1
|
Xu D, Wang M, Huang R, Stoddart JF, Wang Y. A Dual-Pathway Responsive Mechanophore for Intelligent Luminescent Polymer Materials. J Am Chem Soc 2025; 147:4450-4458. [PMID: 39849299 DOI: 10.1021/jacs.4c15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Mechanoluminescent units, when integrated into polymer matrices, undergo structural transformations in response to mechanical force, resulting in changes in fluorescence. This phenomenon holds considerable promise for the development of stress-sensing materials. Despite the high demand for robust, tunable mechanoluminescent mechanophores for force assessment and smart force-responsive materials, strategies for their design and synthesis remain underdeveloped. In an attempt to address this challenge, we have introduced a novel dual-pathway responsive mechanophore, bis(2-(2-(tert-butyldimethylsilanyloxy)benzylidene)amino)aryl disulfides (SSTBS), which, when incorporated into polymer chains, exhibits fluorescence upon the combined application of force and chemical stimulus, irrespective of their sequence. This property is facilitated by the disulfide bond's sensitivity to mechanical force and the fluoride anion-induced desilylation and deprotonation. Notably, the force-responsive threshold of the SSTBS mechanophore can be finely tuned by TBAF treatment, as supported by both experimental and computational studies, providing a simple, yet effective means, to regulate polymer force responsiveness on demand. We believe that the strategy developed in this investigation will shed light on the design of mechanophores for the fabrication of intelligent luminescent polymer materials and advance the development of smart force-reporting systems.
Collapse
Affiliation(s)
- Dejing Xu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Maolin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Ruozhou Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
- Weinberg College of Arts and Science, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, University of Hong Kong, Kowloon Hong Kong SAR 999077, PR China
- Center for Regenerative Nanomedieine, Northwestern University, Chicago, Illinois 60611, United States
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Yuping Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| |
Collapse
|
2
|
Gridneva T, Khusnutdinova JR. Functional coordination compounds for mechanoresponsive polymers. Chem Commun (Camb) 2025; 61:441-454. [PMID: 39636308 DOI: 10.1039/d4cc05622a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Small molecule probes that respond to a mechanical force ("mechanophores") have emerged as an important tool in the design of stimuli-responsive polymer materials. Although the majority of such mechanohphores are based on organic molecules, the utilization of metal complexes has also attracted attention as they offer a possibility to tune their spectroscopic properties and reactivity, and have the ability to reversibly form and break metal-ligand bonds through rational design of the ligand environment surrounding the metal. This review features representative examples of coordination compounds which were utilized as new, tunable tools to create various types of mechanoresponsive polymers.
Collapse
Affiliation(s)
- Tatiana Gridneva
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
3
|
Cheng Q, De Bo G. Mechanochemical generation of aryne. Chem Sci 2024:d4sc03968h. [PMID: 39129780 PMCID: PMC11308379 DOI: 10.1039/d4sc03968h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024] Open
Abstract
Mechanical force is unique in promoting unusual reaction pathways and especially for the generation of reactive intermediates sometimes inaccessible to other forms of activation. The mechanochemical generation of reactive species could find application in synthetic and materials chemistry alike. However, the nature of these reactive intermediates has been mostly limited to radicals or carbenes. Here, we present a new mechanophore that generates a reactive aryne intermediate upon dissociation of a benzocyclobutene (BCB) core via a force-promoted retro [2 + 2] cycloaddition.
Collapse
Affiliation(s)
- Qianqian Cheng
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Guillaume De Bo
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| |
Collapse
|
4
|
Kasori R, Watabe T, Aoki D, Otsuka H. Enhancement of Mechanophore Activation by Electrostatic Interaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryosuke Kasori
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Versaw BA, Zeng T, Hu X, Robb MJ. Harnessing the Power of Force: Development of Mechanophores for Molecular Release. J Am Chem Soc 2021; 143:21461-21473. [PMID: 34927426 DOI: 10.1021/jacs.1c11868] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymers that release small molecules in response to mechanical force are promising materials for a variety of applications ranging from sensing and catalysis to targeted drug delivery. Within the rapidly growing field of polymer mechanochemistry, stress-sensitive molecules known as mechanophores are particularly attractive for enabling the release of covalently bound payloads with excellent selectivity and control. Here, we review recent progress in the development of mechanophore-based molecular release platforms and provide an optimistic, yet critical perspective on the fundamental and technological advancements that are still required for this promising research area to achieve significant impact.
Collapse
Affiliation(s)
- Brooke A Versaw
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tian Zeng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaoran Hu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Maxwell J Robb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Abstract
AbstractThis Account covers the recent progress made on heterocyclic mechanophores in the field of polymer mechanochemistry. In particular, the types of such mechanophores as well as the mechanisms and applications of their force-induced structural transformations are discussed and related perspectives and future challenges proposed.1 Introduction2 Types of Mechanophores3 Methods to Incorporate Heterocycle Mechanophores into Polymer Systems4 Mechanochemical Reactions of Heterocyclic Mechanophores4.1 Three-Membered-Ring Mechanophores4.2 Four-Membered-Ring Mechanophores4.3 Six-Membered-Ring Mechanophores4.4 Bicyclic Mechanophores5 Applications5.1 Cross-Linking of Polymer5.2 Degradable Polymer5.3 Mechanochromic Polymer6 Concluding Remarks and Outlook
Collapse
|
7
|
Qi Q, Sekhon G, Chandradat R, Ofodum NM, Shen T, Scrimgeour J, Joy M, Wriedt M, Jayathirtha M, Darie CC, Shipp DA, Liu X, Lu X. Force-Induced Near-Infrared Chromism of Mechanophore-Linked Polymers. J Am Chem Soc 2021; 143:17337-17343. [PMID: 34586805 DOI: 10.1021/jacs.1c05923] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A near-infrared (NIR) mechanophore was developed and incorporated into a poly(methyl acrylate) chain to showcase the first force-induced NIR chromism in polymeric materials. This mechanophore, based on benzo[1,3]oxazine (OX) fused with a heptamethine cyanine moiety, exhibited NIR mechanochromism in solution, thin-film, and bulk states. The mechanochemical activity was validated using UV-vis-NIR absorption/fluorescence spectroscopies, gel permeation chromatography (GPC), NMR, and DFT simulations. Our work demonstrates that NIR mechanochromic polymers have considerable potential in mechanical force sensing, damage detection, bioimaging, and biomechanics.
Collapse
Affiliation(s)
| | | | | | | | - Tianruo Shen
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | | | | | | | | | | | | | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | | |
Collapse
|
8
|
Jung S, Yoon HJ. Mechanical Force for the Transformation of Aziridine into Imine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sangmin Jung
- Department of Chemistry Korea University Seoul 02841 South Korea
| | - Hyo Jae Yoon
- Department of Chemistry Korea University Seoul 02841 South Korea
| |
Collapse
|
9
|
Jung S, Yoon HJ. Mechanical Force for the Transformation of Aziridine into Imine. Angew Chem Int Ed Engl 2021; 60:23564-23568. [PMID: 34499388 DOI: 10.1002/anie.202109358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Indexed: 11/07/2022]
Abstract
Force-selective mechanochemical reactions may be important for applications in polymer mechanochemistry, yet it is difficult to achieve such reactions. This paper reports that cis-N-phthalimidoaziridine incorporated into a macromolecular backbone undergoes migration of N-phthalimido group to afford imine under mechanochemical condition and not thermal one. The imine is further hydrolyzed by water bifurcating into amine and aldehyde. These structural transformations are confirmed by 1 H NMR and FT-IR spectroscopic analyses. Computational simulations are conducted for the aziridine mechanophore to propose the mechanism of reaction and define the substrate scope of reaction.
Collapse
Affiliation(s)
- Sangmin Jung
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
10
|
Watabe T, Aoki D, Otsuka H. Enhancement of Mechanophore Activation in Mechanochromic Dendrimers by Functionalization of Their Surface. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02497] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
11
|
Haque A, Al-Balushi R, Al-Busaidi IJ, Al-Rasbi NK, Al-Bahri S, Al-Suti MK, Khan MS, Abou-Zied OK, Skelton JM, Raithby PR. Two Is Better than One? Investigating the Effect of Incorporating Re(CO) 3Cl Side Chains into Pt(II) Diynes and Polyynes. Inorg Chem 2021; 60:745-759. [PMID: 33382607 DOI: 10.1021/acs.inorgchem.0c02747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pt(II) diynes and polyynes incorporating 5,5'- and 6,6'-disubstituted 2,2'-bipyridines were prepared following conventional Sonogashira and Hagihara dehydrohalogenation reaction protocols. Using Pt(II) dimers and polymers as a rigid-rod backbone, four new heterobimetallic compounds incorporating Re(CO)3Cl as a pendant functionality in the 2,2'-bipyridine core were obtained. The new heterobimetallic Pt-Re compounds were characterized by analytical and spectroscopic techniques. The solid-state structures of a Re(I)-coordinated diterminal alkynyl ligand and a representative model compound were determined by single-crystal X-ray diffraction. Detailed photophysical characterization of the heterobimetallic Pt(II) diynes and polyynes was carried out. We find that the incorporation of the Re(CO)3Cl pendant functionality in the 2,2'-bipyridine-containing main-chain Pt(II) diynes and polyynes has a synergistic effect on the optical properties, red shifting the absorption profile and introducing strong long-wavelength absorptions. The Re(I) moiety also introduces strong emission into the monomeric Pt(II) diyne compounds, whereas this is suppressed in the polyynes. The extent of the synergy depends on the topology of the ligands. Computational modeling was performed to compare the energetic stabilities of the positional isomers and to understand the microscopic nature of the major optical transitions. We find that 5,5'-disubstituted 2,2'-bipyridine systems are better candidates in terms of yield, photophysical properties, and stability than their 6,6'-substituted counterparts. Overall, this work provides an additional synthetic route to control the photophysical properties of metallaynes for a variety of optoelectronic applications.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Kingdom of Saudi Arabia.,Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khod 123, Sultanate of Oman
| | - Rayya Al-Balushi
- Department of Basic Sciences, College of Applied and Health Sciences, A'Sharqiyah University, Ibra 400, Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khod 123, Sultanate of Oman
| | - Nawal K Al-Rasbi
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khod 123, Sultanate of Oman
| | - Sumayya Al-Bahri
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khod 123, Sultanate of Oman
| | - Mohammed K Al-Suti
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khod 123, Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khod 123, Sultanate of Oman
| | - Osama K Abou-Zied
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khod 123, Sultanate of Oman
| | - Jonathan M Skelton
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.,Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Paul R Raithby
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
12
|
Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP. Mechanochemical tools for polymer materials. Chem Soc Rev 2021; 50:4100-4140. [DOI: 10.1039/d0cs00940g] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review aims to provide a field guide for the implementation of mechanochemistry in synthetic polymers by summarizing the molecules, materials, and methods that have been developed in this field.
Collapse
Affiliation(s)
- Yinjun Chen
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Gaëlle Mellot
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Diederik van Luijk
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Rint P. Sijbesma
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
13
|
Wu Q, Yuan Y, Chen F, Sun C, Xu H, Chen Y. Diselenide-Linked Polymers under Sonication. ACS Macro Lett 2020; 9:1547-1551. [PMID: 35617081 DOI: 10.1021/acsmacrolett.0c00585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of Se-Se-linked polystyrenes have been synthesized and subjected to pulse sonication. Comprehensive investigations based on GPC measurements, derivatization experiments, and EPR spectroscopy verify the sonication-induced bond scission and metathesis of these polymeric diselenides. The metathesis kinetics and energy conversion efficiency by different stimuli including heating, light, and sonication are compared, which demonstrate that sonication can offer an alternative way to break the Se-Se bond and realize selective metathesis reactions between diselenide-linked polymers and small molecules. This fundamental study on sonochemistry of diselenide-centered polymers expands our knowledge of diselenide chemistry and mechanochemistry of dynamic covalent mechanophores, which may greatly advance the applications of diselenide-containing polymers.
Collapse
Affiliation(s)
- Qin Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
| | - Yuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
| | - Feiyi Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
| | - Chenxing Sun
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
| |
Collapse
|
14
|
Wang L, Yu Y, Razgoniaev AO, Johnson PN, Wang C, Tian Y, Boulatov R, Craig SL, Widenhoefer RA. Mechanochemical Regulation of Oxidative Addition to a Palladium(0) Bisphosphine Complex. J Am Chem Soc 2020; 142:17714-17720. [PMID: 32957791 DOI: 10.1021/jacs.0c08506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we report the effect of force applied to the biaryl backbone of a bisphosphine ligand on the rate of oxidative addition of bromobenzene to a ligand-coordinated palladium center. Local compressive and tensile forces on the order of 100 pN were generated using a stiff stilbene force probe. A compressive force increases the rate of oxidative addition, whereas a tensile force decreases the rate, relative to that of the parent complex of strain-free ligand. Rates vary by a factor of ∼6 across ∼340 pN of force applied to the complexes. The crystal structures and DFT calculations support that force-induced perturbation of the geometry of the reactant is negligible. The force-rate relationship observed is mainly attributed to the coupling of force to nuclear motion comprising the reaction coordinate. These observations inform the development of catalysts whose activity can be tuned by an external force that is adjusted within a catalytic cycle.
Collapse
Affiliation(s)
- Liqi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yichen Yu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Anton O Razgoniaev
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chenxu Wang
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Yancong Tian
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Roman Boulatov
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ross A Widenhoefer
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
15
|
Wu S, Wang T, Xu H. Regulating Heterogeneous Catalysis of Gold Nanoparticles with Polymer Mechanochemistry. ACS Macro Lett 2020; 9:1192-1197. [PMID: 35638615 DOI: 10.1021/acsmacrolett.0c00451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polymer mechanochemistry has emerged as a unique approach to regulate homogeneous catalysis in chemical transformations. The utilization of polymer mechanochemistry to regulate heterogeneous catalysis, however, still remains to be investigated. In this study, using polymer-grafted gold nanoparticles as the model heterogeneous catalysts, we show that polymer chains can be mechanically ruptured from the surface of gold nanoparticles, and thus, the catalytic activity of gold nanoparticles can be accelerated under sonication. The mechanical activation of polymer-grafted gold nanoparticles only occurs when the grafted polymer chains exceed a threshold molecular weight. This mechanical behavior is similar to those mechanophore-linked polymers. More importantly, further characterizations reveal that the Au-Au bonds instead of the Au-S bonds are broken at the heterointerfaces of polymer chains and gold nanoparticles. Our study unveils an unprecedented characteristic of polymer-grafted metallic nanoparticles in response to external mechanical stress.
Collapse
Affiliation(s)
- Siyao Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hangxun Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Yoon HJ, Jung S, Kim SY. Force-Induced Cycloaddition of Aziridine: Can We Force a New Route? Synlett 2020. [DOI: 10.1055/s-0040-1707145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cycloaddition reactions of aziridines with dipolarophiles under traditional thermal or photochemical conditions entail destructive routes to form reactive intermediates such as an azomethine ylide. This article highlights a recent study that demonstrates a cycloaddition reaction of aziridine induced by mechanical force. Experimental results suggest that the force-induced cycloaddition of aziridine with dimethyl acetylenedicarboxylate as a dipolarophile does not seem to involve an ylide, with implications for a possible new reaction route.1 Rivalry between Aziridine and Epoxide2 Mechanochemically Responsive Polymers3 Aziridine Mechanophore4 Concluding Remarks and Outlook
Collapse
|
17
|
Jung S, Yoon HJ. Mechanical Force Induces Ylide-Free Cycloaddition of Nonscissible Aziridines. Angew Chem Int Ed Engl 2020; 59:4883-4887. [PMID: 31944507 DOI: 10.1002/anie.201915438] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Indexed: 11/08/2022]
Abstract
The application of aziridines as nonvulnerable mechanophores is reported. Upon exposure to a mechanical force, stereochemically pure nonactivated aziridines incorporated into the backbone of a macromolecule do not undergo cis-trans isomerization, thus suggesting retention of the ring structure under force. Nonetheless, aziridines react with a dipolarophile and seem not to obey conventional reaction pathways that involve C-C or C-N bond cleavage prior to the cycloaddition. Our work demonstrates that a nonvulnerable chemical structure can be a mechanophore.
Collapse
Affiliation(s)
- Sangmin Jung
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
18
|
|
19
|
Dzhardimalieva GI, Yadav BC, Singh S, Uflyand IE. Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalton Trans 2020; 49:3042-3087. [DOI: 10.1039/c9dt04360h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent achievements and problems associated with the use of metallopolymers as self-healing and shape memory materials are presented and evaluated.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers
- The Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russian Federation
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory
- Department of Physics
- Babasaheb Bhimrao Ambedkar University
- Lucknow-226025
- India
| | - Shakti Singh
- Nanomaterials and Sensors Research Laboratory
- Department of Physics
- Babasaheb Bhimrao Ambedkar University
- Lucknow-226025
- India
| | - Igor E. Uflyand
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- 344006 Russian Federation
| |
Collapse
|
20
|
Todisco S, Latronico M, Gallo V, Re N, Marrone A, Tolbatov I, Mastrorilli P. Double addition of phenylacetylene onto the mixed bridge phosphinito-phosphanido Pt(i) complex [(PHCy 2)Pt(μ-PCy 2){κ 2P,O-μ-P(O)Cy 2}Pt(PHCy 2)](Pt-Pt). Dalton Trans 2020; 49:6776-6789. [PMID: 32374320 DOI: 10.1039/d0dt00923g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of the dinuclear phosphinito bridged complex [(PHCy2)Pt(μ-PCy2){κ2P,O-μ-P(O)Cy2}Pt(PHCy2)](Pt-Pt) (1) with phenylacetylene affords the η1-alkenyl-μ,η1:η2-alkynyl complex [(η1-trans-(Ph)HC[double bond, length as m-dash]CH)(PHCy2)Pt(μ-PCy2)(μ,η1:η2-PhC[triple bond, length as m-dash]C)Pt{κP-P(O)Cy2}(PHCy2)] (4) displaying a σ-bonded 2-phenylethenyl ligand and an alkynyl (μ-κCα:η2) bridge between the platinum atoms. Complex 4 was shown to form in two steps: initially, the attack of the first molecule of phenylacetylene gives the σ-acetylide complex [(PHCy2)(η1-PhC[triple bond, length as m-dash]C)Pt1(μ-PCy2)Pt2(PHCy2){κP-P(OH)Cy2}](Pt-Pt) (5) featuring an intramolecular π-type hydrogen bond between the POH and the C[triple bond, length as m-dash]C triple bond; fast reaction of 5 with a second molecule of phenylacetylene results in the oxidative addition of the terminal C-H bond of the second alkyne to Pt1 that, after rearrangements, leads to 4. When left in solution for two weeks, complex 4 spontaneously isomerizes completely to [(PHCy2)(η1-trans-(Ph)HC[double bond, length as m-dash]CH)Pt(μ-PCy2){κ2P,O-μ-P(O)Cy2}Pt(η1-PhC[triple bond, length as m-dash]C)(PHCy2)] (7) displaying a 2-phenylethenyl ligand and a phenylethynyl group both σ-bonded to the metal. Density functional calculations at the B3LYP/LACV3P++**//DFT/LACVP* level were carried out to study the thermodynamics of the formation of all considered complexes and to trace the mechanism of formation of the observed products.
Collapse
Affiliation(s)
- Stefano Todisco
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, I-70125 Bari, Italy.
| | - Mario Latronico
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, I-70125 Bari, Italy.
| | - Vito Gallo
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, I-70125 Bari, Italy.
| | - Nazzareno Re
- Dipartimento di Farmacia, Università di Chieti, Italy.
| | | | | | - Piero Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
21
|
Lin Y, Hansen HR, Brittain WJ, Craig SL. Strain-Dependent Kinetics in the Cis-to-Trans Isomerization of Azobenzene in Bulk Elastomers. J Phys Chem B 2019; 123:8492-8498. [PMID: 31525921 DOI: 10.1021/acs.jpcb.9b07088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cis-to-trans isomerization of azobenzene is accelerated in a bulk PDMS elastomer under uniaxial tension. The kinetics are cleanly described by a single-exponential first-order process (k = 2.7 × 10-5 s-1) in the absence of tension but become multiexponential under constant strains of 40-90%. The complex kinetics can be reasonably modeled as a two-component process. The majority (∼92%) process is slower and occurs with a rate constant that is similar to that of the unstrained system (k = 2.3-2.7 × 10-5 s-1), whereas the rate constant of the minority (∼8%) process increases from k = 10.1 × 10-5 s-1 at 40% strain to k = 21.3 × 10-5 s-1 at 90% strain. Simple models of expected force-rate relationships suggest that the average force of tension per strand in the minority component ranges from 28 to 44 pN across strains of 40-90%.
Collapse
Affiliation(s)
- Yangju Lin
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Heather R Hansen
- Department of Chemistry and Biochemistry , Texas State University , San Marcos , Texas 78666 , United States
| | - William J Brittain
- Department of Chemistry and Biochemistry , Texas State University , San Marcos , Texas 78666 , United States
| | - Stephen L Craig
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
22
|
Juvenal F, Lei H, Karsenti PL, Harvey PD. Drastic effect of the substituent on the anthraquinone diimine moiety on the properties of the push-pull trans-bisphosphinebisphenylacetynylplatinum(II)-containing polymers. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Hannewald N, Enke M, Nischang I, Zechel S, Hager MD, Schubert US. Mechanical Activation of Terpyridine Metal Complexes in Polymers. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01274-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Lin Y, Chang CC, Craig SL. Mechanical generation of isocyanate by mechanically induced retro [2 + 2] cycloaddition of a 1,2-diazetidinone mechanophore. Org Chem Front 2019. [DOI: 10.1039/c9qo00262f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanical activation of a 1,2-diazetidinone mechanophore via ultrasonic sonication leads to the formation of isocyanate and imine products.
Collapse
Affiliation(s)
- Yangju Lin
- Department of Chemistry
- Duke University
- Durham
- USA
| | | | | |
Collapse
|
25
|
Götz S, Abend M, Zechel S, Hager MD, Schubert US. Platinum‐terpyridine complexes in polymers: A novel approach for the synthesis of self‐healing metallopolymers. J Appl Polym Sci 2018. [DOI: 10.1002/app.47064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S. Götz
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena, Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University Jena, Philosophenweg 7 07743 Jena Germany
| | - M. Abend
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena, Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University Jena, Philosophenweg 7 07743 Jena Germany
| | - S. Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena, Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University Jena, Philosophenweg 7 07743 Jena Germany
| | - M. D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena, Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University Jena, Philosophenweg 7 07743 Jena Germany
| | - U. S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena, Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University Jena, Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
26
|
Kida J, Imato K, Goseki R, Aoki D, Morimoto M, Otsuka H. The photoregulation of a mechanochemical polymer scission. Nat Commun 2018; 9:3504. [PMID: 30158595 PMCID: PMC6115466 DOI: 10.1038/s41467-018-05996-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023] Open
Abstract
Control over mechanochemical polymer scission by another external stimulus may offer an avenue to further advance the fields of polymer chemistry, mechanochemistry, and materials science. Herein, we demonstrate that light can regulate the mechanochemical behavior of a diarylethene-conjugated Diels-Alder adduct (DAE/DA) that reversibly isomerizes from a weaker open form to a stronger closed form under photoirradiation. Pulsed ultrasonication experiments, spectroscopic analyses, and density functional theory calculations support the successful photoregulation of the reactivity of this DAE/DA mechanophore, which is incorporated at the mid-chain of a polymer, and indicate that higher force and energy are required to cleave the closed form of the DAE/DA mechanophore relative to the open form. The present photoregulation concept provides an attractive approach toward the generation of new mechanofunctional polymers.
Collapse
Affiliation(s)
- Jumpei Kida
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Keiichi Imato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Raita Goseki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masakazu Morimoto
- Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
27
|
Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications. Chem Rev 2018; 118:8474-8597. [PMID: 30112905 DOI: 10.1021/acs.chemrev.8b00022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Rayya A Al-Balushi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Paul R Raithby
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
28
|
Kargarfard N, Diedrich N, Rupp H, Döhler D, Binder WH. Improving Kinetics of "Click-Crosslinking" for Self-Healing Nanocomposites by Graphene-Supported Cu-Nanoparticles. Polymers (Basel) 2017; 10:E17. [PMID: 30966054 PMCID: PMC6414871 DOI: 10.3390/polym10010017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022] Open
Abstract
Investigation of the curing kinetics of crosslinking reactions and the development of optimized catalyst systems is of importance for the preparation of self-healing nanocomposites, able to significantly extend their service lifetimes. Here we study different modified low molecular weight multivalent azides for a capsule-based self-healing approach, where self-healing is mediated by graphene-supported copper-nanoparticles, able to trigger "click"-based crosslinking of trivalent azides and alkynes. When monitoring the reaction kinetics of the curing reaction via reactive dynamic scanning calorimetry (DSC), it was found that the "click-crosslinking" reactivity decreased with increasing chain length of the according azide. Additionally, we could show a remarkable "click" reactivity already at 0 °C, highlighting the potential of click-based self-healing approaches. Furthermore, we varied the reaction temperature during the preparation of our tailor-made graphene-based copper(I) catalyst to further optimize its catalytic activity. With the most active catalyst prepared at 700 °C and the optimized set-up of reactants on hand, we prepared capsule-based self-healing epoxy nanocomposites.
Collapse
Affiliation(s)
- Neda Kargarfard
- Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
- Leibniz-Institut für Polymerforschung Dresden e. V., Abteilung Reaktive Verarbeitung, Hohe Str. 6, D-01069 Dresden, Germany.
| | - Norman Diedrich
- Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
| | - Harald Rupp
- Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
| | - Diana Döhler
- Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
| | - Wolfgang H Binder
- Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
| |
Collapse
|