1
|
Sivadas N, Kaul G, Akhir A, Shukla M, Govind MG, Dan M, Radhakrishnan KV, Chopra S. Naturally Derived Malabaricone B as a Promising Bactericidal Candidate Targeting Multidrug-Resistant Staphylococcus aureus also Possess Synergistic Interactions with Clinical Antibiotics. Antibiotics (Basel) 2023; 12:1483. [PMID: 37887184 PMCID: PMC10604362 DOI: 10.3390/antibiotics12101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) superbugs underlines the urgent need for innovative treatment options to tackle resistant bacterial infections. The clinical efficacy of natural products directed our efforts towards developing new antibacterial leads from naturally abundant known chemical structures. The present study aimed to explore an unusual class of phenylacylphenols (malabaricones) from Myristicamalabarica as antibacterial agents. In vitro antibacterial activity was determined via broth microdilution, cell viability, time-kill kinetics, biofilm eradication, intracellular killing, and checkerboard assays. The efficacy was evaluated in vivo in murine neutropenic thigh and skin infection models. Confocal and SEM analyses were used for mechanistic studies. Among the tested isolates, malabaricone B (NS-7) demonstrated the best activity against S. aureus with a favorable selectivity index and concentration-dependent, rapid bactericidal killing kinetics. It displayed equal efficacy against MDR clinical isolates of S. aureus and Enterococci, efficiently clearing S. aureus in intracellular and biofilm tests, with no detectable resistance. In addition, NS-7 synergized with daptomycin and gentamicin. In vivo, NS-7 exhibited significant efficacy against S. aureus infection. Mechanistically, NS-7 damaged S. aureus membrane integrity, resulting in the release of extracellular ATP. The results indicated that NS-7 can act as a naturally derived bactericidal drug lead for anti-staphylococcal therapy.
Collapse
Affiliation(s)
- Neethu Sivadas
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Grace Kaul
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- Division of Microbiology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; (A.A.)
| | - Abdul Akhir
- Division of Microbiology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; (A.A.)
| | - Manjulika Shukla
- Division of Microbiology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; (A.A.)
| | - Murugan Govindakurup Govind
- Department of Plant Genetics Resource, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695562, India
| | - Mathew Dan
- Department of Plant Genetics Resource, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695562, India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- Division of Microbiology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; (A.A.)
| |
Collapse
|
2
|
Liu K, Xiao T, Yang H, Chen M, Gao Q, Brummel BR, Ding Y, Huigens RW. Design, synthesis and evaluation of halogenated phenazine antibacterial prodrugs targeting nitroreductase enzymes for activation. RSC Med Chem 2023; 14:1472-1481. [PMID: 37593580 PMCID: PMC10429720 DOI: 10.1039/d3md00204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/01/2023] [Indexed: 08/19/2023] Open
Abstract
It is of great importance to develop new strategies to combat antibiotic resistance. Our lab has discovered halogenated phenazine (HP) analogues that are highly active against multidrug-resistant bacterial pathogens. Here, we report the design, synthesis, and study of a new series of nitroarene-based HP prodrugs that leverage intracellular nitroreductase (NTR) enzymes for activation and subsequent release of active HP agents. Our goals of developing HP prodrugs are to (1) mitigate off-target metal chelation (potential toxicity), (2) possess motifs to facilitate intracellular, bacterial-specific HP release, (3) improve water solubility, and (4) prevent undesirable metabolism (e.g., glucuronidation of HP's phenol). Following the synthesis of HP-nitroarene prodrugs bearing a sulfonate ester linker, NTR-promoted release experiments demonstrated prodrug HP-1-N released 70.1% of parent HP-1 after 16 hours (with only 6.8% HP-1 release without NTR). In analogous in vitro experiments, no HP release was observed for control sulfonate ester compounds lacking the critical nitro group. When compared to parent HP compounds, nitroarene prodrugs evaluated during these studies demonstrate similar antibacterial activities in MIC and zone of inhibition assays (against lab strains and clinical isolates). In conclusion, HP-nitroarene prodrugs could provide a future avenue to develop potent agents that target antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Tao Xiao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Qiwen Gao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Beau R Brummel
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| |
Collapse
|
3
|
Xiao T, Liu K, Gao Q, Chen M, Kim YS, Jin S, Ding Y, Huigens RW. Design, Synthesis, and Evaluation of Carbonate-Linked Halogenated Phenazine-Quinone Prodrugs with Improved Water-Solubility and Potent Antibacterial Profiles. ACS Infect Dis 2023; 9:899-915. [PMID: 36867688 PMCID: PMC10551733 DOI: 10.1021/acsinfecdis.2c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Pathogenic bacteria have devastating impacts on human health as a result of acquired antibiotic resistance and innate tolerance. Every class of our current antibiotic arsenal was initially discovered as growth-inhibiting agents that target actively replicating (individual, free-floating) planktonic bacteria. Bacteria are notorious for utilizing a diversity of resistance mechanisms to overcome the action of conventional antibiotic therapies and forming surface-attached biofilm communities enriched in (non-replicating) persister cells. To address problems associated with pathogenic bacteria, our group is developing halogenated phenazine (HP) molecules that demonstrate potent antibacterial and biofilm-eradicating activities through a unique iron starvation mode of action. In this study, we designed, synthesized, and investigated a focused collection of carbonate-linked HP prodrugs bearing a quinone trigger to target the reductive cytoplasm of bacteria for bioactivation and subsequent HP release. The quinone moiety also contains a polyethylene glycol group, which dramatically enhances the water-solubility properties of the HP-quinone prodrugs reported herein. We found carbonate-linked HP-quinone prodrugs 11, 21-23 to demonstrate good linker stability, rapid release of the active HP warhead following dithiothreitol (reductive) treatment, and potent antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis, and Enterococcus faecalis. In addition, HP-quinone prodrug 21 induced rapid iron starvation in MRSA and S. epidermidis biofilms, illustrating prodrug action within these surface-attached communities. Overall, we are highly encouraged by these findings and believe that HP prodrugs have the potential to address antibiotic resistant and tolerant bacterial infections.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Qiwen Gao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Young S Kim
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
4
|
Liu K, Abouelhassan Y, Zhang Y, Jin S, Huigens Iii RW. Transcript Profiling of Nitroxoline-Treated Biofilms Shows Rapid Up-regulation of Iron Acquisition Gene Clusters. ACS Infect Dis 2022; 8:1594-1605. [PMID: 35830188 PMCID: PMC10549994 DOI: 10.1021/acsinfecdis.2c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial biofilms are surface-attached communities of slow- or non-replicating cells embedded within a protective matrix of biomolecules. Unlike free-floating planktonic bacteria, biofilms are innately tolerant to conventional antibiotics and are prevalent in recurring and chronic infections. Nitroxoline, a broad-spectrum biofilm-eradicating agent, was used to probe biofilm viability. Transcript profiling (RNA-seq) showed that 452 of 2594 genes (17.4%) in methicillin-resistant Staphylococcus aureus (MRSA) biofilms were differentially expressed after a 2 h treatment of nitroxoline. WoPPER analysis and time-course validation (RT-qPCR) revealed that gene clusters involved in iron acquisition (sbn, isd, MW2101, MW0695, fhu, and feo) were rapidly up-regulated following nitroxoline treatment, which is indicative of iron starvation in MRSA biofilms. In addition, genes related to oligopeptide transporters and riboflavin biosynthesis were found to be up-regulated, while genes related to carotenoid biosynthesis and nitrate assimilation were down-regulated. RT-qPCR experiments revealed that iron uptake transcripts were also up-regulated in established Staphylococcus epidermidis and Acinetobacter baumannii biofilms following nitroxoline treatment. Overall, we show RNA-seq to be an ideal platform to define cellular pathways critical for biofilm survival, in addition to demonstrating the need these bacterial communities have for iron.
Collapse
Affiliation(s)
- Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research (ICBR), Gene Expression and Genotyping, University of Florida, Gainesville, Florida 32610, United States
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Robert W Huigens Iii
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
5
|
Liu K, Brivio M, Xiao T, Norwood VM, Kim YS, Jin S, Papagni A, Vaghi L, Huigens RW. Modular Synthetic Routes to Fluorine-Containing Halogenated Phenazine and Acridine Agents That Induce Rapid Iron Starvation in Methicillin-Resistant Staphylococcus aureus Biofilms. ACS Infect Dis 2022; 8:280-295. [PMID: 35089005 PMCID: PMC9004446 DOI: 10.1021/acsinfecdis.1c00402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During infection, bacteria use an arsenal of resistance mechanisms to negate antibiotic therapies. In addition, pathogenic bacteria form surface-attached biofilms bearing enriched populations of metabolically dormant persister cells. Bacteria develop resistance in response to antibiotic insults; however, nonreplicating biofilms are innately tolerant to all classes of antibiotics. As such, molecules that can eradicate antibiotic-resistant and antibiotic-tolerant bacteria are of importance. Here, we report modular synthetic routes to fluorine-containing halogenated phenazine (HP) and halogenated acridine (HA) agents with potent antibacterial and biofilm-killing activities. Nine fluorinated phenazines were rapidly accessed through a synthetic strategy involving (1) oxidation of fluorinated anilines to azobenzene intermediates, (2) SNAr with 2-methoxyaniline, and (3) cyclization to phenazines upon treatment with trifluoroacetic acid. Five structurally related acridine heterocycles were synthesized using SNAr and Buchwald-Hartwig approaches. From this focused collection, phenazines 5g, 5h, 5i, and acridine 9c demonstrated potent antibacterial activities against Gram-positive pathogens (MIC = 0.04-0.78 μM). Additionally, 5g and 9c eradicated Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis biofilms with excellent potency (5g, MBEC = 4.69-6.25 μM; 9c, MBEC = 4.69-50 μM). Using real-time quantitative polymerase chain reaction (RT-qPCR), 5g, 5h, 5i, and 9c rapidly induce the transcription of iron uptake biomarkers isdB and sbnC in methicillin-resistant S. aureus (MRSA) biofilms, and we conclude that these agents operate through iron starvation. Overall, fluorinated phenazine and acridine agents could lead to ground-breaking advances in the treatment of challenging bacterial infections.
Collapse
Affiliation(s)
- Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Massimiliano Brivio
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Tao Xiao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Verrill M. Norwood
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Young S. Kim
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Antonio Papagni
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Luca Vaghi
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Robert W. Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
6
|
Huigens Iii RW, Yang H, Liu K, Kim YS, Jin S. An ether-linked halogenated phenazine-quinone prodrug model for antibacterial applications. Org Biomol Chem 2021; 19:6603-6608. [PMID: 34286808 PMCID: PMC8525319 DOI: 10.1039/d1ob01107c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antibiotic-resistant infections present significant challenges to patients. As a result, there is considerable need for new antibacterial therapies that eradicate pathogenic bacteria through non-conventional mechanisms. Our group has identified a series of halogenated phenazine (HP) agents that induce rapid iron starvation that leads to potent killing of methicillin-resistant Staphylococcus aureus biofilms. Here, we report the design, chemical synthesis and microbiological assessment of a HP-quinone ether prodrug model aimed to (1) eliminate general (off-target) iron chelation, and (2) release an active HP agent through the bioreduction of a quinone trigger. Here, we demonstrate prodrug analogue HP-29-Q to have a stable ether linkage that enables HP release and moderate to good antibacterial activities against lab strains and multi-drug resistant clinical isolates.
Collapse
Affiliation(s)
- Robert W Huigens Iii
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Young S Kim
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
7
|
Yang H, Kundra S, Chojnacki M, Liu K, Fuse MA, Abouelhassan Y, Kallifidas D, Zhang P, Huang G, Jin S, Ding Y, Luesch H, Rohde KH, Dunman PM, Lemos JA, Huigens RW. A Modular Synthetic Route Involving N-Aryl-2-nitrosoaniline Intermediates Leads to a New Series of 3-Substituted Halogenated Phenazine Antibacterial Agents. J Med Chem 2021; 64:7275-7295. [PMID: 33881312 DOI: 10.1021/acs.jmedchem.1c00168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pathogenic bacteria demonstrate incredible abilities to evade conventional antibiotics through the development of resistance and formation of dormant, surface-attached biofilms. Therefore, agents that target and eradicate planktonic and biofilm bacteria are of significant interest. We explored a new series of halogenated phenazines (HP) through the use of N-aryl-2-nitrosoaniline synthetic intermediates that enabled functionalization of the 3-position of this scaffold. Several HPs demonstrated potent antibacterial and biofilm-killing activities (e.g., HP 29, against methicillin-resistant Staphylococcus aureus: MIC = 0.075 μM; MBEC = 2.35 μM), and transcriptional analysis revealed that HPs 3, 28, and 29 induce rapid iron starvation in MRSA biofilms. Several HPs demonstrated excellent activities against Mycobacterium tuberculosis (HP 34, MIC = 0.80 μM against CDC1551). This work established new SAR insights, and HP 29 demonstrated efficacy in dorsal wound infection models in mice. Encouraged by these findings, we believe that HPs could lead to significant advances in the treatment of challenging infections.
Collapse
Affiliation(s)
- Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Shivani Kundra
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Michaelle Chojnacki
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, United States
| | - Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Marisa A Fuse
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Dimitris Kallifidas
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Peilan Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Guangtao Huang
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville Florida 32610, United States
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville Florida 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Kyle H Rohde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Paul M Dunman
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, United States
| | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
8
|
|
9
|
Xiao T, Liu K, Huigens RW. Progress towards a stable cephalosporin-halogenated phenazine conjugate for antibacterial prodrug applications. Bioorg Med Chem Lett 2020; 30:127515. [PMID: 32860978 DOI: 10.1016/j.bmcl.2020.127515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Resistant bacteria successfully evade the action of conventional antibiotic therapies during infection, often leading to significant illness and death. Our lab has discovered halogenated phenazine (HP) analogues which demonstrate potent antibacterial activities through a unique iron-starving mechanism. Herein, we describe synthetic efforts towards a stable cephalosporin-HP conjugate prodrug with the aim of translating HPs into useful clinical agents. Cephalosporin-antibiotic conjugates offer multiple advantages for antibacterial design, including the release of active agents through the targeting of intracellular cephalosporinase following selective ring-opening of the beta-lactam warhead. During these studies, carbonate-linked cephalosporin-HP conjugate 16 was synthesized; however, we were unable to successfully remove the ester group required for cephalosporinase processing. Cephalosporin-HP 16 was then utilized as a probe to investigate the stability of the carbonate linker in antibacterial assays and, as predicted, this compound proved to be inactive against Staphylococcus aureus (MIC > 100 µM). The lack of 16's antibacterial activity can be attributed to the carbonate linker remaining intact throughout the MIC assay, thus not liberating the active HP moiety. These efforts have led to a more stable cephalosporin-HP conjugate joined through a carbonate linker compared to a highly unstable ether linked analogue we previously reported.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|