1
|
Apostolides D, Michael G, Patrickios CS, Notredame B, Zhang Y, Gohy JF, Prévost S, Gradzielski M, Jung FA, Papadakis CM. Dynamic Covalent Amphiphilic Polymer Conetworks Based on End-Linked Pluronic F108: Preparation, Characterization, and Evaluation as Matrices for Gel Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38669089 PMCID: PMC11082838 DOI: 10.1021/acsami.3c19189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
We present the development of a platform of well-defined, dynamic covalent amphiphilic polymer conetworks (APCN) based on an α,ω-dibenzaldehyde end-functionalized linear amphiphilic poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) (PEG-b-PPG-b-PEG, Pluronic) copolymer end-linked with a triacylhydrazide oligo(ethylene glycol) triarmed star cross-linker. The developed APCNs were characterized in terms of their rheological (increase in the storage modulus by a factor of 2 with increase in temperature from 10 to 50 °C), self-healing, self-assembling, and mechanical properties and evaluated as a matrix for gel polymer electrolytes (GPEs) in both the stretched and unstretched states. Our results show that water-loaded APCNs almost completely self-mend, self-organize at room temperature into a body-centered cubic structure with long-range order exhibiting an aggregation number of around 80, and display an exceptional room temperature stretchability of ∼2400%. Furthermore, ionic liquid-loaded APCNs could serve as gel polymer electrolytes (GPEs), displaying a substantial ion conductivity in the unstretched state, which was gradually reduced upon elongation up to a strain of 4, above which it gradually increased. Finally, it was found that recycled (dissolved and re-formed) ionic liquid-loaded APCNs could be reused as GPEs preserving 50-70% of their original ion conductivity.
Collapse
Affiliation(s)
| | - George Michael
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Costas S. Patrickios
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Benoît Notredame
- Institute
for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
(BSMA), Université Catholique de
Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Yinghui Zhang
- Institute
for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
(BSMA), Université Catholique de
Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Jean-François Gohy
- Institute
for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
(BSMA), Université Catholique de
Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Sylvain Prévost
- Institut
Max von Laue—Paul Langevin (ILL), 71, Avenue des Martyrs—CS 20156, 38042 Grenoble Cedex 9, France
| | - Michael Gradzielski
- Stranski-Laboratorium
für Physikalische und Theoretische Chemie, Institut für
Chemie, Technische Universität, Straße des 17, Juni 124, D-10623 Berlin, Germany
| | - Florian A. Jung
- Soft Matter
Physics Group, Physics Department, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| | - Christine M. Papadakis
- Soft Matter
Physics Group, Physics Department, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
2
|
Chen X, Yan D, Qi S. Swelling and Mechanical Response of Regular Irreversible Polymer Networks with Different Topological Microstructures. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinxiang Chen
- School of Chemistry, Beihang University, Beijing100191, China
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Dadong Yan
- Department of Physics, Beijing Normal University, Beijing100875, China
| | - Shuanhu Qi
- School of Chemistry, Beihang University, Beijing100191, China
| |
Collapse
|
3
|
Abstract
We report the synthesis of novel poly(ethylene glycol) and poly(dimethyl siloxane) (PEG and PDMS, respectively) bottlebrush amphiphilic polymer co-networks (B-APCNs) with high gel fractions by a grafting-through ring-opening metathesis polymerization. By varying the volume fraction of PEG (ϕPEG), we alter the crystallinity of the networks, achieving complete suppression of PEG crystallinity at ϕPEG=0.35. Furthermore, we show that the crystallinity of these networks can be tuned to alter their moduli. Through dynamic mechanical analysis, we show that the storage and loss moduli of networks with completely suppressed crystallinity (ϕPEG=0.35) behave similarly to a PDMS homopolymer bottlebrush network. These bottlebrush networks represent an unexplored architecture for the field of amphiphilic polymer co-networks.
Collapse
Affiliation(s)
- Brandon R. Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Sakai T, Ito N, Hara M, Seki T, Uchiyama M, Kamigaito M, Satoh K, Hoshino T, Takeoka Y. One-pot synthesis of structure-controlled temperature-responsive polymer gels. Polym Chem 2022. [DOI: 10.1039/d2py00554a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simultaneous use of metal Lewis acids and photo-radical generators for dithioesters, which are the common dormant species for cationic and radical polymerization, made it possible to convert a cationic species into a radical by photoirradiation.
Collapse
Affiliation(s)
- Tomoki Sakai
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Nagisa Ito
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Mineto Uchiyama
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering School of Material Chemical Technology Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | | | - Yukikazu Takeoka
- Graduate School of Engineering Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
| |
Collapse
|
5
|
Wilhelm SA, Maricanov M, Brandt V, Katzenberg F, Tiller JC. Amphiphilic polymer conetworks with ideal and non-ideal swelling behavior demonstrated by small angle X-ray scattering. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Baba Y, Gao G, Hara M, Seki T, Satoh K, Kamigaito M, Hoshino T, Urayama K, Takeoka Y. Mechanical Properties of Homogeneous Polymer Networks Prepared by Star Polymer Synthesis Methods. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yusuke Baba
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Guohao Gao
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taiki Hoshino
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-51982, Japan
| | - Kenji Urayama
- Department of Macromolecular Science & Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
7
|
Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210430] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
8
|
Liu R, Rong Z, Han G, Yang X, Zhang W. Synthesis and self-assembly of star multiple block copolymer of poly(4-vinylpyridine)-block-polystyrene. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ida S, Toda S, Oyama M, Takeshita H, Kanaoka S. Multiarm Star-Crosslinked Hydrogel: Polymer Network with Thermoresponsive Free-End Chains Densely Connected to Crosslinking Points. Macromol Rapid Commun 2020; 42:e2000558. [PMID: 33244811 DOI: 10.1002/marc.202000558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/05/2020] [Indexed: 12/17/2022]
Abstract
Soft tissue in biological system is a hydrogel with elaborate structure exhibiting repeatable dynamic function. In order to approach such sophisticated system, precise construction of a designed network with multi-components is desired. This communication presents a novel hydrogel having highly dense stimuli-responsive free-end chains around crosslinking structure. A key molecule is a core-crosslinked star-shaped polymer with multiple thermoresponsive arms, which can be prepared by reversible addition-fragmentation chain transfer polymerization of divinyl crosslinker with poly(N-isopropylacrylamide) (PNIPAAm) macro-chain transfer agent and have a number of unreacted carbon-carbon double bonds in the core. These unreacted double bonds can be utilized as a crosslinker for poly(acrylamide) (PAAm) gel synthesis by free radical polymerization. The obtained gel contains homogeneously dispersed star PNIPAAms as crosslinking points and exhibits thermoresponsive swelling behavior in water depending on the star contents. In particular, the gel with low content of the star crosslinker shows localized responsive behavior with expansion and shrinkage of the star in one molecule. The mechanical properties of the star-crosslinked gel are significantly high compared to the conventional PAAm gels particularly in compressive strength (≈9 MPa). Moreover, the star-crosslinked gel has thermoresponsive mechanical toughening property.
Collapse
Affiliation(s)
- Shohei Ida
- Department of Materials Science, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga, 522-8533, Japan
| | - Shogo Toda
- Department of Materials Science, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga, 522-8533, Japan
| | - Masatoshi Oyama
- Industrial Research Center of Shiga Prefecture, 232 Kamitoyama, Ritto, Shiga, 520-3004, Japan
| | - Hiroki Takeshita
- Department of Materials Science, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga, 522-8533, Japan
| | - Shokyoku Kanaoka
- Department of Materials Science, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga, 522-8533, Japan
| |
Collapse
|
10
|
Benski L, Viran I, Katzenberg F, Tiller JC. Small‐Angle X‐Ray Scattering Measurements on Amphiphilic Polymer Conetworks Swollen in Orthogonal Solvents. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lena Benski
- Department of Bio‐ and Chemical Engineering TU Dortmund Emil‐Figge‐Straße 66 Dortmund 44227 Germany
| | - Ismail Viran
- Department of Bio‐ and Chemical Engineering TU Dortmund Emil‐Figge‐Straße 66 Dortmund 44227 Germany
| | - Frank Katzenberg
- Department of Bio‐ and Chemical Engineering TU Dortmund Emil‐Figge‐Straße 66 Dortmund 44227 Germany
| | - Joerg C. Tiller
- Department of Bio‐ and Chemical Engineering TU Dortmund Emil‐Figge‐Straße 66 Dortmund 44227 Germany
| |
Collapse
|
11
|
Patrickios CS, Matyjaszewski K. Amphiphilic polymer co‐networks: 32 years old and growing stronger – a perspective. POLYM INT 2020. [DOI: 10.1002/pi.6138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh PA USA
| |
Collapse
|
12
|
Zhou L, Pei X, Fang K, Zhang R, Fu J. Super tough, ultra-stretchable, and fast recoverable double network hydrogels physically crosslinked by triple non-covalent interactions. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122319] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Qi S, Zhou J, Schmid F. Shear Modulus of an Irreversible Diblock Copolymer Network from Self-Consistent Field Theory. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuanhu Qi
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Jiajia Zhou
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, D-55099 Mainz, Germany
| |
Collapse
|
14
|
Gârlea IC, Jaramillo-Cano D, Likos CN. Self-organization of gel networks formed by block copolymer stars. SOFT MATTER 2019; 15:3527-3540. [PMID: 30944917 DOI: 10.1039/c9sm00111e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The equilibrium properties of block copolymer star networks (BCS) are studied via computer simulations. We employ both molecular dynamics and multiparticle collisional dynamics simulations to investigate the self-organization of BCS with f = 9 functionalized arms close to their overlap concentrations under conditions of different fractions of functionalization and varying attraction strength. We find three distinct macroscopic self-organized states depending on fraction of attractive end-monomers and the strength of the attraction. At weak attractions, ergodic, diffusive liquids result, with short-lived bonds between the stars. As the attraction strength grows, the whole system forms a percolating cluster, while at the same time the individual molecules are diffusive. Finally, arrested gels emerge when the attractions become strong. The conformation of the BCS in these solutions is found to be strongly affected by the concentration, with the stars assuming typically spherical, open configurations in seeking to maximize inter-star associations as opposed to the inter-star collapse that results at infinite dilution, giving rise to strongly aspherical shapes and reduced sizes.
Collapse
Affiliation(s)
- Ioana C Gârlea
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | | | | |
Collapse
|
15
|
Varnava CK, Patrickios CS. Model Amphiphilic Polymer Conetworks in Water: Prediction of Their Ability for Oil Solubilization. ACS OMEGA 2019; 4:4721-4738. [PMID: 31459659 PMCID: PMC6648537 DOI: 10.1021/acsomega.8b03658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/13/2019] [Indexed: 06/10/2023]
Abstract
In this work, we computationally explored the ability of water-swollen, model ionizable ABA triblock copolymer-based amphiphilic polymer conetworks (APCNs) to solubilize a water-immiscible organic solvent (oil), via Gibbs free energy minimization. This was done as a function of the conetwork hydrophobe (A-blocks) mol fraction and the degree of ionization of the hydrophilic B-blocks. Expectedly, highest oil solubilization capacities were calculated for the most hydrophobic and least ionized APCNs, which could absorb up to 6.4 times more oil than water and exhibited a lamellar morphology. Our results also included a phase diagram, which indicated transitions from spheres to cylinders, lamellae, and unimers in oil, as the hydrophobe content increased and the degree of ionization decreased. All of these transitions were accompanied by discontinuous changes in the degrees of swelling in the aqueous and oil nanophases, discontinuous changes in the asymmetry ratios (for the anisotropic morphologies), and discontinuous changes in the oil solubilization capacities. This is the first time that a dual discontinuous volume phase transition is reported within a polymer gel.
Collapse
Affiliation(s)
- Constantina K. Varnava
- Department of Chemistry, University of
Cyprus, P.O. Box 20537, 1 University Avenue 2109 Aglantzia, 1678 Nicosia, Cyprus
| | - Costas S. Patrickios
- Department of Chemistry, University of
Cyprus, P.O. Box 20537, 1 University Avenue 2109 Aglantzia, 1678 Nicosia, Cyprus
| |
Collapse
|
16
|
Zhang Y, Guan T, Han G, Guo T, Zhang W. Star Block Copolymer Nanoassemblies: Block Sequence is All-Important. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02427] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tianyun Guan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guang Han
- State Key Laboratory
of Special Functional Waterproof Materials, Beijing Oriental Yuhong
Waterproof Technology Co., Ltd, Beijing 100123, China
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Kitiri EN, Varnava CK, Patrickios CS, Voutouri C, Stylianopoulos T, Gradzielski M, Hoffmann I. Double‐networks based on interconnected amphiphilic “in–out” star first polymer conetworks prepared by RAFT polymerization. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Elina N. Kitiri
- Department of ChemistryUniversity of Cyprus P. O. Box 20537, 1678 Nicosia Cyprus
| | | | - Costas S. Patrickios
- Department of ChemistryUniversity of Cyprus P. O. Box 20537, 1678 Nicosia Cyprus
| | - Chrysovalantis Voutouri
- Department of Mechanical and Manufacturing EngineeringUniversity of Cyprus P. O. Box 20537, Nicosia 1678 Cyprus
| | | | - Michael Gradzielski
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für ChemieTechnische Universität Berlin, Strasse des 17 Juni 124, 10623 Berlin Germany
| | - Ingo Hoffmann
- Institut Max von Laue‐Paul Langevin (ILL) F‐38042 Grenoble Cedex 9 France
| |
Collapse
|
18
|
Nutan B, Chandel AKS, Jewrajka SK. Liquid Prepolymer-Based in Situ Formation of Degradable Poly(ethylene glycol)-Linked-Poly(caprolactone)-Linked-Poly(2-dimethylaminoethyl)methacrylate Amphiphilic Conetwork Gels Showing Polarity Driven Gelation and Bioadhesion. ACS APPLIED BIO MATERIALS 2018; 1:1606-1619. [DOI: 10.1021/acsabm.8b00461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bhingaradiya Nutan
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Arvind K. Singh Chandel
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Suresh K. Jewrajka
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
19
|
Nakagawa S, Li X, Shibayama M, Kamata H, Sakai T, Gilbert EP. Insight into the Microscopic Structure of Module-Assembled Thermoresponsive Conetwork Hydrogels. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shintaro Nakagawa
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8581, Japan
| | - Xiang Li
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8581, Japan
| | - Mitsuhiro Shibayama
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8581, Japan
| | - Hiroyuki Kamata
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takamasa Sakai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
| | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| |
Collapse
|
20
|
Zhang Y, Cao M, Han G, Guo T, Ying T, Zhang W. Topology Affecting Block Copolymer Nanoassemblies: Linear Block Copolymers versus Star Block Copolymers under PISA Conditions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01121] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd., Beijing 100123, China
| | | | - Tengyuan Ying
- Institute of Semiconductor
Technology of Tianjin, Tianjin, China
| | | |
Collapse
|
21
|
Ulrich S, Sadeghpour A, Rossi RM, Bruns N, Boesel LF. Wide Range of Functionalized Poly(N-alkyl acrylamide)-Based Amphiphilic Polymer Conetworks via Active Ester Precursors. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sebastian Ulrich
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | | | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | |
Collapse
|
22
|
Gu D, Tan S, O’Connor AJ, Qiao GG. On-Demand Cascade Release of Hydrophobic Chemotherapeutics from a Multicomponent Hydrogel System. ACS Biomater Sci Eng 2018; 4:1696-1707. [DOI: 10.1021/acsbiomaterials.8b00166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dunyin Gu
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shereen Tan
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrea J. O’Connor
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Greg G. Qiao
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
23
|
Apostolides DE, Patrickios CS, Sakai T, Guerre M, Lopez G, Améduri B, Ladmiral V, Simon M, Gradzielski M, Clemens D, Krumm C, Tiller JC, Ernould B, Gohy JF. Near-Model Amphiphilic Polymer Conetworks Based on Four-Arm Stars of Poly(vinylidene fluoride) and Poly(ethylene glycol): Synthesis and Characterization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02475] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Costas S. Patrickios
- Department of Chemistry, University of Cyprus, 1 University Avenue, 2109 Aglanjia, Cyprus
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Marc Guerre
- Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, UM, Cedex 5 34095 Montpellier, France
| | - Gérald Lopez
- Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, UM, Cedex 5 34095 Montpellier, France
| | - Bruno Améduri
- Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, UM, Cedex 5 34095 Montpellier, France
| | - Vincent Ladmiral
- Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, UM, Cedex 5 34095 Montpellier, France
| | - Miriam Simon
- Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Michael Gradzielski
- Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Daniel Clemens
- Institut für Weiche Materie und Funktionale Materialien (EM-ISFM), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Christian Krumm
- Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge-Strasse 66, D-44227 Dortmund, Germany
| | - Joerg C. Tiller
- Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge-Strasse 66, D-44227 Dortmund, Germany
| | - Bruno Ernould
- Institute for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter (BSMA), Université catholique de Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Jean-François Gohy
- Institute for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter (BSMA), Université catholique de Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
24
|
Nová L, Uhlík F, Košovan P. Local pH and effective pK A of weak polyelectrolytes - insights from computer simulations. Phys Chem Chem Phys 2018; 19:14376-14387. [PMID: 28277570 DOI: 10.1039/c7cp00265c] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work we study the titration behavior of weak polyelectrolytes by computer simulations. We analyze the local pH near the chains at various conditions and provide molecular-level insight which complements the recent experimental determination of this quantity. Next, we analyze the non-ideal titration behaviour of weak polyelectrolytes in solution, calculate the effective ionization constant and compare the simulation results with theoretical predictions. In contrast with the universal behaviour with respect to chain length, we find non-universality and deviations from theory with respect to polymer concentration and permittivity of the solvent. The latter we explain in terms of counterion condensation and ion correlation effects, which lead to reversal of the non-ideal titration behaviour at very low permittivities. We discuss the impact of these findings on the interpretation of experimental results.
Collapse
Affiliation(s)
- Lucie Nová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Filip Uhlík
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| |
Collapse
|
25
|
Kepola EJ, Patrickios CS. Networks Based on “Core-First” Star Polymers End-Linked Using a Degradable Ketal Cross-Linker: Synthesis, Characterization, and Cleavage. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eleni J. Kepola
- Department of Chemistry; University of Cyprus; P. O. Box 20537, 1 University Avenue Aglanjia 2109 Nicosia Cyprus
| | - Costas S. Patrickios
- Department of Chemistry; University of Cyprus; P. O. Box 20537, 1 University Avenue Aglanjia 2109 Nicosia Cyprus
| |
Collapse
|
26
|
McLeod KR, Tew GN. Microphase-Separated Thiol–Ene Conetworks from Telechelic Macromonomers with Asymmetric Molecular Weights. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kelly R. McLeod
- Department
of Polymer Science and Engineering, ‡Department of Veterinary and Animal
Sciences, and §Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department
of Polymer Science and Engineering, ‡Department of Veterinary and Animal
Sciences, and §Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
27
|
Nakagawa S, Li X, Kamata H, Sakai T, Gilbert EP, Shibayama M. Microscopic Structure of the “Nonswellable” Thermoresponsive Amphiphilic Conetwork. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00486] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shintaro Nakagawa
- Institute
for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Xiang Li
- Institute
for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hiroyuki Kamata
- Department
of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takamasa Sakai
- Department
of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
| | - Elliot Paul Gilbert
- Australian
Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Mitsuhiro Shibayama
- Institute
for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
28
|
Zhang C, Liu Z, Wang H, Feng X, He C. Novel Anti‐Biofouling Soft Contact Lens:
l
‐Cysteine Conjugated Amphiphilic Conetworks via RAFT and Thiol–Ene Click Chemistry. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Chengfeng Zhang
- College of Material Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Ziyuan Liu
- College of Material Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Haiye Wang
- College of Material Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Xiaofeng Feng
- College of Material Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Chunju He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
29
|
Investigations on “near perfect” poly(2-oxazoline) based amphiphilic polymer conetworks with a crystallizable block. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.09.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Apostolides DE, Sakai T, Patrickios CS. Dynamic Covalent Star Poly(ethylene glycol) Model Hydrogels: A New Platform for Mechanically Robust, Multifunctional Materials. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00236] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Takamasa Sakai
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
| | - Costas S. Patrickios
- Department
of Chemistry University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
31
|
Guzman G, Es-haghi SS, Nugay T, Cakmak M. Zero-Order Antibiotic Release from Multilayer Contact Lenses: Nonuniform Drug and Diffusivity Distributions Produce Constant-Rate Drug Delivery. Adv Healthc Mater 2017; 6. [PMID: 28177597 DOI: 10.1002/adhm.201600775] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/02/2016] [Indexed: 11/11/2022]
Abstract
A novel approach to zero-order constant-rate drug delivery from contact lenses is presented. Quasi-Case II non-Fickian transport is achieved by nonuniform drug and diffusivity distributions within three-layer bimodal amphiphilic conetworks (β-APCNs). The center layer is a highly oxygen permeable β-APCN matrix, which contains the drug and exhibits a high drug diffusivity. The outer β-APCN layers contain no-drug and are loaded with vitamin E, which slows diffusion. In contrast to single-layer neat-polymer and vitamin E-loaded films that display first-order "burst" kinetics, it is demonstrated experimentally and by modeling that the combined effect of nonuniform distribution of drug loading and diffusion constants within the three-layer lens maintains low local drug concentration at the lens-fluid interface and yields zero-order drug delivery. The release rates of topical antibiotics provide constant-rate therapeutic-level delivery with appropriate oxygen permeability for at least 30 h, at which time ≈25% of the drug was released.
Collapse
Affiliation(s)
- Gustavo Guzman
- Polymer Engineering Department; The University of Akron; Akron OH 44325 USA
| | | | - Turgut Nugay
- Chemistry Department; Polymer Research Center; Boğaziçi University; 34342 Bebek, Istanbul Turkey
| | - Mukerrem Cakmak
- Polymer Engineering Department; The University of Akron; Akron OH 44325 USA
| |
Collapse
|
32
|
Fodor C, Kali G, Thomann R, Thomann Y, Iván B, Mülhaupt R. Nanophasic morphologies as a function of the composition and molecular weight of the macromolecular cross-linker in poly(N-vinylimidazole)-l-poly(tetrahydrofuran) amphiphilic conetworks: bicontinuous domain structure in broad composition ranges. RSC Adv 2017. [DOI: 10.1039/c6ra25356c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compositionally asymmetrical morphologies and cocontinous nanophase-separated structures are formed over a broad composition range, affected by composition and the molecular weights of macromonomers.
Collapse
Affiliation(s)
- Csaba Fodor
- Polymer Chemistry Research Group
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1117 Budapest
| | - Gergely Kali
- Polymer Chemistry Research Group
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1117 Budapest
| | - Ralf Thomann
- Freiburg Materials Research Center and Institute for Macromolecular Chemistry
- University of Freiburg
- D-79104 Freiburg
- Germany
| | - Yi Thomann
- Freiburg Materials Research Center and Institute for Macromolecular Chemistry
- University of Freiburg
- D-79104 Freiburg
- Germany
| | - Béla Iván
- Polymer Chemistry Research Group
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1117 Budapest
| | - Rolf Mülhaupt
- Freiburg Materials Research Center and Institute for Macromolecular Chemistry
- University of Freiburg
- D-79104 Freiburg
- Germany
| |
Collapse
|
33
|
Gu D, Tan S, Xu C, O'Connor AJ, Qiao GG. Engineering tough, highly compressible, biodegradable hydrogels by tuning the network architecture. Chem Commun (Camb) 2017; 53:6756-6759. [DOI: 10.1039/c7cc02811c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By tailoring the network architecture, tough, highly compressible, biodegradable hydrogels have been developed. This study also shows that the arrangement of each component in the network has a more significant effect on the overall mechanical properties than the network composition.
Collapse
Affiliation(s)
- Dunyin Gu
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Shereen Tan
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Chenglong Xu
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Andrea J. O'Connor
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| |
Collapse
|
34
|
Kitiri EN, Patrickios CS, Voutouri C, Stylianopoulos T, Hoffmann I, Schweins R, Gradzielski M. Double-networks based on pH-responsive, amphiphilic “core-first” star first polymer conetworks prepared by sequential RAFT polymerization. Polym Chem 2017. [DOI: 10.1039/c6py01340f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Double-networks based on amphiphilic polymer conetworks synthesized using RAFT polymerization were prepared, exhibiting pH-responsiveness, nanophase separation and enhanced mechanical properties.
Collapse
Affiliation(s)
- Elina N. Kitiri
- Department of Chemistry
- University of Cyprus
- 1678 Nicosia
- Cyprus
| | | | - Chrysovalantis Voutouri
- Department of Mechanical and Manufacturing Engineering
- University of Cyprus
- Nicosia 1678
- Cyprus
| | | | - Ingo Hoffmann
- Stranski Laboratorium für Physikalische und Theoretische Chemie
- Institut für Chemie Technische Universität Berlin
- 10623 Berlin
- Germany
- Institut Max von Laue-Paul Langevin (ILL)
| | - Ralf Schweins
- Institut Max von Laue-Paul Langevin (ILL)
- F-38042 Grenoble Cedex 9
- France
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische und Theoretische Chemie
- Institut für Chemie Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
35
|
Huang CF, Aimi J, Lai KY. Synthesis of Novel μ-Star Copolymers with Poly(N-Octyl Benzamide) and Poly(ε-Caprolactone) Miktoarms through Chain-Growth Condensation Polymerization, Styrenics-Assisted Atom Transfer Radical Coupling, and Ring-Opening Polymerization. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/05/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Chih-Feng Huang
- Department of Chemical Engineering; National Chung Hsing University; 250 Kuo Kuang Road Taichung 40227 Taiwan
| | - Junko Aimi
- Molecular Design & Function Group; Research Center for Functional Materials; National Institute for Materials Science; 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Kuan-Yu Lai
- Department of Chemical Engineering; National Chung Hsing University; 250 Kuo Kuang Road Taichung 40227 Taiwan
| |
Collapse
|
36
|
Chmielarz P. Synthesis of multiarm star block copolymers via simplified electrochemically mediated ATRP. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0089-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
|
38
|
Chandel AKS, Bera A, Nutan B, Jewrajka SK. Reactive compatibilizer mediated precise synthesis and application of stimuli responsive polysaccharides-polycaprolactone amphiphilic co-network gels. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
39
|
Guzman G, Nugay T, Kennedy JP, Cakmak M. Real-Time Monitoring of Chemical and Topological Rearrangements in Solidifying Amphiphilic Polymer Co-Networks: Understanding Surface Demixing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3445-3451. [PMID: 27004445 DOI: 10.1021/acs.langmuir.6b00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amphiphilic polymer co-networks provide a unique route to integrating contrasting attributes of otherwise immiscible components within a bicontinuous percolating morphology and are anticipated to be valuable for applications such as biocatalysis, sensing of metabolites, and dual dialysis membranes. These co-networks are in essence chemically forced blends and have been shown to selectively phase-separate at surfaces during film formation. Here, we demonstrate that surface demixing at the air-film interface in solidifying polymer co-networks is not a unidirectional process; instead, a combination of kinetic and thermodynamic interactions leads to dynamic molecular rearrangement during solidification. Time-resolved gravimetry, low contact angles, and negative out-of-plane birefringence provided strong experimental evidence of the transitory trapping of thermodynamically unfavorable hydrophilic moieties at the air-film interface due to fast asymmetric solvent depletion. We also find that slow-drying hydrophobic elements progressively substitute hydrophilic domains at the surface as the surface energy is minimized. These findings are broadly applicable to common-solvent bicontinuous systems and open the door for process-controlled performance improvements in diverse applications. Similar observations could potentially be coupled with controlled polymerization rates to maximize the intermingling of bicontinuous phases at surfaces, thus generating true three-dimensional, bicontinuous, and undisturbed percolation pathways throughout the material.
Collapse
Affiliation(s)
| | - Turgut Nugay
- Chemistry Department, Polymer Research Center, Boğaziçi University , 34342 Bebek, Istanbul, Turkey
| | | | | |
Collapse
|
40
|
Rikkou-Kalourkoti M, Kitiri EN, Patrickios CS, Leontidis E, Constantinou M, Constantinides G, Zhang X, Papadakis CM. Double Networks Based on Amphiphilic Cross-Linked Star Block Copolymer First Conetworks and Randomly Cross-Linked Hydrophilic Second Networks. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02490] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Elina N. Kitiri
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Costas S. Patrickios
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | | - Marios Constantinou
- Research
Unit for Nanostructured Materials Systems, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, P.O.
Box 50329, 3603 Limassol, Cyprus
| | - Georgios Constantinides
- Research
Unit for Nanostructured Materials Systems, Department of Mechanical
Engineering and Materials Science and Engineering, Cyprus University of Technology, P.O.
Box 50329, 3603 Limassol, Cyprus
| | - Xiaohan Zhang
- Fachgebiet
Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christine M. Papadakis
- Fachgebiet
Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
41
|
Mortensen K, Annaka M. Structural Study of Four-Armed Amphiphilic Star-Block Copolymers: Pristine and End-Linked Tetronic T1307. ACS Macro Lett 2016; 5:224-228. [PMID: 35614683 DOI: 10.1021/acsmacrolett.5b00936] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a comparative structural study of 30 wt % aqueous suspensions of two related systems based on 4-arm PEO-PPO type of macromolecules (Tetronic T1307, BASF) with the PPO block near the star center. One system concerns the pristine 4-arm PEO-PPO star block copolymer T1307. The second system is a 1:1 blend consisting of, respectively, tetra-amine (TAT) and tetra-N-hydroxysuccinimide (TNT) terminated T1307. The two systems show common characteristics which are also known from linear PEO-PPO type of copolymers (Pluronic, BASF): at low temperatures the measured structure is dominated by the characteristics of individual molecules, while at higher temperatures hydrophobic effects of the PPO domains cause self-assembly into spherical or rodlike micelles. These micelles form in both systems ordered mesophases. The pristine T1307 copolymer suspension behaves generally very similarly to linear PEO-PPO type of di- and triblock copolymers: unimers at low temperatures associating into micelles at higher temperatures, forming subsequently cubic and hexagonal phases upon further increase in temperatures. The cubic phase of the 30 wt % Tetronic T1307 has FCC symmetry. The structure of the cross-linked 30 wt % 1:1 TAT-TNT system is basically organized into two-dimensional network sheets. At low temperatures the system is rather disordered but still with a sharp correlation peak which is associated with the distance between neighboring network sheets. Upon raising temperatures, PPO self-assembly causes organization across neighboring sheets, resulting in cylinder-like assemblies perpendicular to the sheets. These cylinders form hexagonal structure.
Collapse
Affiliation(s)
- Kell Mortensen
- Niels
Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
42
|
Chandel AKS, Kumar CU, Jewrajka SK. Effect of Polyethylene Glycol on Properties and Drug Encapsulation-Release Performance of Biodegradable/Cytocompatible Agarose-Polyethylene Glycol-Polycaprolactone Amphiphilic Co-Network Gels. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3182-92. [PMID: 26760672 DOI: 10.1021/acsami.5b10675] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We synthesized agarose-polycaprolactone (Agr-PCL) bicomponent and Agr-polyethylene glycol-PCL (Agr-PEG-PCL) tricomponent amphiphilic co-network (APCN) gels by the sequential nucleophilic substitution reaction between amine-functionalized Agr and activated halide terminated PCL or PCL-b-PEG-b-PCL copolymer for the sustained and localized delivery of hydrophilic and hydrophobic drugs. The biodegradability of the APCNs was confirmed using lipase and by hydrolytic degradation. These APCN gels displayed good cytocompatibility and blood compatibility. Importantly, these APCN gels exhibited remarkably high drug loading capacity coupled with sustained and triggered release of both hydrophilic and hydrophobic drugs. PEG in the APCNs lowered the degree of phase separation and enhanced the mechanical property of the APCN gels. The drug loading capacity and the release kinetics were also strongly influenced by the presence of PEG, the nature of release medium, and the nature of the drug. Particularly, PEG in the APCN gels significantly enhanced the 5-fluorouracil loading capacity and lowered its release rate and burst release. Release kinetics of highly water-soluble gemcitabine hydrochloride and hydrophobic prednisolone acetate depended on the extent of water swelling of the APCN gels. Cytocompatibility/blood compatibility and pH and enzyme-triggered degradation together with sustained release of drugs show great promise for the use of these APCN gels in localized drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Reverse Osmosis Membrane Division, CSIR and ‡Academy of Scientific and Innovative Research-AcSIR, Central Salt and Marine Chemicals Research Institute , Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Chinta Uday Kumar
- Reverse Osmosis Membrane Division, CSIR and ‡Academy of Scientific and Innovative Research-AcSIR, Central Salt and Marine Chemicals Research Institute , Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Suresh K Jewrajka
- Reverse Osmosis Membrane Division, CSIR and ‡Academy of Scientific and Innovative Research-AcSIR, Central Salt and Marine Chemicals Research Institute , Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
43
|
Fodor C, Stumphauser T, Thomann R, Thomann Y, Iván B. Poly(N-vinylimidazole)-l-poly(propylene glycol) amphiphilic conetworks and gels: molecularly forced blends of incompatible polymers with single glass transition temperatures of unusual dependence on the composition. Polym Chem 2016. [DOI: 10.1039/c6py00848h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New molecularly forced blends of incompatible poly(N-vinylimidazole) and poly(propylene glycol) polymers with single glass transition temperatures.
Collapse
Affiliation(s)
- Csaba Fodor
- Polymer Chemistry Research Group
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1117 Budapest
| | - Tímea Stumphauser
- Polymer Chemistry Research Group
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1117 Budapest
| | - Ralf Thomann
- Freiburg Materials Research Center
- Albert-Ludwigs University Freiburg
- D-79104 Freiburg
- Germany
| | - Yi Thomann
- Freiburg Materials Research Center
- Albert-Ludwigs University Freiburg
- D-79104 Freiburg
- Germany
| | - Béla Iván
- Polymer Chemistry Research Group
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1117 Budapest
| |
Collapse
|
44
|
Tironi CN, Graf R, Lieberwirth I, Klapper M, Müllen K. Synthesis and Selective Loading of Polyhydroxyethyl Methacrylate- l-Polysulfone Amphiphilic Polymer Conetworks. ACS Macro Lett 2015; 4:1302-1306. [PMID: 35614833 DOI: 10.1021/acsmacrolett.5b00714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Polyhydroxyethyl methacrylate-linked by-polysulfone amphiphilic polymer conetworks of two types of segments with Tg above room temperature are presented. The conetworks are prepared by free radical copolymerization of methacryloyl-terminated PSU macromers with 2-ethyl methacrylate, followed by removal of the TMS protecting groups by acidic hydrolysis. Phase separation in the nanometer range due to the immiscibility of the two covalently linked segments is observed using transmission electron and scanning force microscopy. The swelling of the conetworks in water and methanol as polar solvents and chloroform as nonpolar solvent are studied gravimetrically and then in a more detailed fashion by solid-state NMR spectroscopy. Selective swelling and also targeted loading of a small organic model compound specifically to one of the two phases are demonstrated.
Collapse
Affiliation(s)
- Catarina Nardi Tironi
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
- Graduate
School Material Science in Mainz, University of Mainz, Staudingerweg
9, 55128 Mainz,Germany
| | - Robert Graf
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Markus Klapper
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|