1
|
Lin Q, Chen J, Zhang Y, Gao Q, Zhu L, Xing Q, Geng J. Protocol to synthesize sequence-controlled glycooligomers for tumor targeting in mice. STAR Protoc 2024; 5:103029. [PMID: 38728135 PMCID: PMC11099313 DOI: 10.1016/j.xpro.2024.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Due to the higher and more rapid consumption of carbohydrates by cancer cells compared to normal cells, carbohydrates can be effectively employed as a targeted therapeutic strategy for tumor treatment. Here, we present a protocol for synthesizing sequence-controlled glycooligomers using both solution-phase and solid-phase systems. We outline detailed procedures for evaluating the safety and tumor-targeting properties of the sequence-controlled glycooligomers in vivo. For complete details on the use and execution of this protocol, please refer to Chen et al.1.
Collapse
Affiliation(s)
- Qina Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jie Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China; School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yichuan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China; School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Quan Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| | - Liwei Zhu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| | - Qi Xing
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China.
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518000, China.
| |
Collapse
|
2
|
Matsushita T, Nozaki M, Sunaga M, Koyama T, Hatano K, Matsuoka K. Preparation of N-Linked-Type GlcNAc Monomers for Glycopolymers and Binding Specificity for Lectin. ACS OMEGA 2023; 8:37329-37340. [PMID: 37841120 PMCID: PMC10568714 DOI: 10.1021/acsomega.3c05151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023]
Abstract
Glycomonomers having N-glycosidic linkages were prepared from a known glycosyl amine, N-acetyl-d-glucosamine (GlcNAc). Radical polymerization of the glycomonomers gave a series of glycopolymers displaying various sugar densities, which were models of the core structure of Asn-linked-type glycoproteins. In addition, fluorometric analyses of wheat germ agglutinin (WGA) against the glycopolymers were carried out, and the results showed unique binding specificities on the basis of flexibility of sugar moieties.
Collapse
Affiliation(s)
- Takahiko Matsushita
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Medical
Innovation Research Unit (MiU), Advanced Institute of Innovative Technology
(AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
- Health
Science and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Momoka Nozaki
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Mio Sunaga
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Tetsuo Koyama
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Ken Hatano
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Medical
Innovation Research Unit (MiU), Advanced Institute of Innovative Technology
(AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
- Health
Science and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Koji Matsuoka
- Area
for Molecular Function, Division of Material Science, Graduate School
of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Medical
Innovation Research Unit (MiU), Advanced Institute of Innovative Technology
(AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
- Health
Science and Technology Research Area, Strategic Research Center, Saitama University, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
3
|
DiLillo AM, Chan KK, Sun XL, Ao G. Glycopolymer-Wrapped Carbon Nanotubes Show Distinct Interaction of Carbohydrates With Lectins. Front Chem 2022; 10:852988. [PMID: 35308788 PMCID: PMC8927622 DOI: 10.3389/fchem.2022.852988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Glyconanomaterials with unique nanoscale property and carbohydrate functionality show vast potential in biological and biomedical applications. We investigated the interactions of noncovalent complexes of single-wall carbon nanotubes that are wrapped by disaccharide lactose-containing glycopolymers with the specific carbohydrate-binding proteins. The terminal galactose (Gal) of glycopolymers binds to the specific lectin as expected. Interestingly, an increased aggregation of nanotubes was also observed when interacting with a glucose (Glc) specific lectin, likely due to the removal of Glc groups from the surface of nanotubes resulting from the potential binding of the lectin to the Glc in the glycopolymers. This result indicates that the wrapping conformation of glycopolymers on the surface of nanotubes potentially allows improved accessibility of the Glc for specific lectins. Furthermore, it shows that the interaction between Glc groups in the glycopolymers and nanotubes play a key role in stabilizing the nanocomplexes. Overall, our results demonstrate that nanostructures can enable conformation-dependent interactions of glycopolymers and proteins and can potentially lead to the creation of versatile optical sensors for detecting carbohydrate-protein interactions with enhanced specificity and sensitivity.
Collapse
Affiliation(s)
- Ana M. DiLillo
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, United States
| | - Ka Keung Chan
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, United States
| | - Xue-Long Sun
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, United States
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, United States
| | - Geyou Ao
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
4
|
|
5
|
Physicochemical, foaming and biological properties of lowly irritant anionic sugar-based surfactants. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Bigdelou P, Chan KK, Tang J, Yu KN, Whited J, Wang D, Lee MY, Sun XL. High-throughput multiplex assays with mouse macrophages on pillar plate platforms. Exp Cell Res 2020; 396:112243. [PMID: 32835658 PMCID: PMC7572780 DOI: 10.1016/j.yexcr.2020.112243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
It is challenging to rapidly identify immune responses that reflect the state and capability of immune cells due to complex heterogeneity of immune cells and their plasticity to pathogens and modulating molecules. Thus, high-throughput and easy-to-use cell culture and analysis platforms are highly desired for characterizing complex immune responses and elucidating their underlying mechanisms as well. In response to this need, we have developed a micropillar chip and a 384-pillar plate, printed mouse macrophage, RAW 264.7 cell line in alginate on the pillar plate platforms, and established multiplex cell-based assays to rapidly measure cell viability, expression of cell surface markers, and secretion of cytokines upon stimulation with model compound, lipopolysaccharide (LPS), as well as synthetic N-glycan polymers that mimic native glycoconjugates and could bind to lectin receptors on RAW 264.7 cells. Interestingly, changes in RAW 264.7 cell viability, expression levels of cell surface makers, and release of cytokines measured from the pillar plate platforms in the presence and absence of LPS were well correlated with those obtained from their counterpart, the 96-well plate with 2D-cultured macrophages. With this approach, we identified that α2,3-linked N-sialyllactose polymer has significant macrophage modulation activity among the N-glycan polymers tested. Therefore, we successfully demonstrated that our pillar plate platforms with 3D-cultured macrophages can streamline immune cell imaging and analysis in high throughput in response to compound stimulation. We envision that the pillar plate platforms could potentially be used for rapid characterization of immune cell responses and for screening immune cell-modulating molecules.
Collapse
Affiliation(s)
- Parnian Bigdelou
- Department of Chemical & Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Ka Keung Chan
- Department of Chemistry and Center of Gene Regulation of Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA
| | - Jinshan Tang
- Department of Chemistry and Center of Gene Regulation of Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, West 601, Huangpu Avenue, Guangzhou, PR China
| | - Kyeong-Nam Yu
- Department of Chemical & Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Joshua Whited
- Department of Chemistry and Center of Gene Regulation of Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA
| | - Dan Wang
- Department of Chemistry and Center of Gene Regulation of Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA.
| | - Xue-Long Sun
- Department of Chemical & Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA; Department of Chemistry and Center of Gene Regulation of Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA.
| |
Collapse
|
7
|
Chan KK, Lei Q, Tang J, Sun XL. Synthesis of aryl azide chain-end functionalized N-linked glycan polymers and their photo-labelling of specific protein. RSC Adv 2020; 10:38561-38565. [PMID: 35517525 PMCID: PMC9057295 DOI: 10.1039/d0ra08400j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
We report a straightforward synthesis of aryl azide chain-end functionalized N-linked glycan polymers and its application for affinity-assisted photo-labelling of specific protein. The aryl azide chain-end functionalized N-glycan polymers, including N-galactosyl, N-glucosyl, and N-lactosyl polymer, were synthesized from free glycan via glycosylamine intermediates followed by acrylation and polymerization via cyanoxyl-mediated free radical polymerization (CMFRP) in a one-pot fashion. The aryl azide chain-end functionalized N-glycan polymers were characterized by 1H NMR and IR spectroscopy. The affinity-assisted photo-labeling capabilities of the aryl azide N-glycan polymers were demonstrated with aryl azide N-lactosyl polymer as a ligand for β-galactose-specific lectin from Arachis hypogaea (PNA) after UV irradiation and confirmed by SDS-PAGE with silver staining. Overall, the aryl azide chain-end functionalized N-linked glycan polymers will be useful multivalent ligands for specific protein labelling and functionality studies.
Collapse
Affiliation(s)
- Ka Keung Chan
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University 2121 Euclid Avenue Cleveland Ohio 44115 USA
| | - Qiaoshi Lei
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University West 601, Huangpu Avenue Guangzhou People's Republic of China
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University West 601, Huangpu Avenue Guangzhou People's Republic of China
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University 2121 Euclid Avenue Cleveland Ohio 44115 USA
| |
Collapse
|
8
|
Cantwell MA, Chan KK, Sun XL, Ao G. Carbohydrate- and Chain Length-Controlled Complexation of Carbon Nanotubes by Glycopolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9878-9885. [PMID: 32787060 DOI: 10.1021/acs.langmuir.0c01498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stable dispersions of single-wall carbon nanotubes (SWCNTs) by biopolymers in an aqueous environment facilitate their potential biological and biomedical applications. In this report, we investigated a small library of precision synthesized glycopolymers with monosaccharide and disaccharide groups for stabilizing SWCNTs via noncovalent complexation in aqueous conditions. Among the glycopolymers tested, disaccharide lactose-containing glycopolymers demonstrate effective stabilization of SWCNTs in water, which strongly depends on carbohydrate density and polymer chain length as well. The introduction of disaccharide lactose potentially makes glycopolymers less flexible as compared to those containing monosaccharide and facilitates the wrapping conformation of polymers on the surface of SWCNTs while preserving intrinsic photoluminescence of nanotubes in the near-infrared region. This work demonstrates the synergistic effects of the identity of carbohydrate pendant groups and polymer chain length of glycopolymers on stabilizing SWCNTs in water, which has not been achieved previously.
Collapse
Affiliation(s)
- Michael A Cantwell
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Ka Keung Chan
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
- Department of Chemistry, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Geyou Ao
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| |
Collapse
|
9
|
Tsuji S, Aso Y, Ohara H, Tanaka T. Aqueous synthesis of sialylglycopeptide‐grafted glycopolymers with high affinity for the lectin and the influenza virus hemagglutinin. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sotaro Tsuji
- Department of Biobased Materials ScienceGraduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Yuji Aso
- Department of Biobased Materials ScienceGraduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Hitomi Ohara
- Department of Biobased Materials ScienceGraduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Tomonari Tanaka
- Department of Biobased Materials ScienceGraduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| |
Collapse
|
10
|
Li J, Zhang Y, Cai C, Rong X, Shao M, Li J, Yang C, Yu G. Collaborative assembly of doxorubicin and galactosyl diblock glycopolymers for targeted drug delivery of hepatocellular carcinoma. Biomater Sci 2019; 8:189-200. [PMID: 31821399 DOI: 10.1039/c9bm01604j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) patients suffer from severe pain due to the serious systemic side effects and low efficiency of chemotherapeutic drugs, and it is important to develop novel drug delivery systems to circumvent these issues. In this study, a series of galactose-based glycopolymers, poly(N-(prop-2-enoyl)-β-d-galactopyranosylamine)-b-poly(N-isopropyl acrylamide) (pGal(OH)-b-pNIPAA), were prepared through a sequential reversible addition-fragmentation chain transfer (RAFT) polymerization and tetrabutylammonium hydroxide (TBAOH)-mediated removal of acetyl groups. Hydrophilic doxorubicin hydrochloride was introduced to undergo collaborative assembly with poly(N-(prop-2-enoyl)-β-d-peracetylated galactosamine)-b-poly(N-isopropyl acrylamide) (pGal(Ac)-b-pNIPAA) via TBAOH treatment. pGal-b-pNIPAA/doxorubicin (DOX) delivery nanoparticles (GND NPs) formed by collaborative assembly were fully characterized by NMR, TEM and FT-IR, indicating the well-controlled formation of particles with uniform size and high efficiency in terms of drug loading and encapsulation compared with conventional adsorption methods. Meanwhile, the GND NPs were observed to be rapidly disintegrated under acidic conditions and resulted in an increased release of DOX. Cellular experiments showed that pGal-b-pNIPAA/DOX is apparently an asialoglycoprotein receptor (ASGPR)-mediated target of HCC, resulting in enhanced cellular uptake to HepG2 cells and anti-tumor efficacy in vitro. Furthermore, GND NPs III exerted more sustainable and effective anti-tumor effects compared to free DOX on a transgenic zebrafish TO(KrasG12V) model in vivo. These results indicated that the biocompatible nanomaterials developed by collaborative assembly with galactosyl diblock glycopolymers and DOX may serve as a promising candidates for targeting therapy of HCC.
Collapse
Affiliation(s)
- Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Meng Shao
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jiarui Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
11
|
Fan F, Cai C, Wang W, Gao L, Li J, Li J, Gu F, Sun T, Li J, Li C, Yu G. Synthesis of Fucoidan-Mimetic Glycopolymers with Well-Defined Sulfation Patterns via Emulsion Ring-Opening Metathesis Polymerization. ACS Macro Lett 2018; 7:330-335. [PMID: 35632907 DOI: 10.1021/acsmacrolett.8b00056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The approach developed here offers distinct and well-defined glycopolymers for deciphering the biological roles of natural bioactive polysaccharides. Fucose monomers were chemically synthesized and decorated with specific sulfation patterns including unsulfate, monosulfate, disulfate, and trisulfate groups. The six fucoidan-mimetic glycopolymers (18-23) were successfully fabricated through microwave-assisted ring-opening metathesis polymerization (ROMP) in an emulsion system. The molecular weight (Mw), polydispersity index (PDI), and multiple functional groups were fully characterized by SEC-MALLS-RI and NMR spectroscopy. Three glycopolymers (19, 21, 23) associated with 2-O-sulfation exhibited better inhibitory effects on the H1N1 virus, while glycopolymers (19, 20) with monosulfate groups were more effective against the H3N2 virus. These findings would promote the development of novel anti-influenza A virus (IAV) drugs based on natural fucoidans.
Collapse
Affiliation(s)
- Fei Fan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Lei Gao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jia Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Feifei Gu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|