ortega-Mora,
| |
Collapse
|
19
|
de Vries LE, Jansen PAM, Barcelo C, Munro J, Verhoef JMJ, Pasaje CFA, Rubiano K, Striepen J, Abla N, Berning L, Bolscher JM, Demarta-Gatsi C, Henderson RWM, Huijs T, Koolen KMJ, Tumwebaze PK, Yeo T, Aguiar ACC, Angulo-Barturen I, Churchyard A, Baum J, Fernández BC, Fuchs A, Gamo FJ, Guido RVC, Jiménez-Diaz MB, Pereira DB, Rochford R, Roesch C, Sanz LM, Trevitt G, Witkowski B, Wittlin S, Cooper RA, Rosenthal PJ, Sauerwein RW, Schalkwijk J, Hermkens PHH, Bonnert RV, Campo B, Fidock DA, Llinás M, Niles JC, Kooij TWA, Dechering KJ. Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183. Nat Commun 2022; 13:2158. [PMID: 35444200 PMCID: PMC9021288 DOI: 10.1038/s41467-022-29688-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission. Here, de Vries et al. perform a pre-clinical characterization of the antimalarial compound MMV693183: the compound targets acetyl-CoA synthetase, has efficacy in humanized mice against Plasmodium falciparum infection, blocks transmission to mosquito vectors, is safe in rats, and pharmacokinetic-pharmacodynamic modeling informs about a potential oral human dosing regimen.
Collapse
Affiliation(s)
- Laura E de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Patrick A M Jansen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Justin Munro
- Department of Chemistry and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA
| | - Julie M J Verhoef
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Kelly Rubiano
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Josefine Striepen
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nada Abla
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Luuk Berning
- TropIQ Health Sciences, Nijmegen, The Netherlands
| | | | | | | | - Tonnie Huijs
- TropIQ Health Sciences, Nijmegen, The Netherlands
| | | | | | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna C C Aguiar
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil, São Carlos, SP, Brazil
| | | | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | | | - Aline Fuchs
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | - Rafael V C Guido
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil, São Carlos, SP, Brazil
| | | | - Dhelio B Pereira
- Research Center for Tropical Medicine of Rondonia, Porto Velho, Brazil
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Laura M Sanz
- Global Health, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Roland A Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,TropIQ Health Sciences, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA.,Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Manuel Llinás
- Department of Chemistry and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA.,Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | |
Collapse
|
20
|
Bicyclic azetidines target acute and chronic stages of Toxoplasma gondii by inhibiting parasite phenylalanyl t-RNA synthetase. Nat Commun 2022; 13:459. [PMID: 35075105 PMCID: PMC8786932 DOI: 10.1038/s41467-022-28108-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma gondii commonly infects humans and while most infections are controlled by the immune response, currently approved drugs are not capable of clearing chronic infection in humans. Hence, approximately one third of the world’s human population is at risk of reactivation, potentially leading to severe sequelae. To identify new candidates for treating chronic infection, we investigated a series of compounds derived from diversity-oriented synthesis. Bicyclic azetidines are potent low nanomolar inhibitors of phenylalanine tRNA synthetase (PheRS) in T. gondii, with excellent selectivity. Biochemical and genetic studies validate PheRS as the primary target of bicyclic azetidines in T. gondii, providing a structural basis for rational design of improved analogs. Favorable pharmacokinetic properties of a lead compound provide excellent protection from acute infection and partial protection from chronic infection in an immunocompromised mouse model of toxoplasmosis. Collectively, PheRS inhibitors of the bicyclic azetidine series offer promise for treatment of chronic toxoplasmosis. Current treatments for toxoplasmosis are limited by adverse reactions and inability to cure chronic infections dominated by semi-dormant cyst forms. Here the authors demonstrate the potential of small molecule inhibitors of PheRS for controlling acute and chronic toxoplasmosis.
Collapse
|
21
|
Lunghi M, Kloehn J, Krishnan A, Varesio E, Vadas O, Soldati-Favre D. Pantothenate biosynthesis is critical for chronic infection by the neurotropic parasite Toxoplasma gondii. Nat Commun 2022; 13:345. [PMID: 35039477 PMCID: PMC8764084 DOI: 10.1038/s41467-022-27996-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme A (CoA) is an essential molecule acting in metabolism, post-translational modification, and regulation of gene expression. While all organisms synthesize CoA, many, including humans, are unable to produce its precursor, pantothenate. Intriguingly, like most plants, fungi and bacteria, parasites of the coccidian subgroup of Apicomplexa, including the human pathogen Toxoplasma gondii, possess all the enzymes required for de novo synthesis of pantothenate. Here, the importance of CoA and pantothenate biosynthesis for the acute and chronic stages of T. gondii infection is dissected through genetic, biochemical and metabolomic approaches, revealing that CoA synthesis is essential for T. gondii tachyzoites, due to the parasite's inability to salvage CoA or intermediates of the pathway. In contrast, pantothenate synthesis is only partially active in T. gondii tachyzoites, making the parasite reliant on its uptake. However, pantothenate synthesis is crucial for the establishment of chronic infection, offering a promising target for intervention against the persistent stage of T. gondii.
Collapse
Affiliation(s)
- Matteo Lunghi
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Emmanuel Varesio
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, 1211, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
- Protein and peptide purification platform, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
22
|
Wu RZ, Zhou HY, Song JF, Xia QH, Hu W, Mou XD, Li X. Chemotherapeutics for Toxoplasma gondii: Molecular Biotargets, Binding Modes, and Structure-Activity Relationship Investigations. J Med Chem 2021; 64:17627-17655. [PMID: 34894691 DOI: 10.1021/acs.jmedchem.1c01569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxoplasmosis, an infectious zoonotic disease caused by the apicomplexan parasite Toxoplasma gondii (T. gondii), is a major worldwide health problem. However, there are currently no effective options (chemotherapeutic drugs or prophylactic vaccines) for treating chronic latent toxoplasmosis infection. Accordingly, seeking more effective and safer chemotherapeutics for combating this disease remains a long-term and challenging objective. In this paper, we summarize possible molecular biotargets, with an emphasis on those that are druggable and promising, including, without limitation, calcium-dependent protein kinase 1, bifunctional thymidylate synthase-dihydrofolate reductase, and farnesyl diphosphate synthase. Meanwhile, as important components of medicinal chemistry, the binding modes and structure-activity relationship profiles of the corresponding inhibitors were also illuminated. We anticipate that this information will be helpful for further identification of more effective chemotherapeutic interventions to prevent and treat zoonotic infections caused by T. gondii.
Collapse
Affiliation(s)
- Rong-Zhen Wu
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China
| | - Huai-Yu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, no. 44 Wenhua Xi Road, Ji'nan, Shandong 250012, PR China
| | - Jing-Feng Song
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, no. 1168 Chunrong Xi Road, Kunming, Yunnan 650500, PR China
| | - Qiao-Hong Xia
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, no. 44 Wenhua Xi Road, Ji'nan, Shandong 250012, PR China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, no. 72 Binhai Road of JiMo, Qingdao, Shandong 266237, PR China
| | - Xiao-Dong Mou
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China
| | - Xun Li
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, no. 6699 Qingdao Road, Ji'nan, Shandong 250117, PR China.,Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100192, PR China
| |
Collapse
|
23
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
24
|
da Silva M, Teixeira C, Gomes P, Borges M. Promising Drug Targets and Compounds with Anti- Toxoplasma gondii Activity. Microorganisms 2021; 9:1960. [PMID: 34576854 PMCID: PMC8471693 DOI: 10.3390/microorganisms9091960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Toxoplasmosis is a parasitic disease caused by the globally distributed protozoan parasite Toxoplasma gondii, which infects around one-third of the world population. This disease may result in serious complications for fetuses, newborns, and immunocompromised individuals. Current treatment options are old, limited, and possess toxic side effects. Long treatment durations are required since the current therapeutic system lacks efficiency against T. gondii tissue cysts, promoting the establishment of latent infection. This review highlights the most promising drug targets involved in anti-T. gondii drug discovery, including the mitochondrial electron transport chain, microneme secretion pathway, type II fatty acid synthesis, DNA synthesis and replication and, DNA expression as well as others. A description of some of the most promising compounds demonstrating antiparasitic activity, developed over the last decade through drug discovery and drug repurposing, is provided as a means of giving new perspectives for future research in this field.
Collapse
Affiliation(s)
- Marco da Silva
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal;
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Margarida Borges
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
25
|
Synthesis and Antiparasitic Activity of New Conjugates—Organic Drugs Tethered to Trithiolato-Bridged Dinuclear Ruthenium(II)–Arene Complexes. INORGANICS 2021. [DOI: 10.3390/inorganics9080059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tethering known drugs to a metalorganic moiety is an efficient approach for modulating the anticancer, antibacterial, and antiparasitic activity of organometallic complexes. This study focused on the synthesis and evaluation of new dinuclear ruthenium(II)–arene compounds linked to several antimicrobial compounds such as dapsone, sulfamethoxazole, sulfadiazine, sulfadoxine, triclosan, metronidazole, ciprofloxacin, as well as menadione (a 1,4-naphtoquinone derivative). In a primary screen, 30 compounds (17 hybrid molecules, diruthenium intermediates, and antimicrobials) were assessed for in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in noninfected host cells (human foreskin fibroblasts, HFF) was determined by an alamarBlue assay. When assessed at 1 µM, five compounds strongly impaired parasite proliferation by >90%, and HFF viability was retained at 50% or more, and they were further subjected to T. gondii β-gal dose-response studies. Two compounds, notably 11 and 13, amide and ester conjugates with sulfadoxine and metronidazole, exhibited low IC50 (half-maximal inhibitory concentration) values 0.063 and 0.152 µM, and low or intermediate impairment of HFF viability at 2.5 µM (83 and 64%). The nature of the anchored drug as well as that of the linking unit impacted the biological activity.
Collapse
|
26
|
Tafenoquine Is a Promising Drug Candidate for the Treatment of Babesiosis. Antimicrob Agents Chemother 2021; 65:e0020421. [PMID: 33941516 DOI: 10.1128/aac.00204-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Due to drug resistance, commonly used anti-Babesia drugs have limited efficacy against babesiosis and inflict severe side effects. Tafenoquine (TAF) was approved by the U.S. Food and Drug Administration in 2018 for the radical cure of Plasmodium vivax infection and for malaria prophylaxis. Here, we evaluated the efficacy of TAF for the treatment of Babesia infection and elucidated the suspected mechanisms of TAF activity against Babesia parasites. Parasitemia and survival rates of Babesia rodhaini-infected BALB/c and SCID mice were used to explore the role of the immune response in Babesia infection after TAF treatment. Parasitemia, survival rates, body weight, vital signs, complete blood count, and blood biochemistry of B. gibsoni-infected splenectomized dogs were determined to evaluate the anti-Babesia activity and side effects of TAF. Then, to understand the mechanism of TAF activity, hydrogen peroxide was used as an oxidizer for short-term B. rodhaini incubation in vitro, and the expression levels of antioxidant enzymes were confirmed using B. microti-infected mice by reverse transcription-quantitative PCR (qRT-PCR). Acute B. rodhaini and B. gibsoni infections were rapidly eliminated with TAF administration. Repeated administration of TAF or a combination therapy with other antibabesial agents is still needed to avoid a potentially fatal recurrence for immunocompromised hosts. Caution about hyperkalemia should be taken during TAF treatment for Babesia infection. TAF possesses a babesicidal effect that may be related to drug-induced oxidative stress. Considering the lower frequency of glucose-6-phosphate dehydrogenase deficiency in animals compared to that in humans, TAF use on Babesia-infected farm animals and pets is eagerly anticipated.
Collapse
|
27
|
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol 2020; 51:95-121. [PMID: 33347832 DOI: 10.1016/j.ijpara.2020.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.
Collapse
Affiliation(s)
- Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | - Cibelly Goulart
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
28
|
Khalifa MM, Martorelli Di Genova B, McAlpine SG, Gallego-Lopez GM, Stevenson DM, Rozema SD, Monaghan NP, Morris JC, Knoll LJ, Golden JE. Dual-Stage Picolinic Acid-Derived Inhibitors of Toxoplasma gondii. ACS Med Chem Lett 2020; 11:2382-2388. [PMID: 33335660 DOI: 10.1021/acsmedchemlett.0c00267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Toxoplasma gondii causes a prevalent human infection for which only the acute stage has an FDA-approved therapy. To find inhibitors of both the acute stage parasites and the persistent cyst stage that causes a chronic infection, we repurposed a compound library containing known inhibitors of parasitic hexokinase, the first step in the glycolysis pathway, along with a larger collection of new structural derivatives. The focused screen of 22 compounds showed a 77% hit rate (>50% multistage inhibition) and revealed a series of aminobenzamide-linked picolinic acids with submicromolar potency against both T. gondii parasite forms. Picolinic acid 23, designed from an antiparasitic benzamidobenzoic acid class with challenging ADME properties, showed 60-fold-enhanced solubility, a moderate LogD7.4, and a 30% improvement in microsomal stability. Furthermore, isotopically labeled glucose tracing revealed that picolinic acid 23 does not function by hexokinase inhibition. Thus, we report a new probe scaffold to interrogate dual-stage inhibition of T. gondii.
Collapse
Affiliation(s)
- Muhammad M. Khalifa
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53703, United States
| | - Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Sarah G. McAlpine
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, 190 Collins Street, Clemson, South Carolina 29634, United States
| | - Gina M. Gallego-Lopez
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States of America
| | - Soren D. Rozema
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53703, United States
| | - Neil P. Monaghan
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, 190 Collins Street, Clemson, South Carolina 29634, United States
| | - James C. Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, 190 Collins Street, Clemson, South Carolina 29634, United States
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Jennifer E. Golden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53703, United States
| |
Collapse
|
29
|
Harding CR, Sidik SM, Petrova B, Gnädig NF, Okombo J, Herneisen AL, Ward KE, Markus BM, Boydston EA, Fidock DA, Lourido S. Genetic screens reveal a central role for heme metabolism in artemisinin susceptibility. Nat Commun 2020; 11:4813. [PMID: 32968076 PMCID: PMC7511413 DOI: 10.1038/s41467-020-18624-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/03/2020] [Indexed: 01/26/2023] Open
Abstract
Artemisinins have revolutionized the treatment of Plasmodium falciparum malaria; however, resistance threatens to undermine global control efforts. To broadly explore artemisinin susceptibility in apicomplexan parasites, we employ genome-scale CRISPR screens recently developed for Toxoplasma gondii to discover sensitizing and desensitizing mutations. Using a sublethal concentration of dihydroartemisinin (DHA), we uncover the putative transporter Tmem14c whose disruption increases DHA susceptibility. Screens performed under high doses of DHA provide evidence that mitochondrial metabolism can modulate resistance. We show that disrupting a top candidate from the screens, the mitochondrial protease DegP2, lowers porphyrin levels and decreases DHA susceptibility, without significantly altering parasite fitness in culture. Deleting the homologous gene in P. falciparum, PfDegP, similarly lowers heme levels and DHA susceptibility. These results expose the vulnerability of heme metabolism to genetic perturbations that can lead to increased survival in the presence of DHA.
Collapse
Affiliation(s)
- Clare R Harding
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Saima M Sidik
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Boryana Petrova
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benedikt M Markus
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
30
|
Ivanova DL, Krempels R, Denton SL, Fettel KD, Saltz GM, Rach D, Fatima R, Mundhenke T, Materi J, Dunay IR, Gigley JP. NK Cells Negatively Regulate CD8 T Cells to Promote Immune Exhaustion and Chronic Toxoplasma gondii Infection. Front Cell Infect Microbiol 2020; 10:313. [PMID: 32733814 PMCID: PMC7360721 DOI: 10.3389/fcimb.2020.00313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
NK cells regulate CD4+ and CD8+ T cells in acute viral infection, vaccination, and the tumor microenvironment. NK cells also become exhausted in chronic activation settings. The mechanisms causing these ILC responses and their impact on adaptive immunity are unclear. CD8+ T cell exhaustion develops during chronic Toxoplasma gondii (T. gondii) infection resulting in parasite reactivation and death. How chronic T. gondii infection impacts the NK cell compartment is not known. We demonstrate that NK cells do not exhibit hallmarks of exhaustion. Their numbers are stable and they do not express high PD1 or LAG3. NK cell depletion with anti-NK1.1 is therapeutic and rescues chronic T. gondii infected mice from CD8+ T cell exhaustion dependent death, increases survival after lethal secondary challenge and alters cyst burdens in brain. Anti-NK1.1 treatment increased polyfunctional CD8+ T cell responses in spleen and brain and reduced CD8+ T cell apoptosis in spleen. Chronic T. gondii infection promotes the development of a modified NK cell compartment, which does not exhibit normal NK cell characteristics. NK cells are Ly49 and TRAIL negative and are enriched for expression of CD94/NKG2A and KLRG1. These NK cells are found in both spleen and brain. They do not produce IFNγ, are IL-10 negative, do not increase PDL1 expression, but do increase CD107a on their surface. Based on the NK cell receptor phenotype we observed NKp46 and CD94-NKG2A cognate ligands were measured. Activating NKp46 (NCR1-ligand) ligand increased and NKG2A ligand Qa-1b expression was reduced on CD8+ T cells. Blockade of NKp46 rescued the chronically infected mice from death and reduced the number of NKG2A+ cells. Immunization with a single dose non-persistent 100% protective T. gondii vaccination did not induce this cell population in the spleen, suggesting persistent infection is essential for their development. We hypothesize chronic T. gondii infection induces an NKp46 dependent modified NK cell population that reduces functional CD8+ T cells to promote persistent parasite infection in the brain. NK cell targeted therapies could enhance immunity in people with chronic infections, chronic inflammation and cancer.
Collapse
Affiliation(s)
- Daria L Ivanova
- Molecular Biology, University of Wyoming, Laramie, WY, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ryan Krempels
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Stephen L Denton
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Kevin D Fettel
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Giandor M Saltz
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - David Rach
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Rida Fatima
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Tiffany Mundhenke
- Molecular Biology, University of Wyoming, Laramie, WY, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joshua Materi
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Jason P Gigley
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
31
|
Abstract
There is a pressing need for compounds with broad-spectrum activity against malaria parasites at various life cycle stages to achieve malaria elimination. However, this goal cannot be accomplished without targeting the tenacious dormant liver-stage hypnozoite that causes multiple relapses after the first episode of illness. In the search for the magic bullet to radically cure Plasmodium vivax malaria, tafenoquine outperformed other candidate drugs and was approved by the U.S. Food and Drug Administration in 2018. Tafenoquine is an 8-aminoquinoline that inhibits multiple life stages of various Plasmodium species. Additionally, its much longer half-life allows for single-dose treatment, which will improve the compliance rate. Despite its approval and the long-time use of other 8-aminoquinolines, the mechanisms behind tafenoquine's activity and adverse effects are still largely unknown. In this Perspective, we discuss the plausible underlying mechanisms of tafenoquine's antiparasitic activity and highlight its role as a cellular stressor. We also discuss potential drug combinations and the development of next-generation 8-aminoquinolines to further improve the therapeutic index of tafenoquine for malaria treatment and prevention.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina 27708, United States
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
32
|
Newman DJ. Modern traditional Chinese medicine: Identifying, defining and usage of TCM components. PHARMACOLOGICAL ADVANCES IN NATURAL PRODUCT DRUG DISCOVERY 2020; 87:113-158. [DOI: 10.1016/bs.apha.2019.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Ivanova DL, Mundhenke TM, Gigley JP. The IL-12- and IL-23-Dependent NK Cell Response Is Essential for Protective Immunity against Secondary Toxoplasma gondii Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2944-2958. [PMID: 31604804 DOI: 10.4049/jimmunol.1801525] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
NK cells can develop cell-intrinsic memory-like characteristics. Whether they develop these characteristics during Toxoplasma gondii infection is unknown. We addressed this question and dissected the mechanisms involved in secondary NK cell responses using a vaccine-challenge mouse model of T. gondii infection. NK cells were required for control of and survival after secondary T. gondii infection. NK cells increased in number at the reinfection site and produced IFN-γ. To test if these T. gondii experienced NK cells were intrinsically different from naive NK cells, we performed NK cell adoptive transfer into RAG2/cγ-chain-/- mice, NK cell fate mapping, and RAG1-/- mice vaccine-challenge experiments. Although NK cells contributed to immunity after reinfection, they did not develop cell-intrinsic memory-like characteristics after T. gondii vaccination. The mechanisms required for generating these secondary NK cell responses were investigated. Secondary NK cell responses were CD4+ or CD8+ T cell independent. Although IL-12 alone is required for NK cell IFN-γ production during primary T. gondii infection, in the absence of IL-12 using IL-12p35-/- mice or anti-IL-12p70, secondary NK cell responses were only partially reduced after reinfection. IL-23 depletion with anti-IL-23p19 in vivo also significantly reduced the secondary NK cell response. IL-12 and IL-23 blockade with anti-IL-12p40 treatment completely eliminated secondary NK cell responses. Importantly, blockade of IL-12, IL-23, or both significantly reduced control of parasite reinfection and increased parasite burden. Our results define a previously unknown protective role for NK cells during secondary T. gondii infection that is dependent on IL-12 and IL-23.
Collapse
Affiliation(s)
- Daria L Ivanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | | | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
34
|
Barrett MP, Kyle DE, Sibley LD, Radke JB, Tarleton RL. Protozoan persister-like cells and drug treatment failure. Nat Rev Microbiol 2019; 17:607-620. [PMID: 31444481 PMCID: PMC7024564 DOI: 10.1038/s41579-019-0238-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
Antimicrobial treatment failure threatens our ability to control infections. In addition to antimicrobial resistance, treatment failures are increasingly understood to derive from cells that survive drug treatment without selection of genetically heritable mutations. Parasitic protozoa, such as Plasmodium species that cause malaria, Toxoplasma gondii and kinetoplastid protozoa, including Trypanosoma cruzi and Leishmania spp., cause millions of deaths globally. These organisms can evolve drug resistance and they also exhibit phenotypic diversity, including the formation of quiescent or dormant forms that contribute to the establishment of long-term infections that are refractory to drug treatment, which we refer to as 'persister-like cells'. In this Review, we discuss protozoan persister-like cells that have been linked to persistent infections and discuss their impact on therapeutic outcomes following drug treatment.
Collapse
Affiliation(s)
- Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua B Radke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
35
|
Konstantinovic N, Guegan H, Stäjner T, Belaz S, Robert-Gangneux F. Treatment of toxoplasmosis: Current options and future perspectives. Food Waterborne Parasitol 2019; 15:e00036. [PMID: 32095610 PMCID: PMC7033996 DOI: 10.1016/j.fawpar.2019.e00036] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 02/08/2023] Open
Abstract
Toxoplasmosis is a worldwide parasitic disease infecting about one third of humans, with possible severe outcomes in neonates and immunocompromised patients. Despite continuous and successful efforts to improve diagnosis, therapeutic schemes have barely evolved since many years. This article aims at reviewing the main clinical trials and current treatment practices, and at addressing future perspectives in the light of ongoing researches.
Collapse
Affiliation(s)
- Neda Konstantinovic
- National Reference Laboratory for Toxoplasmosis, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia
| | - Hélène Guegan
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000 Rennes, France
| | - Tijana Stäjner
- National Reference Laboratory for Toxoplasmosis, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia
| | - Sorya Belaz
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000 Rennes, France
| | | |
Collapse
|
36
|
Paneth A, Węglińska L, Bekier A, Stefaniszyn E, Wujec M, Trotsko N, Dzitko K. Systematic Identification of Thiosemicarbazides for Inhibition of Toxoplasma gondii Growth In Vitro. Molecules 2019; 24:molecules24030614. [PMID: 30744161 PMCID: PMC6384730 DOI: 10.3390/molecules24030614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/24/2023] Open
Abstract
One of the key stages in the development of new therapies in the treatment of toxoplasmosis is the identification of new non-toxic small molecules with high specificity to Toxoplasma gondii. In the search for such structures, thiosemicarbazide-based compounds have emerged as a novel and promising leads. Here, a series of imidazole-thiosemicarbazides with suitable properties for CNS penetration was evaluated to determine the structural requirements needed for potent anti-Toxoplasma gondii activity. The best 4-arylthiosemicarbazides 3 and 4 showed much higher potency when compared to sulfadiazine at concentrations that are non-toxic to the host cells, indicating a high selectivity of their anti-toxoplasma activity.
Collapse
Affiliation(s)
- Agata Paneth
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Lidia Węglińska
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Adrian Bekier
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Edyta Stefaniszyn
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Monika Wujec
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Nazar Trotsko
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Katarzyna Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|