1
|
Ren L, Lu X, Yan J, Zhang A, Li W. Hierarchical assembly of thermoresponsive helical dendronized poly(phenylacetylene)s through photo-crosslinking of the thermal aggregates. J Colloid Interface Sci 2025; 677:928-940. [PMID: 39128287 DOI: 10.1016/j.jcis.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Supramolecular assembly of helical homopolymers to form stable chiral entities in water is highly valuable for creating chiral nanostructures and fabricating chiral biomaterials. Here we report on thermally induced supramolecular assembly of helical dendronized poly(phenylacetylene)s (PPAs) in aqueous solutions, and their in-situ photo-crosslinking at elevated temperatures to afford crosslinked nano-assemblies with hierarchical structures and stabilized helicities. These helical dendronized homopolymers carry cinnamate-cored dendritic oligoethylene glycol (OEG) pendants, which exhibit characteristic thermoresponsive behavior. Their thermal aggregation confers hexagonal packing of the polymer chains, and simultaneously resulting in enhancement of their chiralities. Assisted by radial amphiphilicity and worm-like molecular geometry, these dendronized PPAs form supramolecular twisted fibers, spheroid particles or toroids via thermal aggregation. Through UV photoirradiation above their cloud points (Tcps), cycloaddition of cinnamate moieties from the dendritic pendants promotes intermolecular crosslinking of dendronized PPA chains within the thermal aggregates, and simultaneously, the dynamic morphologies and supramolecular chirality from the dendronized PPAs through thermally induced aggregation can be fixed. In addition, photo-crosslinking can be occurred solely within individual aggregates due to the protection of densely packed dendritic OEGs. Therefore, various crosslinked assemblies from the dendronized homopolymers with tailorable morphologies and stabilized chirality are fabricated by tuning their thermally induced dynamic aggregations followed by in-situ photo-crosslinking. We believe that this work paves a convenient route to fabricate chiral assemblies with stabilized morphologies and fixed chiralities from dynamic helical homopolymers through intermolecular crosslinking, which can be promising for various chiral applications.
Collapse
Affiliation(s)
- Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
2
|
Haino T, Nitta N. Supramolecular Synthesis of Star Polymers. Chempluschem 2024; 89:e202400014. [PMID: 38407573 DOI: 10.1002/cplu.202400014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Supramolecular polymers, in which monomers are assembled via intermolecular interactions, have been extensively studied. The fusion of supramolecular polymers with conventional polymers has attracted the attention of many researchers. In this review article, the recent progress in the construction of supramolecular star polymers, including regular star polymers and miktoarm star polymers, is discussed. The initial sections briefly provide an overview of the conventional classification and synthesis methods for star polymers. Coordination-driven self-assembly was investigated for the supramolecular synthesis of star polymers. Star polymers with multiple polymer chains radiating from metal-organic polyhedra (MOPs) have also been described. Particular focus has been placed on the synthesis of star polymers featuring supramolecular cores formed through hydrogen-bonding-directed self-assembly. After describing the synthesis of star polymers based on host-guest complexes, the construction of miktoarm star polymers based on the molecular recognition of coordination capsules is detailed.
Collapse
Affiliation(s)
- Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Higashi-Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Natsumi Nitta
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Elise Avenue, Chicago, Illinois, 60637, United States
| |
Collapse
|
3
|
Shao BR, Ren BH, Jiang WF, Shi L. Synthesis of Helical-Shaped Axially Chiral Bisoxime Ethers via Chiral Phosphoric-Acid-Catalyzed Sequential Enantioselective Condensations. Org Lett 2024; 26:2646-2650. [PMID: 38530907 DOI: 10.1021/acs.orglett.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A successful synthesis of helical-shaped axially chiral bisoxime ethers is reported. This approach utilized symmetric L-shaped diketone scaffolds as carbonyl components for the enantioselective condensation with hydroxylamines, delivering dual axially chiral oxime ethers with up to 99% ee. Additionally, the axially chiral mono-oxime ethers of azabicyclic ketones with high ee's were also successfully produced. Various chiral bicyclic lactams can be readily synthesized via Beckmann rearrangement, demonstrating a potential application in organic synthetic chemistry.
Collapse
Affiliation(s)
- Bing-Ru Shao
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bai-Hao Ren
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wen-Feng Jiang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
4
|
Lai Y, He X, Xue B, Li M, Wang H, Huang W, Yin JF, Zhang M, Yin P. Modulating Ligand-Exchange Dynamics on Metal-Organic Polyhedra for Reversible Sorting and Hybridization of Miktoarm Star Polymers. Angew Chem Int Ed Engl 2023; 62:e202311954. [PMID: 37666792 DOI: 10.1002/anie.202311954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
The precise synthesis of miktoarm star polymers (MSPs) remains one of the great challenges in synthetic chemistry due to the difficulty in locating appropriate structural templates and polymer grafting/growing strategies with high selectivity and efficiency. Herein, ≈2 nm metal-organic polyhedra (MOPs), constructed from the coordination of isophthalic acid (IPA) and Cu2+ , are applied as templates for the precise synthesis of 24-arm MSPs for their unique logarithmic ligand-exchange dynamics. Six different polymers are prepared with IPA as an end group and they further coordinated with Cu2+ to afford the corresponding 24-arm star homo-polymers. MSPs can be obtained by mixing targeted homo-arm star polymers in solutions upon thermal annealing. The compositions of MSPs can be facilely and precisely tuned by the recipe of the star polymer mixtures used. Interestingly, the obtained MSPs can be sorted into homo-arm star polymers through a typical solvent extraction procedure. The hybridization and sorting process can be reversibly conducted through the cycle of thermal annealing and solvent treatment. The complex coordination framework not only opens new avenues for the facile and precise synthesis of MSPs and MOPs with hybrid functionalities, but also provides the capability to design sustainable polymer systems.
Collapse
Affiliation(s)
- Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaofeng He
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Mu Li
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Huihui Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Wei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Mingxin Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
5
|
Wang C, Deng R, Weck M. Orthogonal Supramolecular Assemblies Using Side-Chain Functionalized Helical Poly(isocyanide)s. Macromolecules 2023; 56:3507-3516. [PMID: 37251603 PMCID: PMC10210603 DOI: 10.1021/acs.macromol.2c02224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/20/2023] [Indexed: 05/31/2023]
Abstract
Mimicking the structure of proteins using synthetic polymers requires building blocks with structural similarity and the use of various noncovalent and dynamic covalent interactions. We report the synthesis of helical poly(isocyanide)s bearing diaminopyridine and pyridine side-chains and the multistep functionalization of the polymers' side-chains using hydrogen bonding and metal coordination. The orthogonality of the hydrogen bonding and metal coordination was proved by varying the sequence of the multistep assembly. The two side-chain functionalizations are reversible through the use of competitive solvents and/or competing ligands. Throughout the assembly and disassembly, the helical conformation of the polymer backbone is sustained as proved by circular dichroism spectroscopy. These results open the possibility to incorporate helical domains into complex polymer architectures and create a helical scaffold for smart materials.
Collapse
|
6
|
Nitta N, Kihara SI, Haino T. Synthesis of Supramolecular A 8 B n Miktoarm Star Copolymers by Host-Guest Complexation. Angew Chem Int Ed Engl 2023; 62:e202219001. [PMID: 36718880 DOI: 10.1002/anie.202219001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
We report a new synthetic method to construct supramolecular A8 Bn (n=1, 2, 4) miktoarm star copolymers by host-guest complexation between a resorcinarene-based coordination capsule possessing eight polystyrene chains and 4,4-diacetoxybiphenyl guest molecules that retain one, two or four polymethyl acrylate chains. The formation of the supramolecular A8 Bn (n=1, 2, 4) miktoarm star copolymers was confirmed by dynamic light scattering (DLS), size-exclusion chromatography (SEC), and diffusion-ordered NMR spectroscopy (DOSY). Differential scanning calorimetry (DSC) measurements revealed that the miktoarm copolymers were phase-separated in the bulk. The micro-Brownian motion of the A8 B4 structure was markedly enhanced in the bulk due to a weak segregation interaction between the immiscible arms.
Collapse
Affiliation(s)
- Natsumi Nitta
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shin-Ichi Kihara
- Department of Chemical Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.,International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
7
|
Zhong X, Nagai A, Takeuchi M, Aimi J. Preparation of Supramolecular Miktoarm Star Copolymers with a Zinc Phthalocyanine Core through ATRP and RAFT Polymerization. Macromol Rapid Commun 2023; 44:e2200666. [PMID: 36189886 DOI: 10.1002/marc.202200666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Topological polymers have attracted considerable attention owing to their unique chemical and physical properties. This study demonstrates the formation of novel supramolecular miktoarm star copolymers with a zinc phthalocyanine (ZnPc) core using metal-ligand coordination interactions. Various linear polymers with pyridyl end groups, poly(methyl methacrylate), poly(vinyl acetate) and poly(N-vinyl carbazole), are prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. This facilitates coordination to the ZnPc core of 4-armed star-shaped polystyrene prepared via atom-transfer radical polymerization (ATRP). Furthermore, the formation of a 1:1 complex of a ZnPc molecule and pyridyl group of the chain-transfer agent for RAFT is confirmed by absorption spectral studies and 1 H NMR spectroscopic analyses. The concept of supramolecular complexation can be extended to the preparation of AB4 -type supramolecular miktoarm star-shaped copolymers with functional cores.
Collapse
Affiliation(s)
- Xinhao Zhong
- Research Center for Functional Materials, National Institute for Materials Science: NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.,Department of Materials Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Akira Nagai
- Research Center for Functional Materials, National Institute for Materials Science: NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.,Department of Materials Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Masayuki Takeuchi
- Research Center for Functional Materials, National Institute for Materials Science: NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.,Department of Materials Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Junko Aimi
- Research Center for Functional Materials, National Institute for Materials Science: NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
8
|
Zhang Y, Wang P, Li N, Guo C, Li S. The Effect of Topology on Block Copolymer Nanoparticles: Linear versus Star Block Copolymers in Toluene. Polymers (Basel) 2022; 14:polym14173691. [PMID: 36080766 PMCID: PMC9460934 DOI: 10.3390/polym14173691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Linear and star block copolymer (BCP) nanoparticles of (polystyrene-block-poly(4-vinylpyridine))n (PS-b-P4VP)n with arm numbers of 1, 2, 3, and 4 were prepared by two methods of polymerization-induced self-assembly (PISA) and general self-assembly of block copolymers in the low-polar organic solvent, toluene. The effect of the arm number on the size and/or morphology of the (PS-b-P4VP)n nanoassemblies synthesized by the two methods in toluene and on the polymerization kinetics was investigated in detail. Our results show that in toluene, a low-polar solvent, the topology not only affected the morphology of the BCP nanoparticles prepared by PISA, but also influenced the BCP nanoparticles synthesized through general self-assembly.
Collapse
|