1
|
Jeong J, Bisht H, Park S, Hong Y, Shin G, Hong D. Formation of Antifouling Brushes on Various Substrates Using a Melanin-Inspired Initiator Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37216408 DOI: 10.1021/acs.langmuir.3c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, we developed a substrate-independent initiator film that can undergo surface-initiated polymerization to form an antifouling brush. Inspired by the melanogenesis found in nature, we synthesized a tyrosine-conjugated bromide initiator (Tyr-Br) that contains phenolic amine groups as the dormant coating precursor and α-bromoisobutyryl groups as the initiator. The resultant Tyr-Br was stable under ambient air conditions and underwent melanin-like oxidation only in the presence of tyrosinase to form an initiator film on various substrates. Subsequently, an antifouling polymer brush was formed using air-tolerant activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) of zwitterionic carboxybetaine. The entire surface coating procedure, including the initiator layer formation and ARGET ATRP, occurred under aqueous conditions and did not require organic solvents or chemical oxidants. Therefore, antifouling polymer brushes can be feasibly formed not only on experimentally preferred substrates (e.g., Au, SiO2, and TiO2) but also on polymeric substrates such as poly(ethylene terephthalate) (PET), cyclic olefin copolymer (COC), and nylon.
Collapse
Affiliation(s)
- Jaehoon Jeong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Himani Bisht
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Suho Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Yubin Hong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Gijeong Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
2
|
Hong Y, Kim B, Jeong J, Bisht H, Park S, Hong D. Antifouling Surface Coating on Various Substrates by Inducing Tyrosinase-Mediated Oxidation of a Tyrosine-Conjugated Sulfobetaine Derivative. Biomacromolecules 2022; 23:4349-4356. [PMID: 36049071 DOI: 10.1021/acs.biomac.2c00804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by the melanogenesis occurring in nature, we report tyrosinase-mediated antifouling surface coating by synthesizing a tyrosine-conjugated sulfobetaine derivative (Tyr-SB). Synthetic Tyr-SB contains zwitterionic sulfobetaine and tyrosine, whose phenolic amine group acts as a dormant coating precursor. In contrast to catecholamine derivatives, tyrosine derivatives are stable against auto-oxidation and are enzymatically oxidized only in the presence of tyrosinase to initiate melanin-like oxidation. When the surface of interest was applied during the course of Tyr-SB oxidation, a superhydrophilic poly(Tyr-SB) film was coated on the surfaces, thereby showing antifouling performance against proteins or adherent cells. Because the oxidation of Tyr-SB occurred under mild aqueous conditions (pH 6-7) without the use of any chemical oxidants, such as sodium periodate or ammonium persulfate, we anticipate that the coating method described herein will serve as a biocompatible tool in the field of biosensors, cell surface engineering, and medical devices, whose interfaces differ in chemistry.
Collapse
Affiliation(s)
- Yubin Hong
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Byeol Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Jaehoon Jeong
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Himani Bisht
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Suho Park
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
3
|
Deblock L, Goossens E, Pokratath R, De Buysser K, De Roo J. Mapping out the Aqueous Surface Chemistry of Metal Oxide Nanocrystals: Carboxylate, Phosphonate, and Catecholate Ligands. JACS AU 2022; 2:711-722. [PMID: 35373200 PMCID: PMC8969999 DOI: 10.1021/jacsau.1c00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 05/24/2023]
Abstract
Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids, and catechols to metal oxide nanocrystals in polar media. Using nuclear magnetic resonance spectroscopy and dynamic light scattering, we map out the pH-dependent binding affinity of the ligands toward hafnium oxide nanocrystals (an NMR-compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 to pH 6. Phosphonic acids, on the other hand, provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH <8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6-10). Whereas dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate-buffered saline, the tightly bound nitrocatechols provide long-term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application.
Collapse
Affiliation(s)
- Loren Deblock
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| | - Eline Goossens
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Rohan Pokratath
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| | | | - Jonathan De Roo
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
4
|
Bisht H, Jeong J, Hong Y, Park S, Hong D. Development of Universal and Clickable Film by Mimicking Melanogenesis: On-Demand Oxidation of Tyrosine-Based Azido Derivative by Tyrosinase. Macromol Rapid Commun 2022; 43:e2200089. [PMID: 35332614 DOI: 10.1002/marc.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Indexed: 11/10/2022]
Abstract
In this study, we synthesized a tyrosine-based azido derivative (TBAD) that permits both substrate-independent surface coating and clickable film functionalization by mimicking natural melanogenesis. In contrast to catechol derivatives, which are generally susceptible to oxidation by air under ambient conditions, the monophenol-based TBAD remains stable under alkaline and neutral conditions, and is activated to oxidized quinone in situ by tyrosinase to initiate melanin-like polymerization. The resulting poly(TBAD) film can be formed on various substrates including noble metals, metal oxides, and synthetic polymers, which can undergo click reaction with terminal alkyne moieties on the entire surface or a specific region through Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The enzyme-mediated coating can rapidly form thin films (∼10 nm) and produce a uniform film morphology, which are important aspects in surface chemistry. This on-demand, clickable coating may become a significant tool for bioconjugation, soft lithography, and labeling techniques. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Himani Bisht
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Jaehoon Jeong
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Yubin Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Suho Park
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Daewha Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| |
Collapse
|
5
|
Röber M, Scheibel T, Börner HG. Toward Activatable Collagen Mimics: Combining DEPSI "Switch" Defects and Template-Guided Self-Organization to Control Collagen Mimetic Peptides. Macromol Biosci 2021; 21:e2100070. [PMID: 34008293 DOI: 10.1002/mabi.202100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Indexed: 11/10/2022]
Abstract
Collagen mimetic peptides (CMPs), which imitate various structural or functional features of natural collagen, constitute advanced models illuminating the folding aspects of the collagen triple helix (CTH) motif. In this study, the CMPs of repeating Gly-Pro-Pro (GPP) triplets are tethered to an organic scaffold based on a tris(2-aminoethyl) amine (TREN) derivative (TREN(sucOH)3 ). These three templated peptide strands are further expanded via native chemical ligation to increase the number of GPP triplets and lead to a TREN(sucGPPGPPG(Ψ)SPGPPCPP[GPP]4 )3 construct. The incorporation of an ester switch segment, G(Ψ)S, as a positional O-acyl isopeptide (DEPSI) defect into the peptide strands allows the pH-controlled acceleration of CTH formation. The strand assembly process is monitored by circular dichroism (CD) spectroscopy. The results of pH jump experiments and thermal denaturation studies provide new insights into the contributions of structural DEPSI defects to the template-guided self-assembly of the CTH motif. While the organic scaffold drives the CTH formation, the switch defects act as temporary opponents and slow down the folding. CD spectroscopy data confirm that the switch defects contribute to the formation of a more stable CTH motif by enhancing the structural dynamics at the early stage of the folding process.
Collapse
Affiliation(s)
- Matthias Röber
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, Bayreuth, D-95440, Germany
| | - Hans G Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
| |
Collapse
|
6
|
Arias S, Amini S, Krüger JM, Bangert LD, Börner HG. Implementing Zn 2+ ion and pH-value control into artificial mussel glue proteins by abstracting a His-rich domain from preCollagen. SOFT MATTER 2021; 17:2028-2033. [PMID: 33596288 DOI: 10.1039/d0sm02118k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A His-rich domain of preCollagen-D found in byssal threads is derivatized with Cys and Dopa flanks to allow for mussel-inspired polymerization. Artificial mussel glue proteins are accessed that combine cysteinyldopa for adhesion with sequences for pH or Zn2+ induced β-sheet formation. The artificial constructs show strong adsorption to Al2O3, the resulting coatings tolerate hypersaline conditions and cohesion is improved by activating the β-sheet formation, that enhances E-modulus up to 60%.
Collapse
Affiliation(s)
- Sandra Arias
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| | - Shahrouz Amini
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam 14424, Germany
| | - Jana M Krüger
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| | - Lukas D Bangert
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| | - Hans G Börner
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| |
Collapse
|
7
|
Figueira RB. Hybrid Sol-gel Coatings for Corrosion Mitigation: A Critical Review. Polymers (Basel) 2020; 12:E689. [PMID: 32204462 PMCID: PMC7182864 DOI: 10.3390/polym12030689] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
The corrosion process is a major source of metallic material degradation, particularly in aggressive environments, such as marine ones. Corrosion progression affects the service life of a given metallic structure, which may end in structural failure, leakage, product loss and environmental pollution linked to large financial costs. According to NACE, the annual cost of corrosion worldwide was estimated, in 2016, to be around 3%-4% of the world's gross domestic product. Therefore, the use of methodologies for corrosion mitigation are extremely important. The approaches used can be passive or active. A passive approach is preventive and may be achieved by emplacing a barrier layer, such as a coating that hinders the contact of the metallic substrate with the aggressive environment. An active approach is generally employed when the corrosion is set in. That seeks to reduce the corrosion rate when the protective barrier is already damaged and the aggressive species (i.e., corrosive agents) are in contact with the metallic substrate. In this case, this is more a remediation methodology than a preventive action, such as the use of coatings. The sol-gel synthesis process, over the past few decades, gained remarkable importance in diverse areas of application. Sol-gel allows the combination of inorganic and organic materials in a single-phase and has led to the development of organic-inorganic hybrid (OIH) coatings for several applications, including for corrosion mitigation. This manuscript succinctly reviews the fundamentals of sol-gel concepts and the parameters that influence the processing techniques. The state-of-the-art of the OIH sol-gel coatings reported in the last few years for corrosion protection, are also assessed. Lastly, a brief perspective on the limitations, standing challenges and future perspectives of the field are critically discussed.
Collapse
Affiliation(s)
- Rita B Figueira
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Konopka M, Cecot P, Ulrich S, Stefankiewicz AR. Tuning the Solubility of Self-Assembled Fluorescent Aromatic Cages Using Functionalized Amino Acid Building Blocks. Front Chem 2019; 7:503. [PMID: 31380348 PMCID: PMC6647868 DOI: 10.3389/fchem.2019.00503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 01/03/2023] Open
Abstract
We previously reported novel fluorescent aromatic cages that are self-produced using a set of orthogonal dynamic covalent reactions, operating simultaneously in one-pot, to assemble up to 10 components through 12 reactions into a single cage-type structure. We now introduce N-functionalized amino acids as new building blocks that enable tuning the solubility and analysis of the resulting cages. A convenient divergent synthetic approach was developed to tether different side chains on the N-terminal of a cysteine-derived building block. Our studies show that this chemical functionalization does not prevent the subsequent self-assembly and effective formation of desired cages. While the originally described cages required 94% DMSO, the new ones bearing hydrophobic side chains were found soluble in organic solvents (up to 75% CHCl3), and those grafted with hydrophilic side chains were soluble in water (up to 75% H2O). Fluorescence studies confirmed that despite cage functionalization the aggregation-induced emission properties of those architectures are retained. Thus, this work significantly expands the range of solvents in which these self-assembled cage compounds can be generated, which in turn should enable new applications, possibly as fluorescent sensors.
Collapse
Affiliation(s)
- Marcin Konopka
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
| | - Piotr Cecot
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Ecole Nationale Supérieure de Chimie de Montpellier, Montpellier, France
| | - Artur R. Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
9
|
Modulating the collagen triple helix formation by switching: Positioning effects of depsi-defects on the assembly of [Gly-Pro-Pro]7 collagen mimetic peptides. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Bauri K, Nandi M, De P. Amino acid-derived stimuli-responsive polymers and their applications. Polym Chem 2018. [DOI: 10.1039/c7py02014g] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent advances achieved in the study of various stimuli-responsive polymers derived from natural amino acids have been reviewed.
Collapse
Affiliation(s)
- Kamal Bauri
- Department of Chemistry
- Raghunathpur College
- India
| | - Mridula Nandi
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|
11
|
Meng X, Jiang X, Ji P. A strong adhesive block polymer coating for antifouling of large molecular weight protein. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Gegenhuber T, Abt D, Welle A, Özbek S, Goldmann AS, Barner-Kowollik C. Spatially resolved photochemical coding of reversibly anchored cysteine-rich domains. J Mater Chem B 2017; 5:4993-5000. [PMID: 32264016 DOI: 10.1039/c7tb00962c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a novel methodology to generate recodable surfaces using cysteine-rich domains (CRD) via a combination of photolithography and reversible covalently peptide-driven disulfide formation. Therefore, two 21mer CRD peptide derivatives were synthesized, one bearing an electron deficient fumarate group for immobilization via nitrile imine-ene mediated cycloaddition (NITEC) to a tetrazole-functional surface. Secondly, a bromine moiety is introduced to the CRD for analytic labelling purposes to detect surface encoding. The photolithography is conducted by selectively passivating the surface with a polyethylene glycol (PEG)-fumarate via NITEC using a photomask in a dotted pattern. Consecutively, the CRD-fumarate is immobilized via NITEC adjacent to the PEG-functional areas to the unaffected tetrazole covered surface layer. Subsequently, the CRD-bromide is covalently linked to the CRD-fumarate by forming disulfide bonds under mild reoxidative conditions in a buffer solution. The CRD-bromide is released from the surface upon reduction to recover the prior state of the surface without the bromine marker. The analysis of the CRD precursors is based on electrospray ionization mass spectrometry (ESI-MS). The surface analytics were carried out via time-of-flight secondary ion mass spectrometry (ToF-SIMS), unambiguously verifying the successful immobilization as well as coding and decoding of the CRD-bromide on the surface based on dynamically reversible disulfide bond formation.
Collapse
Affiliation(s)
- Thomas Gegenhuber
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Du M, Jin Q, Chai M, Ji P. Silicificated polymer arrays based on a strong adhesive polymer for antifouling coatings. POLYM INT 2017. [DOI: 10.1002/pi.5325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mengmeng Du
- Department of Chemical Engineering; Beijing University of Chemical Technology; Beijing China
| | - Qiaoqiao Jin
- Department of Chemical Engineering; Beijing University of Chemical Technology; Beijing China
| | - Mengsha Chai
- Department of Chemical Engineering; Beijing University of Chemical Technology; Beijing China
| | - Peijun Ji
- Department of Chemical Engineering; Beijing University of Chemical Technology; Beijing China
| |
Collapse
|
14
|
Intradermal drug delivery by nanogel-peptide conjugates; specific and efficient transport of temoporfin. J Control Release 2016; 242:35-41. [DOI: 10.1016/j.jconrel.2016.07.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 02/01/2023]
|