1
|
Aggarwal M, Patra A, Awasthi I, George A, Gagneja S, Gupta V, Capalash N, Sharma P. Drug repurposing against antibiotic resistant bacterial pathogens. Eur J Med Chem 2024; 279:116833. [PMID: 39243454 DOI: 10.1016/j.ejmech.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The growing prevalence of MDR and XDR bacterial pathogens is posing a critical threat to global health. Traditional antibiotic development paths have encountered significant challenges and are drying up thus necessitating innovative approaches. Drug repurposing, which involves identifying new therapeutic applications for existing drugs, offers a promising alternative to combat resistant pathogens. By leveraging pre-existing safety and efficacy data, drug repurposing accelerates the development of new antimicrobial therapy regimes. This review explores the potential of repurposing existing FDA approved drugs against the ESKAPE and other clinically relevant bacterial pathogens and delves into the identification of suitable drug candidates, their mechanisms of action, and the potential for combination therapies. It also describes clinical trials and patent protection of repurposed drugs, offering perspectives on this evolving realm of therapeutic interventions against drug resistance.
Collapse
Affiliation(s)
- Manya Aggarwal
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Anushree Patra
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Ishita Awasthi
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Annu George
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Simran Gagneja
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Varsha Gupta
- Department of Microbiology, Government Multi-speciality hospital, Sector 16, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Departmen of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Michalski J, Cłapa T, Narożna D, Syguda A, van Oostrum P, Reimhult E. Morpholinium-based Ionic Liquids as Potent Antibiofilm and Sensitizing Agents for the Control of Pseudomonas aeruginosa. J Mol Biol 2024; 436:168627. [PMID: 38795768 DOI: 10.1016/j.jmb.2024.168627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Rising antimicrobial resistance is a critical threat to worldwide public health. To address the increasing antibiotic tolerance, diverse antimicrobial agents are examined for their ability to decrease bacterial resistance. One of the most relevant and persistent human pathogens is Pseudomonas aeruginosa. Our study investigates the anti-biofilm and sensitizing activity of 12 morpholinium-based ionic liquids with herbicidal anions on four clinically relevant P. aeruginosa strains. Among all tested compounds, four ionic liquids prevented biofilm formation at sub-minimum inhibitory concentrations for all investigated strains. For the first time, we established a hormetic effect on biofilm formation for P. aeruginosa strains subjected to an ionic liquid treatment. Interestingly, while ionic liquids with 4,4-didecylmorpholinium [Dec2Mor]+ are more efficient against planktonic bacteria, 4-decyl-4-ethylmorpholinium [DecEtMor]+ showed more potent inhibition of biofilm formation. Ionic liquids with 4,4-didecylmorpholinium ([Dec2Mor]+) cations even induced biofilm formation by strain 39016 at high concentrations due to flocculation. Morpholinium-based ionic liquids were also shown to enhance the efficacy of commonly used antibiotics from different chemical groups. We demonstrate that this synergy is associated with the mode of action of the antibiotics.
Collapse
Affiliation(s)
- Jakub Michalski
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, Dojazd 11, 60-632 Poznan, Poland
| | - Tomasz Cłapa
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, Dojazd 11, 60-632 Poznan, Poland.
| | - Dorota Narożna
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, Dojazd 11, 60-632 Poznan, Poland
| | - Anna Syguda
- Poznan University of Technology, Department of Chemical Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Peter van Oostrum
- BOKU University, Department of Bionanosciences, Institute of Colloid and Biointerface Science, Muthgasse 11-II, A-1090 Vienna, Austria
| | - Erik Reimhult
- BOKU University, Department of Bionanosciences, Institute of Colloid and Biointerface Science, Muthgasse 11-II, A-1090 Vienna, Austria
| |
Collapse
|
3
|
Nemeth AM, Young MM, Melander RJ, Smith RD, Ernst RK, Melander C. Identification of a 2-Aminobenzimidazole Scaffold that Potentiates Gram-Positive Selective Antibiotics Against Gram-Negative Bacteria. Chembiochem 2024; 25:e202400127. [PMID: 38451872 PMCID: PMC11021177 DOI: 10.1002/cbic.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
The development of novel therapeutic approaches is crucial in the fight against multi-drug resistant (MDR) bacteria, particularly gram-negative species. Small molecule adjuvants that enhance the activity of otherwise gram-positive selective antibiotics against gram-negative bacteria have the potential to expand current treatment options. We have previously reported adjuvants based upon a 2-aminoimidazole (2-AI) scaffold that potentiate macrolide antibiotics against several gram-negative pathogens. Herein, we report the discovery and structure-activity relationship (SAR) investigation of an additional class of macrolide adjuvants based upon a 2-aminobenzimidazole (2-ABI) scaffold. The lead compound lowers the minimum inhibitory concentration (MIC) of clarithromycin (CLR) from 512 to 2 μg/mL at 30 μM against Klebsiella pneumoniae 2146, and from 32 to 2 μg/mL at 5 μM, against Acinetobacter baumannii 5075. Preliminary investigation into the mechanism of action suggests that the compounds are binding to lipopolysaccharide (LPS) in K. pneumoniae, and modulating lipooligosaccharide (LOS) biosynthesis, assembly, or transport in A. baumannii.
Collapse
Affiliation(s)
- Ansley M Nemeth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, USA
| | - Milah M Young
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, USA
| | - Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD-21201, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD-21201, USA
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, USA
| |
Collapse
|
4
|
Abdullah SJ, Yan BTS, Palanivelu N, Dhanabal VB, Bifani JP, Bhattacharjya S. Outer-Membrane Permeabilization, LPS Transport Inhibition: Activity, Interactions, and Structures of Thanatin Derived Antimicrobial Peptides. Int J Mol Sci 2024; 25:2122. [PMID: 38396798 PMCID: PMC10888688 DOI: 10.3390/ijms25042122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Currently, viable antibiotics available to mitigate infections caused by drug-resistant Gram-negative bacteria are highly limited. Thanatin, a 21-residue-long insect-derived antimicrobial peptide (AMP), is a promising lead molecule for the potential development of novel antibiotics. Thanatin is extremely potent, particularly against the Enterobacter group of Gram-negative pathogens, e.g., E. coli and K. pneumoniae. As a mode of action, cationic thanatin efficiently permeabilizes the LPS-outer membrane and binds to the periplasmic protein LptAm to inhibit outer membrane biogenesis. Here, we have utilized N-terminal truncated 16- and 14-residue peptide fragments of thanatin and investigated structure, activity, and selectivity with correlating modes of action. A designed 16-residue peptide containing D-Lys (dk) named VF16 (V1PIIYCNRRT-dk-KCQRF16) demonstrated killing activity in Gram-negative bacteria. The VF16 peptide did not show any detectable toxicity to the HEK 293T cell line and kidney cell line Hep G2. As a mode of action, VF16 interacted with LPS, permeabilizing the outer membrane and binding to LptAm with high affinity. Atomic-resolution structures of VF16 in complex with LPS revealed cationic and aromatic surfaces involved in outer membrane interactions and permeabilization. Further, analyses of an inactive 14-residue native thanatin peptide (IM14: IIYCNRRTGKCQRM) delineated the requirement of the β-sheet structure in activity and target interactions. Taken together, this work would pave the way for the designing of short analogs of thanatin-based antimicrobials.
Collapse
Affiliation(s)
- Swaleeha Jaan Abdullah
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.J.A.); (N.P.)
| | - Bernice Tan Siu Yan
- A*Star Infectious Diseases Labs, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Nithya Palanivelu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.J.A.); (N.P.)
| | - Vidhya Bharathi Dhanabal
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.J.A.); (N.P.)
| | - Juan Pablo Bifani
- A*Star Infectious Diseases Labs, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (S.J.A.); (N.P.)
| |
Collapse
|
5
|
Kellogg CN, Pugh BA, Starr IM, Parmar DJ, Troxler AD, Wolfe AL. Bisbenzamidine and Bisbenzguanidine Ureas Act as Antibacterial Agents against Pseudomonas aeruginosa. ChemMedChem 2023; 18:e202300496. [PMID: 37806962 PMCID: PMC10841437 DOI: 10.1002/cmdc.202300496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Due to the global rise in the number of antibiotic resistant bacterial infections over the past 20 years, there is a dire need for the development of small molecule antibiotics capable of overcoming resistance mechanisms in pathogenic bacteria. Antibiotic development against Gram-negative pathogens, such as Pseudomonas aeruginosa, is especially challenging due to their additional outer membrane which reduces antibiotic entry. Recently, it has been shown that a broad range of nitrogen functionality, including guanidines, amidines, primary amines, imidazolines, and imidazoles, promote antibiotic and adjuvant activity in Gram-negative bacteria, but few of these have been targeted towards Pseudomonas aeruginosa specifically despite this pathogen being deemed a critical threat by the United States Centers for Disease Control and Prevention. Herein, we examined a small series of known and unknown nitrogenous dimers, with guanidine, amidine, dimethyl amine, and pyridine functionality, for antibacterial activity against multidrug resistant Pseudomonas aeruginosa. We found that two, with bisbenzguanidine and bisbenzamidine functionality, are potent against clinical isolates of multidrug resistant and biofilm forming Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Casey N. Kellogg
- Chemistry and Biochemistry, University of North Carolina Asheville, One University Heights, Asheville NC 28804 (USA)
| | - Bryce A. Pugh
- Chemistry and Biochemistry, University of North Carolina Asheville, One University Heights, Asheville NC 28804 (USA)
| | - Isaak M. Starr
- Chemistry and Biochemistry, University of North Carolina Asheville, One University Heights, Asheville NC 28804 (USA)
| | - Dhruvi J. Parmar
- Chemistry and Biochemistry, University of North Carolina Asheville, One University Heights, Asheville NC 28804 (USA)
| | - A’Zane D. Troxler
- Chemistry and Biochemistry, University of North Carolina Asheville, One University Heights, Asheville NC 28804 (USA)
| | - Amanda L. Wolfe
- Chemistry and Biochemistry, University of North Carolina Asheville, One University Heights, Asheville NC 28804 (USA)
| |
Collapse
|
6
|
Paul D, Chawla M, Ahrodia T, Narendrakumar L, Das B. Antibiotic Potentiation as a Promising Strategy to Combat Macrolide Resistance in Bacterial Pathogens. Antibiotics (Basel) 2023; 12:1715. [PMID: 38136749 PMCID: PMC10740890 DOI: 10.3390/antibiotics12121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotics, which hit the market with astounding impact, were once called miracle drugs, as these were considered the ultimate cure for infectious diseases in the mid-20th century. However, today, nearly all bacteria that afflict humankind have become resistant to these wonder drugs once developed to stop them, imperiling the foundation of modern medicine. During the COVID-19 pandemic, there was a surge in macrolide use to treat secondary infections and this persistent use of macrolide antibiotics has provoked the emergence of macrolide resistance. In view of the current dearth of new antibiotics in the pipeline, it is essential to find an alternative way to combat drug resistance. Antibiotic potentiators or adjuvants are non-antibacterial active molecules that, when combined with antibiotics, increase their activity. Thus, potentiating the existing antibiotics is one of the promising approaches to tackle and minimize the impact of antimicrobial resistance (AMR). Several natural and synthetic compounds have demonstrated effectiveness in potentiating macrolide antibiotics against multidrug-resistant (MDR) pathogens. The present review summarizes the different resistance mechanisms adapted by bacteria to resist macrolides and further emphasizes the major macrolide potentiators identified which could serve to revive the antibiotic and can be used for the reversal of macrolide resistance.
Collapse
Affiliation(s)
- Deepjyoti Paul
- Functional Genomics Laboratory, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, India
| | | | | | | | | |
Collapse
|
7
|
Wouters CL, Heydarian N, Pusavat J, Panlilio H, Lam AK, Moen EL, Brennan RE, Rice CV. Breaking membrane barriers to neutralize E. coli and K. pneumoniae virulence with PEGylated branched polyethylenimine. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184172. [PMID: 37201561 PMCID: PMC10330601 DOI: 10.1016/j.bbamem.2023.184172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Bacterial infections caused by Gram-negative pathogens, such as those in the family Enterobacteriaceae, are among the most difficult to treat because effective therapeutic options are either very limited or non-existent. This raises serious concern regarding the emergence and spread of multi-drug resistant (MDR) pathogens in the community setting; and thus, creates the need for discovery efforts and/or early-stage development of novel therapies for infections. Our work is directed towards branched polyethylenimine (BPEI) modified with polyethylene glycol (PEG) as a strategy for targeting virulence from Gram-negative bacterial pathogens. Here, we neutralize lipopolysaccharide (LPS) as a barrier to the influx of antibiotics. Data demonstrate that the β-lactam antibiotic oxacillin, generally regarded as ineffective against Gram-negative bacteria, can be potentiated by 600 Da BPEI to kill some Escherichia coli and some Klebsiella pneumoniae. Modification of 600 Da BPEI with polyethylene glycol (PEG) could increase drug safety and improves potentiation activity. The ability to use the Gram-positive agent, oxacillin, against Gram-negative pathogens could expand the capability to deliver effective treatments that simplify, reduce, or eliminate some complicated treatment regimens.
Collapse
Affiliation(s)
- Cassandra L Wouters
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Jennifer Pusavat
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Anh K Lam
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Erika L Moen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Robert E Brennan
- Department of Biology, University of Central Oklahoma, 100 North University Drive, Edmond, OK 73034, United States of America
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America.
| |
Collapse
|
8
|
Serrano I, Verdial C, Tavares L, Oliveira M. The Virtuous Galleria mellonella Model for Scientific Experimentation. Antibiotics (Basel) 2023; 12:505. [PMID: 36978373 PMCID: PMC10044286 DOI: 10.3390/antibiotics12030505] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The first research on the insect Galleria mellonella was published 85 years ago, and the larva is now widely used as a model to study infections caused by bacterial and fungal pathogens, for screening new antimicrobials, to study the adjacent immune response in co-infections or in host-pathogen interaction, as well as in a toxicity model. The immune system of the G. mellonella model shows remarkable similarities with mammals. Furthermore, results from G. mellonella correlate positively with mammalian models and with other invertebrate models. Unlike other invertebrate models, G. mellonella can withstand temperatures of 37 °C, and its handling and experimental procedures are simpler. Despite having some disadvantages, G. mellonella is a virtuous in vivo model to be used in preclinical studies, as an intermediate model between in vitro and mammalian in vivo studies, and is a great example on how to apply the bioethics principle of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation. This review aims to discuss the progress of the G. mellonella model, highlighting the key aspects of its use, including experimental design considerations and the necessity to standardize them. A different score in the "cocoon" category included in the G. mellonella Health Index Scoring System is also proposed.
Collapse
Affiliation(s)
- Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Verdial
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
9
|
Spiramycin Disarms Pseudomonas aeruginosa without Inhibiting Growth. Antibiotics (Basel) 2023; 12:antibiotics12030499. [PMID: 36978366 PMCID: PMC10044227 DOI: 10.3390/antibiotics12030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Spiramycin is a 16-membered macrolide antibiotic currently used in therapy to treat infections caused by Gram-positive bacteria responsible for respiratory tract infections, and it is also effective against some Gram-negative bacteria and against Toxoplasma spp. In contrast, Pseudomonas aeruginosa, which is one of the pathogens of most concern globally, is intrinsically resistant to spiramycin. In this study we show that spiramycin inhibits the expression of virulence determinants in P. aeruginosa in the absence of any significant effect on bacterial multiplication. In vitro experiments demonstrated that production of pyoverdine and pyocyanin by an environmental strain of P. aeruginosa was markedly reduced in the presence of spiramycin, as were biofilm formation, swarming motility, and rhamnolipid production. Moreover, treatment of P. aeruginosa with spiramycin sensitized the bacterium to H2O2 exposure. The ability of spiramycin to dampen the virulence of the P. aeruginosa strain was confirmed in a Galleria mellonella animal model. The results demonstrated that when G. mellonella larvae were infected with P. aeruginosa, the mortality after 24 h was >90%. In contrast, when the spiramycin was injected together with the bacterium, the mortality dropped to about 50%. Furthermore, marked reduction in transcript levels of the antimicrobial peptides gallerimycin, gloverin and moricin, and lysozyme was found in G. mellonella larvae infected with P. aeruginosa and treated with spiramycin, compared to the larvae infected without spiramycin treatment suggesting an immunomodulatory activity of spiramycin. These results lay the foundation for clinical studies to investigate the possibility of using the spiramycin as an anti-virulence and anti-inflammatory drug for a more effective treatment of P. aeruginosa infections, in combination with other antibiotics.
Collapse
|
10
|
Onyedibe KI, Nemeth AM, Dayal N, Smith RD, Lamptey J, Ernst RK, Melander RJ, Melander C, Sintim HO. Re-sensitization of Multidrug-Resistant and Colistin-Resistant Gram-Negative Bacteria to Colistin by Povarov/Doebner-Derived Compounds. ACS Infect Dis 2023; 9:283-295. [PMID: 36651182 PMCID: PMC10547215 DOI: 10.1021/acsinfecdis.2c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Colistin, typically viewed as the antibiotic of last resort to treat infections caused by multidrug-resistant (MDR) Gram-negative bacteria, had fallen out of favor due to toxicity issues. The recent increase in clinical usage of colistin has resulted in colistin-resistant isolates becoming more common. To counter this threat, we have investigated previously reported compounds, HSD07 and HSD17, and developed 13 compounds with more desirable drug-like properties for colistin sensitization against 16 colistin-resistant bacterial strains, three of which harbor the plasmid-borne mobile colistin resistance (mcr-1). Lead compound HSD1624, which has a lower LogDpH7.4 (2.46) compared to HSD07 (>5.58), reduces the minimum inhibitory concentration (MIC) of colistin against Pseudomonas aeruginosa strain TRPA161 to 0.03 μg/mL from 1024 μg/mL (34,000-fold reduction). Checkerboard assays revealed that HSD1624 and analogues are also synergistic with colistin against colistin-resistant strains of Escherichia coli, Acinetobacter baumannii, and Klebsiella pneumoniae. Preliminary mechanism of action studies indicate that HSD1624 exerts its action differently depending on the bacterial species. Time-kill studies suggested that HSD1624 in combination with 0.5 μg/mL colistin was bactericidal to extended-spectrum beta-lactamase (ESBL)-producing E. coli, as well as to E. coli harboring mcr-1, while against P. aeruginosa TRPA161, the combination was bacteriostatic. Mechanistically, HSD1624 increased membrane permeability in K. pneumoniae harboring a plasmid containing the mcr-1 gene but did not increase radical oxygen species (ROS), while a combination of 15 μM HSD1624 and 0.5 μg/mL colistin significantly increased ROS in P. aeruginosa TRPA161. HSD1624 was not toxic to mammalian red blood cells (up to 226 μM).
Collapse
Affiliation(s)
- Kenneth I Onyedibe
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
- Center for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana47906, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana47906, United States
| | - Ansley M Nemeth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Neetu Dayal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
- Center for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana47906, United States
| | - Richard D Smith
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, Maryland21201, United States
| | - Jones Lamptey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
- Center for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana47906, United States
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, Maryland21201, United States
| | - Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Herman O Sintim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
- Center for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana47906, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana47906, United States
| |
Collapse
|
11
|
Kim C, Tomoshige S, Lee M, Zgurskaya HI, Mobashery S. Penetration through Outer Membrane and Efflux Potential in Pseudomonas aeruginosa of Bulgecin A as an Adjuvant to β-Lactam Antibiotics. Antibiotics (Basel) 2023; 12:antibiotics12020358. [PMID: 36830269 PMCID: PMC9952357 DOI: 10.3390/antibiotics12020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The treatment of infections by Gram-negative bacteria remains a difficult clinical challenge. In the light of the dearth of discovery of novel antibiotics, one strategy that is being explored is the use of adjuvants to enhance antibacterial activities of existing antibiotics. One such adjuvant is bulgecin A, which allows for the lowering of minimal-inhibitory concentrations for β-lactam antibiotics. We have shown that bulgecin A inhibits three of the pseudomonal lytic transglycosylases in its mode of action, yet high concentrations are needed for potentiation activity. Herein, we document that bulgecin A is not a substrate for pseudomonal efflux pumps, whose functions could have been a culprit in the need for high concentrations. We present evidence that the penetration barrier into the periplasm is at the root of the need for high concentrations of bulgecin A in its potentiation of β-lactam antibiotics.
Collapse
Affiliation(s)
- Choon Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shusuke Tomoshige
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Correspondence: ; Tel.: +1-574-631-2933
| |
Collapse
|
12
|
Melander RJ, Mattingly AE, Nemeth AM, Melander C. Overcoming intrinsic resistance in gram-negative bacteria using small molecule adjuvants. Bioorg Med Chem Lett 2023; 80:129113. [PMID: 36566797 PMCID: PMC9885958 DOI: 10.1016/j.bmcl.2022.129113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Gram-negative bacteria are intrinsically resistant to many classes of antibiotics, predominantly due to the impermeability of the outer membrane and the presence of efflux pumps. Small molecule adjuvants that circumvent these resistance mechanisms have the potential to expand therapeutic options for treating Gram-negative infections to encompass antibiotic classes that are otherwise limited to treating Gram-positive infections. Adjuvants that effect increased antibiotic permeation, either by physical disruption of the outer membrane or through interference with synthesis, transport, or assembly of membrane components, and adjuvants that limit efflux, are discussed as potential avenues to overcoming intrinsic resistance in Gram-negative bacteria.
Collapse
Affiliation(s)
- Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Anne E Mattingly
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ansley M Nemeth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
13
|
Artini M, Imperlini E, Buonocore F, Relucenti M, Porcelli F, Donfrancesco O, Tuccio Guarna Assanti V, Fiscarelli EV, Papa R, Selan L. Anti-Virulence Potential of a Chionodracine-Derived Peptide against Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients. Int J Mol Sci 2022; 23:13494. [PMID: 36362282 PMCID: PMC9657651 DOI: 10.3390/ijms232113494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing several chronic infections resistant to currently available antibiotics. Its pathogenicity is related to the production of different virulence factors such as biofilm and protease secretion. Pseudomonas communities can persist in biofilms that protect bacterial cells from antibiotics. Hence, there is a need for innovative approaches that are able to counteract these virulence factors, which play a pivotal role, especially in chronic infections. In this context, antimicrobial peptides are emerging drugs showing a broad spectrum of antibacterial activity. Here, we tested the anti-virulence activity of a chionodracine-derived peptide (KHS-Cnd) on five P. aeruginosa clinical isolates from cystic fibrosis patients. We demonstrated that KHS-Cnd impaired biofilm development and caused biofilm disaggregation without affecting bacterial viability in nearly all of the tested strains. Ultrastructural morphological analysis showed that the effect of KHS-Cnd on biofilm could be related to a different compactness of the matrix. KHS-Cnd was also able to reduce adhesion to pulmonary cell lines and to impair the invasion of host cells by P. aeruginosa. A cytotoxic effect of KHS-Cnd was observed only at the highest tested concentration. This study highlights the potential of KHS-Cnd as an anti-biofilm and anti-virulence molecule against P. aeruginosa clinical strains.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Esther Imperlini
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Fernando Porcelli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Orlando Donfrancesco
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Vanessa Tuccio Guarna Assanti
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
14
|
Artini M, Papa R, Sapienza F, Božović M, Vrenna G, Tuccio Guarna Assanti V, Sabatino M, Garzoli S, Fiscarelli EV, Ragno R, Selan L. Essential Oils Biofilm Modulation Activity and Machine Learning Analysis on Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients. Microorganisms 2022; 10:microorganisms10050887. [PMID: 35630332 PMCID: PMC9145053 DOI: 10.3390/microorganisms10050887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is often involved in airway infections of cystic fibrosis (CF) patients. It persists in the hostile CF lung environment, inducing chronic infections due to the production of several virulence factors. In this regard, the ability to form a biofilm plays a pivotal role in CF airway colonization by P. aeruginosa. Bacterial virulence mitigation and bacterial cell adhesion hampering and/or biofilm reduced formation could represent a major target for the development of new therapeutic treatments for infection control. Essential oils (EOs) are being considered as a potential alternative in clinical settings for the prevention, treatment, and control of infections sustained by microbial biofilms. EOs are complex mixtures of different classes of organic compounds, usually used for the treatment of upper respiratory tract infections in traditional medicine. Recently, a wide series of EOs were investigated for their ability to modulate biofilm production by different pathogens comprising S. aureus, S. epidermidis, and P. aeruginosa strains. Machine learning (ML) algorithms were applied to develop classification models in order to suggest a possible antibiofilm action for each chemical component of the studied EOs. In the present study, we assessed the biofilm growth modulation exerted by 61 commercial EOs on a selected number of P. aeruginosa strains isolated from CF patients. Furthermore, ML has been used to shed light on the EO chemical components likely responsible for the positive or negative modulation of bacterial biofilm formation.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (F.S.); (M.S.)
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
| | - Mijat Božović
- Faculty of Natural Sciences and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro;
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
| | - Vanessa Tuccio Guarna Assanti
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy; (V.T.G.A.); (E.V.F.)
| | - Manuela Sabatino
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (F.S.); (M.S.)
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy; (V.T.G.A.); (E.V.F.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (F.S.); (M.S.)
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy;
- Società Italiana Ricerca Oli Essenziali, Viale Regina Elena 299, 00161 Roma, Italy
- Correspondence: (R.R.); (L.S.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (R.P.); (G.V.)
- Correspondence: (R.R.); (L.S.)
| |
Collapse
|
15
|
Pan Y, Shan D, Ding LL, Yang XD, Xu K, Huang H, Wang JF, Ren HQ. Developing a generally applicable electrochemical sensor for detecting macrolides in water with thiophene-based molecularly imprinted polymers. WATER RESEARCH 2021; 205:117670. [PMID: 34583204 DOI: 10.1016/j.watres.2021.117670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 05/05/2023]
Abstract
Our screening data revealed the threat macrolide antibiotics, especially azithromycin (AZN), posed to human health with its increasing occurrence in water environment. The electrochemical sensor based on molecularly imprinted polymer (MIP) is a promising platform that caters for the next generation of intelligent wastewater treatment plants (WWTPs) by virtue of its wide tolerance to water from all sources and in-situ monitoring. However, low initiation potentials of cross-linking monomers contributed by the electron-rich circumstance allowed them to usurp sites designed for functional monomers when electrically stimulated, leading to an unsatisfactory binding capacity. Another uncertainty is that multiple reaction sites of cross-linking monomers granted them complex polymerization routes and made it difficult to ensure the consistency of preparation. Serval monomers had been investigated with electrochemical tools and the performance of sensors constructed with these monomers were compared in this study. Based on the results, we proposed a protocol in which a novel functional monomer possessing a stronger electron-donating group, phenyl, was adopted to compete for the dominance in electropolymerization. Beyond that, the cross-linking monomer was modified with electron-withdrawing groups to raise its initiation potential. A monothiophene with a moderate initiation potential was also recruited as the linker to address the steric hindrance. In this way, polymerization proceeded in a specific order. It is worth mentioning that the Marangoni flow is an ideal tool to deal with the Coffee-ring deposition while drop-casting. The resulting sensor showed good performance with a limitation of detection (LOD) of 0.120 μM for AZN and a satisfactory selectivity, and the design can be applied to constructing sensors for a variety of macrolide antibiotics.
Collapse
Affiliation(s)
- Yao Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Li-Li Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Dong Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jin-Feng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Benzydamine Reverses TMexCD-TOprJ-Mediated High-Level Tigecycline Resistance in Gram-Negative Bacteria. Pharmaceuticals (Basel) 2021; 14:ph14090907. [PMID: 34577607 PMCID: PMC8470189 DOI: 10.3390/ph14090907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, a novel efflux pump gene cluster called tmexCD1-toprJ1 and its variants have been identified, which undermine the antibacterial activity of tigecycline, one of the last remaining options effective against multidrug-resistant (MDR) Gram-negative bacteria. Herein, we report the potent synergistic effect of the non-steroidal anti-inflammatory drug benzydamine in combination with tigecycline at sub-inhibitory concentrations against various temxCD-toprJ-positive Gram-negative pathogens. The combination of benzydamine and tigecycline killed all drug-resistant pathogens during 24 h of incubation. In addition, the evolution of tigecycline resistance was significantly suppressed in the presence of benzydamine. Studies on the mechanisms of synergism showed that benzydamine disrupted the bacterial proton motive force and the functionality of this kind of novel plasmid-encoded resistance-nodulation-division efflux pump, thereby promoting the intracellular accumulation of tigecycline. Most importantly, the combination therapy of benzydamine and tigecycline effectively improved the survival of Galleria mellonella larvae compared to tigecycline monotherapy. Our findings provide a promising drug combination therapeutic strategy for combating superbugs carrying the tmexCD-toprJ gene.
Collapse
|
17
|
董 雅, 李 彭, 孙 莹, 饶 义, 于 世, 胡 海. [Biofilm Eradication Four-Step Strategy: Study of Using Self-Assembled Azithromycin/Rhamnolipid Nanoparticles for Removing Pseudomonas aeruginosa Biofilm]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:598-604. [PMID: 34323037 PMCID: PMC10409402 DOI: 10.12182/20210760207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the in vitro eradicative effect of self-assembled azithromycin/rhamnolipid nanoparticles (AZI-RHL NPs) on P seudomonas aeruginosa ( P. aeruginosa) biofilm. METHODS AZI-RHL NPs were prepared and characterized. The minimum inhibitory concentration (MIC) of AZI-RHL NPs on planktonic P. aeruginosa was measured by the broth microdilution method. The eradicative effect of AZI-RHL NPs on P. aeruginosa biofilm was evaluated via crystal violet staining and SYTO 9/PI live/dead staining. Fluorescence labeling was used to measure the eradicative effect of NPs on extracellular polymeric substances (EPS). In addition, crystal violet staining was performed to evaluate the inhibitory effect of AZI-RHL NPs on the adhesion of P. aeruginosa on human bronchial epithelial BEAS-2B cells. To investigate the ability of AZI-RHL NPs to penetrate mucus, the interaction between NPs and mucin was measured via particle size changes after co-incubation with mucin solution. RESULTS The AZI-RHL NPs had a particle size of about 121 nm and were negatively charged on the surface, displaying a high encapsulation efficiency and a high drug loading capacity of 96.72% and 45.08% for AZI, respectively and 99.38% and 53.07% for RHL, respectively. The MIC of AZI-RHL NPs on planktonic P. aeruginosa was half of that of using AZI alone. AZI-RHL NPs displayed the capacity to effectively destroy the biofilm structure and remove the proteins and polysaccharides in EPS, eradicating biofilms in addition to reducing the survival rate of bacteria in the biofilm. AZI-RHL NPs were shown to have inhibited P. aeruginosa adhesion on BEAS-2B cells and prevented the residual bacteria from forming a new biofilm. There was no significant change in the particle size of NPs after co-incubation with mucin solution, indicating a weak interaction between NPs and mucin, and suggesting that NPs could penetrate the mucus and reach the P. aeruginosa infection sites. CONCLUSION AZI-RHL NPs were able to effectively enhance the removal of P. aeruginosa biofilm through a four-step strategy of biofilm eradication, including penetrating the mucus, disintegrating the biofilm structure, killing the bacteria dispersed from biofilm, and preventing the adhesion of residual bacteria. We hope that this study will provide a replicable common strategy for the treatment of refractory infections caused by P. aeruginosa and other types of biofilms.
Collapse
Affiliation(s)
- 雅婷 董
- 中山大学药学院 (广州 510006)School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - 彭宇 李
- 中山大学药学院 (广州 510006)School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - 莹莹 孙
- 中山大学药学院 (广州 510006)School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - 义琴 饶
- 中山大学药学院 (广州 510006)School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - 世慧 于
- 中山大学药学院 (广州 510006)School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - 海燕 胡
- 中山大学药学院 (广州 510006)School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Antimicrobial Susceptibility Testing in Pseudomonas aeruginosa Biofilms: One Step Closer to a Standardized Method. Antibiotics (Basel) 2020; 9:antibiotics9120880. [PMID: 33316877 PMCID: PMC7763878 DOI: 10.3390/antibiotics9120880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
The ability of Pseudomonas aeruginosa to form biofilm during a long-term infection makes it difficult to treat patients correctly. The current clinical antimicrobial susceptibility testing methods are based on the study of planktonic strains. A standardized protocol to analyze the antimicrobial susceptibility in biofilms is necessary for routine laboratories. The aims of this study were to develop a simple biofilm model and to study the antimicrobial susceptibility of P. aeruginosa strains in biofilm growth. Different artificial sputum media, and aerobiosis and microaerobiosis conditions were analyzed using a microtiter plate method and P. aeruginosa PAO1 as reference strain. Planktonic and biofilm antimicrobial susceptibility to cefepime, imipenem, azithromycin, gentamicin, tobramycin, and ciprofloxacin were determined in clinical and non-clinical P. aeruginosa strains. The Synthetic Cystic Fibrosis Medium was proposed as a good medium. The biofilm greatly increased the resistance to tested antimicrobials, except for azithromycin. Cefepime and imipenem showed poor anti-biofilm effect while tobramycin, gentamicin, and ciprofloxacin showed good activity in some strains. Azithromycin showed a better activity in biofilm than in planktonic state when aerobic conditions were used. This study establishes useful information to test antimicrobial susceptibility in P. aeruginosa biofilms, and includes possible antimicrobial options to treat long-term infected patients.
Collapse
|
19
|
Lam AK, Moen EL, Pusavat J, Wouters CL, Panlilio H, Ferrell MJ, Houck MB, Glatzhofer DT, Rice CV. PEGylation of Polyethylenimine Lowers Acute Toxicity while Retaining Anti-Biofilm and β-Lactam Potentiation Properties against Antibiotic-Resistant Pathogens. ACS OMEGA 2020; 5:26262-26270. [PMID: 33073153 PMCID: PMC7557992 DOI: 10.1021/acsomega.0c04111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 05/29/2023]
Abstract
Bacterial biofilms, often impenetrable to antibiotic medications, are a leading cause of poor wound healing. The prognosis is worse for wounds with biofilms of antimicrobial-resistant (AMR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant S. epidermidis (MRSE), and multi-drug resistant Pseudomonas aeruginosa (MDR-PA). Resistance hinders initial treatment of standard-of-care antibiotics. The persistence of MRSA, MRSE, and/or MDR-PA often allows acute infections to become chronic wound infections. The water-soluble hydrophilic properties of low-molecular-weight (600 Da) branched polyethylenimine (600 Da BPEI) enable easy drug delivery to directly attack AMR and biofilms in the wound environment as a topical agent for wound treatment. To mitigate toxicity issues, we have modified 600 Da BPEI with polyethylene glycol (PEG) in a straightforward one-step reaction. The PEG-BPEI molecules disable β-lactam resistance in MRSA, MRSE, and MDR-PA while also having the ability to dissolve established biofilms. PEG-BPEI accomplishes these tasks independently, resulting in a multifunction potentiation agent. We envision wound treatment with antibiotics given topically, orally, or intravenously in which external application of PEG-BPEIs disables biofilms and resistance mechanisms. In the absence of a robust pipeline of new drugs, existing drugs and regimens must be re-evaluated as combination(s) with potentiators. The PEGylation of 600 Da BPEI provides new opportunities to meet this goal with a single compound whose multifunction properties are retained while lowering acute toxicity.
Collapse
|
20
|
Mattingly AE, Cox KE, Smith R, Melander RJ, Ernst RK, Melander C. Screening an Established Natural Product Library Identifies Secondary Metabolites That Potentiate Conventional Antibiotics. ACS Infect Dis 2020; 6:2629-2640. [PMID: 32810395 DOI: 10.1021/acsinfecdis.0c00259] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Health organizations worldwide have warned that we are on the cusp of a "post-antibiotic era," necessitating new approaches to combat antibiotic resistant infections. One such approach is the development of antibiotic adjuvants, which have little or no inherent antibiotic activity at their active concentrations but instead potentiate the activity of antibiotics against antibiotic-resistant bacteria. Recently, we demonstrated that meridianin D, a natural product originally reported to have activity against Staphylococcus aureus and Mycobacterium tuberculosis, possesses the ability to reverse colistin resistance in colistin resistant bacteria. As most natural product screens typically involve screening for only certain activities (anticancer, antiviral, and antimicrobial are typical), we posited that the meridianin D discovery was not unique and there are potentially many natural products that have adjuvant activity. To explore this, the National Cancer Institute (NCI) Natural Product Library Set IV was screened for adjuvant activity using four classes of antibiotics (β-lactams, aminoglycosides, macrolides, and polymyxins) against three bacterial pathogens (methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, and Klebsiella pneumoniae). Sixteen compounds suppressed β-lactam resistance in MRSA, five of which effected a 16-fold reduction in the oxacillin minimum inhibitory concentration (MIC). Two natural products effectively suppressed aminoglycoside resistance in both of the Gram-negative species tested, and no hits were observed with macrolides. In contrast, a larger number of natural product adjuvants were identified when screening against colistin-resistant strains of A. baumannii and K. pneumoniae. Nine compounds reduced the colistin MIC to its breakpoint or lower (up to a 1024-fold reduction). Clorobiocin, novobiocin, and prodigiosin were most effective, reducing the colistin MIC in K. pneumoniae strain B9 to 2 μg/mL at concentrations as low as 0.625, 2.5, and 1.25 μM, respectively. Restored sensitivity to colistin with these compounds does not appear to coincide with known mechanisms of colistin resistance.
Collapse
Affiliation(s)
- Anne E. Mattingly
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Karlie E. Cox
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Richard Smith
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, Maryland 21201, United States
| | - Roberta J. Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, Maryland 21201, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
21
|
Campana R, Mangiaterra G, Tiboni M, Frangipani E, Biavasco F, Lucarini S, Citterio B. A Fluorinated Analogue of Marine Bisindole Alkaloid 2,2-Bis(6-bromo-1 H-indol-3-yl)ethanamine as Potential Anti-Biofilm Agent and Antibiotic Adjuvant Against Staphylococcus aureus. Pharmaceuticals (Basel) 2020; 13:ph13090210. [PMID: 32859056 PMCID: PMC7557854 DOI: 10.3390/ph13090210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) infections represent a major global healthcare problem. Therapeutic options are often limited by the ability of MRSA strains to grow as biofilms on medical devices, where antibiotic persistence and resistance is positively selected, leading to recurrent and chronic implant-associated infections. One strategy to circumvent these problems is the co-administration of adjuvants, which may prolong the efficacy of antibiotic treatments, by broadening their spectrum and lowering the required dosage. The marine bisindole alkaloid 2,2-bis(6-bromo-1H-indol-3-yl)ethanamine (1) and its fluorinated analogue (2) were tested for their potential use as antibiotic adjuvants and antibiofilm agents against S. aureus CH 10850 (MRSA) and S. aureus ATCC 29213 (MSSA). Both compounds showed antimicrobial activity and bisindole 2 enabled 256-fold reduction (ΣFICs = 0.5) in the minimum inhibitory concentration (MIC) of oxacillin for the clinical MRSA strain. In addition, these molecules inhibited biofilm formation of S. aureus strains, and compound 2 showed greater eradicating activity on preformed biofilm compared to 1. None of the tested molecules exerted a viable but non-culturable cells (VBNC) inducing effect at their MIC values. Moreover, both compounds exhibited no hemolytic activity and a good stability in plasma, indicating a non-toxic profile, hence, in particular compound 2, a potential for in vivo applications to restore antibiotic treatment against MRSA infections.
Collapse
Affiliation(s)
- Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
| | - Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (G.M.); (F.B.)
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (G.M.); (F.B.)
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
- Correspondence: (S.L.); (B.C.); Tel.: +39-0722-303-333 (S.L.); +39-0722-304-962 (B.C.)
| | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
- Correspondence: (S.L.); (B.C.); Tel.: +39-0722-303-333 (S.L.); +39-0722-304-962 (B.C.)
| |
Collapse
|
22
|
Dubey KK, Indu, Sharma M. Reprogramming of antibiotics to combat antimicrobial resistance. Arch Pharm (Weinheim) 2020; 353:e2000168. [DOI: 10.1002/ardp.202000168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Kashyap K. Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
- School of Biotechnology Jawaharlal Nehru University New Delhi India
| | - Indu
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| | - Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| |
Collapse
|
23
|
Lam AK, Panlilio H, Pusavat J, Wouters CL, Moen EL, Brennan RE, Rice CV. Expanding the Spectrum of Antibiotics Capable of Killing Multidrug-Resistant Staphylococcus aureus and Pseudomonas aeruginosa. ChemMedChem 2020; 15:1421-1428. [PMID: 32497366 PMCID: PMC7485129 DOI: 10.1002/cmdc.202000239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Infections from antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa are a serious threat because reduced antibiotic efficacy complicates treatment decisions and prolongs the disease state in many patients. To expand the arsenal of treatments against antimicrobial-resistant (AMR) pathogens, 600-Da branched polyethylenimine (BPEI) can overcome antibiotic resistance mechanisms and potentiate β-lactam antibiotics against Gram-positive bacteria. BPEI binds cell-wall teichoic acids and disables resistance factors from penicillin binding proteins PBP2a and PBP4. This study describes a new mechanism of action for BPEI potentiation of antibiotics generally regarded as agents effective against Gram-positive pathogens but not Gram-negative bacteria. 600-Da BPEI is able to reduce the barriers to drug influx and facilitate the uptake of a non-β-lactam co-drug, erythromycin, which targets the intracellular machinery. Also, BPEI can suppress production of the cytokine interleukin IL-8 by human epithelial keratinocytes. This enables BPEI to function as a broad-spectrum antibiotic potentiator, and expands the opportunities to improve drug design, antibiotic development, and therapeutic approaches against pathogenic bacteria, especially for wound care.
Collapse
Affiliation(s)
- Anh K Lam
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Jennifer Pusavat
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Cassandra L Wouters
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Erika L Moen
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Robert E Brennan
- Department of Biology, University of Central Oklahoma, 100 North University Drive, Edmond, OK 73034, USA
| | - Charles V Rice
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| |
Collapse
|
24
|
Nagy TA, Crooks AL, Quintana JLJ, Detweiler CS. Clofazimine Reduces the Survival of Salmonella enterica in Macrophages and Mice. ACS Infect Dis 2020; 6:1238-1249. [PMID: 32272013 DOI: 10.1021/acsinfecdis.0c00023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistant pathogens are on the rise, and new treatments are needed for bacterial infections. Efforts toward antimicrobial discovery typically identify compounds that prevent bacterial growth in microbiological media. However, the microenvironments to which pathogens are exposed during infection differ from rich media and alter the biology of the pathogen. We and others have therefore developed screening platforms that identify compounds that disrupt pathogen growth within cultured mammalian cells. Our platform focuses on Gram-negative bacterial pathogens, which are of particular clinical concern. We screened a panel of 707 drugs to identify those with efficacy against Salmonella enterica Typhimurium growth within macrophages. One of the drugs identified, clofazimine (CFZ), is an antibiotic used to treat mycobacterial infections that is not recognized for potency against Gram-negative bacteria. We demonstrated that in macrophages CFZ enabled the killing of S. Typhimurium at single digit micromolar concentrations, and in mice, CFZ reduced tissue colonization. We confirmed that CFZ does not inhibit the growth of S. Typhimurium and E. coli in standard microbiological media. However, CFZ prevents bacterial replication under conditions consistent with the microenvironment of macrophage phagosomes, in which S. Typhimurium resides during infection: low pH, low magnesium and phosphate, and the presence of certain cationic antimicrobial peptides. These observations suggest that in macrophages and mice the efficacy of CFZ against S. Typhimurium is facilitated by multiple aspects of soluble innate immunity. Thus, systematic screens of existing drugs for infection-based potency are likely to identify unexpected opportunities for repurposing drugs to treat difficult pathogens.
Collapse
Affiliation(s)
- Toni A. Nagy
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Amy L. Crooks
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Corrella S. Detweiler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
25
|
Ma Y, Wang C, Li Y, Li J, Wan Q, Chen J, Tay FR, Niu L. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901872. [PMID: 31921562 PMCID: PMC6947519 DOI: 10.1002/advs.201901872] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Indexed: 05/19/2023]
Abstract
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are among the most common opportunistic pathogens in nosocomial infections. ESKAPE pathogens distinguish themselves from normal ones by developing a high level of antibiotic resistance that involves multiple mechanisms. Contemporary therapeutic strategies which are potential options in combating ESKAPE bacteria need further investigation. Herein, a broad overview of the antimicrobial research on ESKAPE pathogens over the past five years is provided with prospective clinical applications.
Collapse
Affiliation(s)
- Yu‐Xuan Ma
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Chen‐Yu Wang
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Yuan‐Yuan Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Jing Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Ji‐Hua Chen
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Franklin R. Tay
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| | - Li‐Na Niu
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| |
Collapse
|
26
|
Cutuli MA, Petronio Petronio G, Vergalito F, Magnifico I, Pietrangelo L, Venditti N, Di Marco R. Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence 2019; 10:527-541. [PMID: 31142220 PMCID: PMC6550544 DOI: 10.1080/21505594.2019.1621649] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
A greater ethical conscience, new global rules and a modified perception of ethical consciousness entail a more rigorous control on utilizations of vertebrates for in vivo studies. To cope with this new scenario, numerous alternatives to rodents have been proposed. Among these, the greater wax moth Galleria mellonella had a preponderant role, especially in the microbiological field, as demonstrated by the growing number of recent scientific publications. The reasons for its success must be sought in its peculiar characteristics such as the innate immune response mechanisms and the ability to grow at a temperature of 37°C. This review aims to describe the most relevant features of G. mellonella in microbiology, highlighting the most recent and relevant research on antibacterial strategies, novel drug tests and toxicological studies. Although solutions for some limitations are required, G. mellonella has all the necessary host features to be a consolidated in vivo model host.
Collapse
Affiliation(s)
- Marco Alfio Cutuli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Franca Vergalito
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| |
Collapse
|
27
|
Walsh DJ, Livinghouse T, Goeres DM, Mettler M, Stewart PS. Antimicrobial Activity of Naturally Occurring Phenols and Derivatives Against Biofilm and Planktonic Bacteria. Front Chem 2019; 7:653. [PMID: 31632948 PMCID: PMC6779693 DOI: 10.3389/fchem.2019.00653] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were evaluated. Allyl derivatives showed a consistent increased potency with both killing and inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This result underscores the importance of using biofilm assays to develop structure-activity relationships when the end target is biofilm.
Collapse
Affiliation(s)
- Danica J. Walsh
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Tom Livinghouse
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Darla M. Goeres
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Madelyn Mettler
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|