1
|
Herpoldt K, López CL, Sappington I, Pham MN, Srinivasan S, Netland J, Montgomery KS, Roy D, Prossnitz AN, Ellis D, Wargacki AJ, Pepper M, Convertine AJ, Stayton PS, King NP. Macromolecular Cargo Encapsulation via In Vitro Assembly of Two-Component Protein Nanoparticles. Adv Healthc Mater 2024; 13:e2303910. [PMID: 38180445 PMCID: PMC11468305 DOI: 10.1002/adhm.202303910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Self-assembling protein nanoparticles are a promising class of materials for targeted drug delivery. Here, the use of a computationally designed, two-component, icosahedral protein nanoparticle is reported to encapsulate multiple macromolecular cargoes via simple and controlled self-assembly in vitro. Single-stranded RNA molecules between 200 and 2500 nucleotides in length are encapsulated and protected from enzymatic degradation for up to a month with length-dependent decay rates. Immunogenicity studies of nanoparticles packaging synthetic polymers carrying a small-molecule TLR7/8 agonist show that co-delivery of antigen and adjuvant results in a more than 20-fold increase in humoral immune responses while minimizing systemic cytokine secretion associated with free adjuvant. Coupled with the precise control over nanoparticle structure offered by computational design, robust and versatile encapsulation via in vitro assembly opens the door to a new generation of cargo-loaded protein nanoparticles that can combine the therapeutic effects of multiple drug classes.
Collapse
Affiliation(s)
- Karla‐Luise Herpoldt
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
- Present address:
2seventy BioSeattleWA98102USA
| | - Ciana L. López
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Isaac Sappington
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Minh N. Pham
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Selvi Srinivasan
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Jason Netland
- Department of ImmunologyUniversity of WashingtonSeattleWA98195USA
| | | | - Debashish Roy
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | | | - Daniel Ellis
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Adam J. Wargacki
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Marion Pepper
- Department of ImmunologyUniversity of WashingtonSeattleWA98195USA
| | - Anthony J. Convertine
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
- Present address:
Department of Material Science and EngineeringMissouri University of Science and TechnologyRollaMO65409USA
| | | | - Neil P. King
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
2
|
Liu Q, Shaukat A, Meng Z, Nummelin S, Tammelin T, Kontturi E, de Vries R, Kostiainen MA. Engineered Protein Copolymers for Heparin Neutralization and Detection. Biomacromolecules 2023; 24:1014-1021. [PMID: 36598935 PMCID: PMC9930113 DOI: 10.1021/acs.biomac.2c01464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heparin is a widely applied anticoagulant agent. However, in clinical practice, it is of vital importance to reverse its anticoagulant effect to restore the blood-clotting cascade and circumvent side effects. Inspired by protein cages that can encapsulate and protect their cargo from surroundings, we utilize three designed protein copolymers to sequester heparin into inert nanoparticles. In our design, a silk-like sequence provides cooperativity between proteins, generating a multivalency effect that enhances the heparin-binding ability. Protein copolymers complex heparin into well-defined nanoparticles with diameters below 200 nm. We also develop a competitive fluorescent switch-on assay for heparin detection, with a detection limit of 0.01 IU mL-1 in plasma that is significantly below the therapeutic range (0.2-8 IU mL-1). Moreover, moderate cytocompatibility is demonstrated by in vitro cell studies. Therefore, such engineered protein copolymers present a promising alternative for neutralizing and sensing heparin, but further optimization is required for in vivo applications.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), Wenzhou325001, China
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Zhuojun Meng
- Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), Wenzhou325001, China.,Materials Chemistry of Cellulose, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Sami Nummelin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd, VTT, P.O. Box 1000, EspooFI-02044, Finland
| | - Eero Kontturi
- Materials Chemistry of Cellulose, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research Centre, Wageningen6708 WE, The Netherlands
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| |
Collapse
|
3
|
Fang T, Li C, Liang A, Zhang H, Zhang F, Zhang XE, Yang YY, Li F. Probing cell membrane integrity using a histone-targeting protein nanocage displaying precisely positioned fluorophores. NANO RESEARCH 2022; 16:894-904. [PMID: 36090614 PMCID: PMC9438879 DOI: 10.1007/s12274-022-4785-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Cell membrane integrity is fundamental to the normal activities of cells and is involved in both acute and chronic pathologies. Here, we report a probe for analyzing cell membrane integrity developed from a 9 nm-sized protein nanocage named Dps via fluorophore conjugation with high spatial precision to avoid self-quenching. The probe cannot enter normal live cells but can accumulate in dead or live cells with damaged membranes, which, interestingly, leads to weak cytoplasmic and strong nuclear staining. This differential staining is found attributed to the high affinity of Dps for histones rather than DNA, providing a staining mechanism different from those of known membrane exclusion probes (MEPs). Moreover, the Dps nanoprobe is larger in size and thus applies a more stringent criterion for identifying severe membrane damage than currently available MEPs. This study shows the potential of Dps as a new bioimaging platform for biological and medical analyses. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (Figs. S1-S12 including distance information between neighboring fluorophores on Dps, TEM images, MALDI-TOF analysis, fluorescence spectra, confocal images, gel retardation analysis, tissue staining, and additional data) is available in the online version of this article at 10.1007/s12274-022-4785-5.
Collapse
Affiliation(s)
- Ti Fang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510120 China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Chaoqun Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ao Liang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hui Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Fan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yi-Yu Yang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510120 China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
4
|
Patterson D, Draper D, Anazia K, Hjorth C, Bird J, Fancher S, Azghani A. Encapsulation of Pseudomonas aeruginosa Elastase Inside the P22 Virus‐Like Particle for Controlling Enzyme‐Substrate Interactions. Biotechnol J 2022; 17:e2200015. [DOI: 10.1002/biot.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dustin Patterson
- Department of Chemistry and Biochemistry The University of Texas at Tyler Tyler Texas USA
| | - Derek Draper
- Department of Biology The University of Texas at Tyler Tyler Texas USA
| | - Kara Anazia
- Department of Chemistry and Biochemistry The University of Texas at Tyler Tyler Texas USA
| | - Christy Hjorth
- Department of Chemistry and Biochemistry The University of Texas at Tyler Tyler Texas USA
| | - Jessica Bird
- Department of Chemistry and Biochemistry The University of Texas at Tyler Tyler Texas USA
| | - Shandis Fancher
- Department of Biology The University of Texas at Tyler Tyler Texas USA
| | - Ali Azghani
- Department of Biology The University of Texas at Tyler Tyler Texas USA
| |
Collapse
|
5
|
Liu Q, Shaukat A, Kyllönen D, Kostiainen MA. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments. Pharmaceutics 2021; 13:1551. [PMID: 34683843 PMCID: PMC8537137 DOI: 10.3390/pharmaceutics13101551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Protein cages are nanocompartments with a well-defined structure and monodisperse size. They are composed of several individual subunits and can be categorized as viral and non-viral protein cages. Native viral cages often exhibit a cationic interior, which binds the anionic nucleic acid genome through electrostatic interactions leading to efficient encapsulation. Non-viral cages can carry various cargo, ranging from small molecules to inorganic nanoparticles. Both cage types can be functionalized at targeted locations through genetic engineering or chemical modification to entrap materials through interactions that are inaccessible to wild-type cages. Moreover, the limited number of constitutional subunits ease the modification efforts, because a single modification on the subunit can lead to multiple functional sites on the cage surface. Increasing efforts have also been dedicated to the assembly of protein cage-mimicking structures or templated protein coatings. This review focuses on native and modified protein cages that have been used to encapsulate and package polyelectrolyte cargos and on the electrostatic interactions that are the driving force for the assembly of such structures. Selective encapsulation can protect the payload from the surroundings, shield the potential toxicity or even enhance the intended performance of the payload, which is appealing in drug or gene delivery and imaging.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Daniella Kyllönen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
- HYBER Center, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
6
|
Stevens CA, Kaur K, Klok HA. Self-assembly of protein-polymer conjugates for drug delivery. Adv Drug Deliv Rev 2021; 174:447-460. [PMID: 33984408 DOI: 10.1016/j.addr.2021.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
Protein-polymer conjugates are a class of molecules that combine the stability of polymers with the diversity, specificity, and functionality of biomolecules. These bioconjugates can result in hybrid materials that display properties not found in their individual components and can be particularly relevant for drug delivery applications. Engineering amphiphilicity into these bioconjugate materials can lead to phase separation and the assembly of high-order structures. The assembly, termed self-assembly, of these hierarchical structures entails multiple levels of organization: at each level, new properties emerge, which are, in turn, influenced by lower levels. Here, we provide a critical review of protein-polymer conjugate self-assembly and how these materials can be used for therapeutic applications and drug delivery. In addition, we discuss central bioconjugate design questions and propose future perspectives for the field of protein-polymer conjugate self-assembly.
Collapse
Affiliation(s)
- Corey A Stevens
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
| | - Kuljeet Kaur
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Theodorou A, Mandriotis P, Anastasaki A, Velonia K. Oxygen tolerant, photoinduced controlled radical polymerization approach for the synthesis of giant amphiphiles. Polym Chem 2021. [DOI: 10.1039/d0py01608j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
New families of amphiphilic protein–polymer bioconjugates readily synthesized via an oxygen tolerant, photoinduced RDRP approach.
Collapse
Affiliation(s)
- Alexis Theodorou
- Laboratory of Synthetic Biomaterials
- Department of Materials Science and Technology
- University of Crete
- 70013 Heraklion
- Greece
| | - Petros Mandriotis
- Laboratory of Synthetic Biomaterials
- Department of Materials Science and Technology
- University of Crete
- 70013 Heraklion
- Greece
| | - Athina Anastasaki
- Laboratory of Polymeric Materials
- Department of Materials
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Kelly Velonia
- Laboratory of Synthetic Biomaterials
- Department of Materials Science and Technology
- University of Crete
- 70013 Heraklion
- Greece
| |
Collapse
|
8
|
|
9
|
Kepiro IE, Marzuoli I, Hammond K, Ba X, Lewis H, Shaw M, Gunnoo SB, De Santis E, Łapińska U, Pagliara S, Holmes MA, Lorenz CD, Hoogenboom BW, Fraternali F, Ryadnov MG. Engineering Chirally Blind Protein Pseudocapsids into Antibacterial Persisters. ACS NANO 2020; 14:1609-1622. [PMID: 31794180 DOI: 10.1021/acsnano.9b06814] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance stimulates the search for antimicrobial forms that may be less subject to acquired resistance. Here we report a conceptual design of protein pseudocapsids exhibiting a broad spectrum of antimicrobial activities. Unlike conventional antibiotics, these agents are effective against phenotypic bacterial variants, while clearing "superbugs" in vivo without toxicity. The design adopts an icosahedral architecture that is polymorphic in size, but not in shape, and that is available in both l and d epimeric forms. Using a combination of nanoscale and single-cell imaging we demonstrate that such pseudocapsids inflict rapid and irreparable damage to bacterial cells. In phospholipid membranes they rapidly convert into nanopores, which remain confined to the binding positions of individual pseudocapsids. This mechanism ensures precisely delivered influxes of high antimicrobial doses, rendering the design a versatile platform for engineering structurally diverse and functionally persistent antimicrobial agents.
Collapse
Affiliation(s)
- Ibolya E Kepiro
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
| | - Irene Marzuoli
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
- Randall Centre for Cell and Molecular Biophysics , King's College London , London , SE1 1UL , U.K
| | - Katharine Hammond
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
- Department of Physics and Astronomy , University College London , London , WC1E 6BT , U.K
- London Centre for Nanotechnology , University College London , London , WC1H 0AH , U.K
| | - Xiaoliang Ba
- Department of Veterinary Medicine , University of Cambridge , Cambridge , CB3 0ES , U.K
| | - Helen Lewis
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
| | - Michael Shaw
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
- Department of Computer Science , University College London , London , WC1 6BT , U.K
| | - Smita B Gunnoo
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
| | - Emiliana De Santis
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
| | - Urszula Łapińska
- Living Systems Institute , University of Exeter , Exeter , EX4 4QD , U.K
| | - Stefano Pagliara
- Living Systems Institute , University of Exeter , Exeter , EX4 4QD , U.K
| | - Mark A Holmes
- Department of Veterinary Medicine , University of Cambridge , Cambridge , CB3 0ES , U.K
| | - Christian D Lorenz
- Department of Physics , King's College London , Strand Lane , London , WC2R 2LS , U.K
| | - Bart W Hoogenboom
- Department of Physics and Astronomy , University College London , London , WC1E 6BT , U.K
- London Centre for Nanotechnology , University College London , London , WC1H 0AH , U.K
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics , King's College London , London , SE1 1UL , U.K
| | - Maxim G Ryadnov
- National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K
- Department of Physics , King's College London , Strand Lane , London , WC2R 2LS , U.K
| |
Collapse
|
10
|
Wege C, Koch C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1591. [PMID: 31631528 DOI: 10.1002/wnan.1591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
The self-assembly of viral building blocks bears exciting prospects for fabricating new types of bionanoparticles with multivalent protein shells. These enable a spatially controlled immobilization of functionalities at highest surface densities-an increasing demand worldwide for applications from vaccination to tissue engineering, biocatalysis, and sensing. Certain plant viruses hold particular promise because they are sustainably available, biodegradable, nonpathogenic for mammals, and amenable to in vitro self-organization of virus-like particles. This offers great opportunities for their redesign into novel "green" carrier systems by spatial and structural synthetic biology approaches, as worked out here for the robust nanotubular tobacco mosaic virus (TMV) as prime example. Natural TMV of 300 x 18 nm is built from more than 2,100 identical coat proteins (CPs) helically arranged around a 6,395 nucleotides ssRNA. In vitro, TMV-like particles (TLPs) may self-assemble also from modified CPs and RNAs if the latter contain an Origin of Assembly structure, which initiates a bidirectional encapsidation. By way of tailored RNA, the process can be reprogrammed to yield uncommon shapes such as branched nanoobjects. The nonsymmetric mechanism also proceeds on 3'-terminally immobilized RNA and can integrate distinct CP types in blends or serially. Other emerging plant virus-deduced systems include the usually isometric cowpea chlorotic mottle virus (CCMV) with further strikingly altered structures up to "cherrybombs" with protruding nucleic acids. Cartoon strips and pictorial descriptions of major RNA-based strategies induct the reader into a rare field of nanoconstruction that can give rise to utile soft-matter architectures for complex tasks. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
11
|
He N, Chen X, Wang L, Wen J, Li Y, Cao Q, Liu Z, Li B. Fabrication of Composite Hydrogels Based on Soy Protein Isolate and their Controlled Globular Protein Delivery. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1900030. [PMID: 31565399 PMCID: PMC6733490 DOI: 10.1002/gch2.201900030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Indexed: 05/14/2023]
Abstract
Soy protein isolate (SPI) protein/polymer composite hydrogels (PPCGs) are fabricated in a urea solution of SPI using acrylic acid as monomer, ammonium persulphate (APS) as initiator, and N,N-methylenebisacrylamide (BIS) and glutaraldehyde (GA) as cross-linking agents. The scanning electron microscope (SEM) results show that SPI/polyacrylic (PAA) composite hydrogels formed network structure. In particular, in the absence of cross-linking agent (GA), the network structure of composite hydrogels is also formed by BIS cross-linking chains of PAA and the hydrophobic interactions between peptides from SPI and chain of PAA. In addition, composite hydrogels have good water absorption and present excellent pH sensitivity. Composite hydrogels adsorb bovine serum albumin (BSA) with higher adsorption capacity. BSA is the control released in pH 7.4 buffers and the accumulative release ratio achieved is 90%. It will be expected that these protein/polymer composite hydrogels could be applied for drug sustained release materials.
Collapse
Affiliation(s)
- Naipu He
- School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhou730070China
| | - Xiunan Chen
- School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhou730070China
| | - Li Wang
- School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhou730070China
| | - Jing Wen
- School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhou730070China
| | - Yuhong Li
- School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhou730070China
| | - Qi Cao
- School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhou730070China
| | - Zaiman Liu
- School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhou730070China
| | - Baiyu Li
- School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhou730070China
| |
Collapse
|
12
|
de Ruiter M, van der Hee R, Driessen A, Keurhorst E, Hamid M, Cornelissen J. Polymorphic assembly of virus-capsid proteins around DNA and the cellular uptake of the resulting particles. J Control Release 2019; 307:342-354. [DOI: 10.1016/j.jconrel.2019.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022]
|
13
|
Maassen SJ, van der Schoot P, Cornelissen JJLM. Experimental and Theoretical Determination of the pH inside the Confinement of a Virus-Like Particle. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802081. [PMID: 30102454 DOI: 10.1002/smll.201802081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/17/2018] [Indexed: 06/08/2023]
Abstract
In biology, a variety of highly ordered nanometer-size protein cages is found. Such structures find increasing application in, for example, vaccination, drug delivery, and catalysis. Understanding the physiochemical properties, particularly inside the confinement of a protein cage, helps to predict the behavior and properties of new materials based on such particles. Here, the relation between the bulk solution pH and the local pH inside a model protein cage, based on virus-like particles (VLPs) built from the coat proteins of the cowpea chlorotic mottle virus, is investigated. The pH is a crucial parameter in a variety of processes and is potentially significantly influenced by the high concentration of charges residing on the interior of the VLPs. The data show a systematic more acidic pH of 0.5 unit inside the VLP compared to that of the bulk solution for pH values above pH 6, which is explained using a theoretical model based on a Donnan equilibrium. The model agrees with the experimental data over almost two orders of magnitude, while below pH 6 the experimental data point to a buffering capacity of the VLP. These results are a first step in a better understanding of the physiochemical conditions inside a protein cage.
Collapse
Affiliation(s)
- Stan J Maassen
- Laboratory of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, 7500, AE, The Netherlands
| | - Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584, CC, Utrecht, The Netherlands
| | - Jeroen J L M Cornelissen
- Laboratory of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, 7500, AE, The Netherlands
| |
Collapse
|
14
|
|
15
|
Maassen SJ, de Ruiter MV, Lindhoud S, Cornelissen JJLM. Oligonucleotide Length-Dependent Formation of Virus-Like Particles. Chemistry 2018. [PMID: 29518273 DOI: 10.1002/chem.201800285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Understanding the assembly pathway of viruses can contribute to creating monodisperse virus-based materials. In this study, the cowpea chlorotic mottle virus (CCMV) is used to determine the interactions between the capsid proteins of viruses and their cargo. The assembly of the capsid proteins in the presence of different lengths of short, single-stranded (ss) DNA is studied at neutral pH, at which the protein-protein interactions are weak. Chromatography, electrophoresis, microscopy, and light scattering data show that the assembly efficiency and speed of the particles increase with increasing length of oligonucleotides. The minimal length required for assembly under the conditions used herein is 14 nucleotides. Assembly of particles containing such short strands of ssDNA can take almost a month. This slow assembly process enabled the study of intermediate states, which confirmed a low cooperative assembly for CCMV and allowed for further expansion of current assembly theories.
Collapse
Affiliation(s)
- Stan J Maassen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Mark V de Ruiter
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Saskia Lindhoud
- Department of Nanobiophysics, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Jeroen J L M Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
16
|
Abstract
A synthetic topology for everted viruses is reported. The topology is a single-stranded virion DNA assembled into a hollow cube with exterior decorated with HIV-Tat transduction domains. The cube incorporates a pH-responsive lid allowing for the controlled encapsulation of functional proteins and their transfer and release into live cells. Unlike viruses, which are protein shells with a [3,5]-fold rotational symmetry that encase nucleic acids, these cubes are [3, 4]-fold DNA boxes encapsulating proteins. Like viruses, such everted DNA-built viruses are monodisperse nanoscale assemblies that infect human cells with a specialist cargo. The design offers a bespoke bottom-up platform for engineering nonpolyhedral, nonprotein synthetic viruses.
Collapse
Affiliation(s)
- Jonathan R. Burns
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
- Department of Chemistry, University College London, London, WC1E 6BT, U.K
| | - Baptiste Lamarre
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - Alice L. B. Pyne
- London Centre for Nanotechnology, University College London, London, WC1E 6BT, U.K
| | - James E. Noble
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - Maxim G. Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| |
Collapse
|
17
|
Düring J, Alex W, Zika A, Branscheid R, Spiecker E, Gröhn F. Dendrimer–Dye Assemblies as Templates for the Formation of Gold Nanostructures. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jasmin Düring
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials and ‡Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Wiebke Alex
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials and ‡Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexander Zika
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials and ‡Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Robert Branscheid
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials and ‡Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials and ‡Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials and ‡Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
18
|
Cao Q, He N, Wang Y, Lu Z. Self-assembled nanostructures from amphiphilic globular protein–polymer hybrids. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2176-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Patterson D, Schwarz B, Avera J, Western B, Hicks M, Krugler P, Terra M, Uchida M, McCoy K, Douglas T. Sortase-Mediated Ligation as a Modular Approach for the Covalent Attachment of Proteins to the Exterior of the Bacteriophage P22 Virus-like Particle. Bioconjug Chem 2017; 28:2114-2124. [PMID: 28612603 PMCID: PMC6708598 DOI: 10.1021/acs.bioconjchem.7b00296] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Virus-like particles are unique platforms well suited for the construction of nanomaterials with broad-range applications. The research presented here describes the development of a modular approach for the covalent attachment of protein domains to the exterior of the versatile bacteriophage P22 virus-like particle (VLP) via a sortase-mediated ligation strategy. The bacteriophage P22 coat protein was genetically engineered to incorporate an LPETG amino acid sequence on the C-terminus, providing the peptide recognition sequence utilized by the sortase enzyme to catalyze peptide bond formation between the LPETG-tagged protein and a protein containing a polyglycine sequence on the N-terminus. Here we evaluate attachment of green fluorescent protein (GFP) and the head domain of the influenza hemagglutinin (HA) protein by genetically producing polyglycine tagged proteins. Attachment of both proteins to the exterior of the P22 VLP was found to be highly efficient as judged by SDS-PAGE densitometry. These results enlarge the tool kit for modifying the P22 VLP system and provide new insights for other VLPs that have an externally displayed C-terminus that can use the described strategy for the modular modification of their external surface for various applications.
Collapse
Affiliation(s)
- Dustin Patterson
- Department of Chemistry & Biochemistry, University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Benjamin Schwarz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407, United States
| | - John Avera
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407, United States
| | - Brian Western
- Department of Chemistry & Biochemistry, University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Matthew Hicks
- Department of Chemistry & Biochemistry, University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Paul Krugler
- Department of Chemistry & Biochemistry, University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Matthew Terra
- Department of Chemistry & Biochemistry, University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Masaki Uchida
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407, United States
| | - Kimberly McCoy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47407, United States
| |
Collapse
|
20
|
Noble JE, De Santis E, Ravi J, Lamarre B, Castelletto V, Mantell J, Ray S, Ryadnov MG. A De Novo Virus-Like Topology for Synthetic Virions. J Am Chem Soc 2016; 138:12202-10. [PMID: 27585246 DOI: 10.1021/jacs.6b05751] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A de novo topology of virus-like assembly is reported. The design is a trifaceted coiled-coil peptide helix, which self-assembles into ultrasmall, monodisperse, anionic virus-like shells that encapsulate and transfer both RNA and DNA into human cells. Unlike existing artificial systems, these shells share the same physical characteristics of viruses being anionic, nonaggregating, abundant, hollow, and uniform in size, while effectively mediating gene silencing and transgene expression. These are the smallest virus-like structures reported to date, both synthetic and native, with the ability to adapt and transfer small and large nucleic acids. The design thus offers a promising solution for engineering bespoke artificial viruses with desired functions.
Collapse
Affiliation(s)
- James E Noble
- National Physical Laboratory , Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Emiliana De Santis
- National Physical Laboratory , Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Jascindra Ravi
- National Physical Laboratory , Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Baptiste Lamarre
- National Physical Laboratory , Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Valeria Castelletto
- Department of Chemistry, University of Reading , Reading RG6 6AD, United Kingdom
| | - Judith Mantell
- Wolfson Bio-imaging Facility, Department of Biochemistry, University of Bristol , Bristol BS8 1TD, United Kingdom
| | - Santanu Ray
- SET, University of Brighton , Brighton BN2 4GJ, United Kingdom
| | - Maxim G Ryadnov
- National Physical Laboratory , Hampton Road, Teddington TW11 0LW, United Kingdom
| |
Collapse
|