1
|
Ramimoghadam D, Eyckens DJ, Evans RA, Moad G, Holmes S, Simons R. Towards Sustainable Materials: A Review of Acylhydrazone Chemistry for Reversible Polymers. Chemistry 2024; 30:e202401728. [PMID: 38888459 DOI: 10.1002/chem.202401728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Transitioning towards a circular economy, extensive research has focused on dynamic covalent bonds (DCBs) to pave the way for more sustainable materials. These bonds enable debonding and rebonding on demand, as well as facilitating end-of-life recycling. Acylhydrazone/hydrazone chemistry offers a material with high stability under neutral and basic conditions making it a promising candidate for materials research, though the material is susceptible to acid degradation. However, this degradation under acidic conditions can be exploited, making it widely applicable in self-healing and biomedical fields, with potential for reprocessing and recycling. This review highlights studies exploring the reversibility of acylhydrazone/hydrazone bonds in various polymers, altering their properties, and utilizing them in applications such as self-healing, reprocessing, and recycling. The review also focuses on how the mechanical properties are affected by the presence of dynamic linkages, and methods to improve the mechanical performance.
Collapse
Affiliation(s)
- Donya Ramimoghadam
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Daniel J Eyckens
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Richard A Evans
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Graeme Moad
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Susan Holmes
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Ranya Simons
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| |
Collapse
|
2
|
Yu K, Yang L, Zhang N, Wang S, Liu H. Development of nanocellulose hydrogels for application in the food and biomedical industries: A review. Int J Biol Macromol 2024; 272:132668. [PMID: 38821305 DOI: 10.1016/j.ijbiomac.2024.132668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
As the most abundant and renewable natural resource, cellulose has attracted significant attention and research interest for the production of hydrogels (HGs). To address environmental issues and emerging demands, the benefits of naturally produced HGs include excellent mechanical properties and superior biocompatibility. HGs are three-dimensional networks created by chemical or physical cross-linking of linear or branched hydrophilic polymers and have high capacity for absorption of water and biological fluids. Although widely used in the food and biomedical fields, most HGs are not biodegradable. Nanocellulose hydrogels (NC-HGs) have been extensively applied in the food industry for detection of freshness, chemical additives, and substitutes, as well as the biomedical field for use as bioengineering scaffolds and drug delivery systems owing to structural interchangeability and stimuli-responsive properties. In this review article, the sources, structures, and preparation methods of NC-HGs are described, applications in the food and biomedical industries are summarized, and current limitations and future trends are discussed.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China.
| | - Ning Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| |
Collapse
|
3
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
4
|
Chen Y, Chen M, Wang K, Huang J, Gupta HIS, He K, Rui Y. Accelerating the remodeling of collagen in cutaneous full-thickness wound using FIR soldering technology with bio-targeting nanocomposites hydrogel. JOURNAL OF BIOPHOTONICS 2024; 17:e202300429. [PMID: 38332581 DOI: 10.1002/jbio.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 01/06/2024] [Indexed: 02/10/2024]
Abstract
A novel composite wound dressing hydrogel by incorporating single-walled carbon nanotubes and indocyanine green into a dual-crosslinked hydrogel through Schiff base reaction was developed. The objective was to prevent wound infection and enhance the thermal effect induced by laser energy. The hydrogel matrix was constructed using oxidized gelatin, pre-crosslinked with calcium ions, along with carboxymethyl chitosan, crosslinked via Schiff base reaction. Optimization of the blank hydrogel's gelation time, swelling index, degradation rate, and mechanical properties was achieved by adding 0.1% SWCNT and 0.1% ICG. Among them, the SWCNT-loaded hydrogel BCG-SWCNT exhibited superior performance overall: a gelation time of 102 s; a swelling index above 30 after equilibrium swelling; a degradation rate of 100.5% on the seventh day; and a compressive modulus of 8.8 KPa. It displayed significant inhibition against methicillin-resistant Staphylococcus aureus infection in wounds. When combined with laser energy usage, the composite hydrogel demonstrated excellent pro-healing activity in rats.
Collapse
Affiliation(s)
- Yuxin Chen
- Nanjing University of Science and Technology, Nanjing, China
- Queen Mary University of London, London, UK
| | - Mengying Chen
- Nanjing University of Science and Technology, Nanjing, China
| | - Kehong Wang
- Nanjing University of Science and Technology, Nanjing, China
| | - Jun Huang
- Nanjing University of Science and Technology, Nanjing, China
| | | | - Kexin He
- Nanjing Medical University, Nanjing, China
| | - Yunfeng Rui
- Nanjing Southeast University, Nanjing, China
| |
Collapse
|
5
|
Apostolides D, Michael G, Patrickios CS, Notredame B, Zhang Y, Gohy JF, Prévost S, Gradzielski M, Jung FA, Papadakis CM. Dynamic Covalent Amphiphilic Polymer Conetworks Based on End-Linked Pluronic F108: Preparation, Characterization, and Evaluation as Matrices for Gel Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38669089 PMCID: PMC11082838 DOI: 10.1021/acsami.3c19189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
We present the development of a platform of well-defined, dynamic covalent amphiphilic polymer conetworks (APCN) based on an α,ω-dibenzaldehyde end-functionalized linear amphiphilic poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) (PEG-b-PPG-b-PEG, Pluronic) copolymer end-linked with a triacylhydrazide oligo(ethylene glycol) triarmed star cross-linker. The developed APCNs were characterized in terms of their rheological (increase in the storage modulus by a factor of 2 with increase in temperature from 10 to 50 °C), self-healing, self-assembling, and mechanical properties and evaluated as a matrix for gel polymer electrolytes (GPEs) in both the stretched and unstretched states. Our results show that water-loaded APCNs almost completely self-mend, self-organize at room temperature into a body-centered cubic structure with long-range order exhibiting an aggregation number of around 80, and display an exceptional room temperature stretchability of ∼2400%. Furthermore, ionic liquid-loaded APCNs could serve as gel polymer electrolytes (GPEs), displaying a substantial ion conductivity in the unstretched state, which was gradually reduced upon elongation up to a strain of 4, above which it gradually increased. Finally, it was found that recycled (dissolved and re-formed) ionic liquid-loaded APCNs could be reused as GPEs preserving 50-70% of their original ion conductivity.
Collapse
Affiliation(s)
| | - George Michael
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Costas S. Patrickios
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Benoît Notredame
- Institute
for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
(BSMA), Université Catholique de
Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Yinghui Zhang
- Institute
for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
(BSMA), Université Catholique de
Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Jean-François Gohy
- Institute
for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
(BSMA), Université Catholique de
Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Sylvain Prévost
- Institut
Max von Laue—Paul Langevin (ILL), 71, Avenue des Martyrs—CS 20156, 38042 Grenoble Cedex 9, France
| | - Michael Gradzielski
- Stranski-Laboratorium
für Physikalische und Theoretische Chemie, Institut für
Chemie, Technische Universität, Straße des 17, Juni 124, D-10623 Berlin, Germany
| | - Florian A. Jung
- Soft Matter
Physics Group, Physics Department, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| | - Christine M. Papadakis
- Soft Matter
Physics Group, Physics Department, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
6
|
Princen K, Marien N, Guedens W, Graulus GJ, Adriaensens P. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review. Chembiochem 2023; 24:e202300149. [PMID: 37220343 DOI: 10.1002/cbic.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.
Collapse
Affiliation(s)
- Ken Princen
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Neeve Marien
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
7
|
Li S, Yang C, Li J, Zhang C, Zhu L, Song Y, Guo Y, Wang R, Gan D, Shi J, Ma P, Gao F, Su H. Progress in Pluronic F127 Derivatives for Application in Wound Healing and Repair. Int J Nanomedicine 2023; 18:4485-4505. [PMID: 37576462 PMCID: PMC10416793 DOI: 10.2147/ijn.s418534] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Pluronic F127 hydrogel biomaterial has garnered considerable attention in wound healing and repair due to its remarkable properties including temperature sensitivity, injectability, biodegradability, and maintain a moist wound environment. This comprehensive review provides an in-depth exploration of the recent advancements in Pluronic F127-derived hydrogels, such as F127-CHO, F127-NH2, and F127-DA, focusing on their applications in the treatment of various types of wounds, ranging from burns and acute wounds to infected wounds, diabetic wounds, cutaneous tumor wounds, and uterine scars. Furthermore, the review meticulously examines the intricate interaction mechanisms employed by these hydrogels within the wound microenvironment. By elucidating the underlying mechanisms, discussing the strengths and weaknesses of Pluronic F127, analyzing the current state of wound healing development, and expanding on the trend of targeting mitochondria and cells with F127 as a nanomaterial. The review enhances our understanding of the therapeutic effects of these hydrogels aims to foster the development of effective and safe wound-healing modalities. The valuable insights provided this review have the potential to inspire novel ideas for clinical treatment and facilitate the advancement of innovative wound management approaches.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Cheng Yang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Junqiang Li
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Chao Zhang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Liaoliao Zhu
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Yang Song
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Yongdong Guo
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Ronglin Wang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Dongxue Gan
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Jingjie Shi
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Peixiang Ma
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Fei Gao
- Center for Peptide Functional Materials and Innovative Drugs, Institute of Translational Medicine, Shanghai University, ShangHai City, People’s Republic of China
| | - Haichuan Su
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| |
Collapse
|
8
|
Yang B, Wang C, Xiang R, Zhao Q, Wu Y, Tan S. An Anti-Fracture and Super Deformable Soft Hydrogel Network Insensitive to Extremely Harsh Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302342. [PMID: 37289105 PMCID: PMC10427395 DOI: 10.1002/advs.202302342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Indexed: 06/09/2023]
Abstract
Design of hydrogels with superior flexible deformability, anti-fracture toughness, and reliable environment adaption is fundamentally and practically important for diverse hydrogel-based flexible devices. However, these features can hardly be compatible even in elaborately designed hydrogels. Herein soft hydrogel networks with superior anti-fracture and deformability are proposed, which show good adaption to extremely harsh saline or alkaline environments. The hydrogel network is one-step constructed via hydrophobic homogenous cross-linking of poly (sodium acrylate), which is expected to provide hydrophobic associations and homogeneous cross-linking for energy dissipation. The obtained hydrogels are quite soft and deformable (tensile modulus: ≈20 kPa, stretchability: 3700%), but show excellent anti-fracture toughness (10.6 kJ m-2 ). The energy dissipation mechanism can be further intensified under saline or alkaline environments. The mechanical performance of the hydrophobic cross-linking topology is inspired rather than weakened by extremely saline or alkaline environments (stretchability: 3900% and 5100%, toughness: 16.1 and 17.1 kJ m-2 under saturated NaCl and 6 mol L-1 NaOH environments, respectively). The hydrogel network also shows good performance in reversible deformations, ion conductivity, sensing strain, monitoring human motions, and freezing resistance under high-saline environments. The hydrogel network show unique mechanical performance and robust environment adaption, which is quite promising for diverse applications.
Collapse
Affiliation(s)
- Baibin Yang
- School of Chemical EngineeringSichuan UniversityNo. 24 South Section 1, Yihuan RoadChengdu610065China
| | - Caihong Wang
- School of Chemical EngineeringSichuan UniversityNo. 24 South Section 1, Yihuan RoadChengdu610065China
| | - Ruihan Xiang
- School of Chemical EngineeringSichuan UniversityNo. 24 South Section 1, Yihuan RoadChengdu610065China
| | - Qiang Zhao
- School of Chemical EngineeringSichuan UniversityNo. 24 South Section 1, Yihuan RoadChengdu610065China
| | - Yong Wu
- School of Chemical EngineeringSichuan UniversityNo. 24 South Section 1, Yihuan RoadChengdu610065China
| | - Shuai Tan
- School of Chemical EngineeringSichuan UniversityNo. 24 South Section 1, Yihuan RoadChengdu610065China
| |
Collapse
|
9
|
Mensah A, Liao S, Amesimeku J, Lv P, Chen Y, Wei Q. Dynamic Pluronic F127 Crosslinking Enhancement of Biopolymeric Nanocomposites for Piezo-Triboelectric Single-Hybrid Nanogenerators and Self-Powered Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207384. [PMID: 36734203 DOI: 10.1002/smll.202207384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/06/2023] [Indexed: 05/25/2023]
Abstract
Biomechanical and nanomechanical energy harvesting systems have gained a wealth of interest, resulting in a plethora of research into the development of biopolymeric-based devices as sustainable alternatives. Piezoelectric, triboelectric, and hybrid nanogenerator devices for electrical applications are engineered and fabricated using innovative, sustainable, facile-approach flexible composite films with high performance based on bacterial cellulose and BaTiO3 , intrinsically and structurally enhanced by Pluronic F127, a micellar cross-linker. The voltage and current outputs of the modified versions with multiwalled carbon nanotube as a conductivity enhancer and post-poling effect are 38 V and 2.8 µA cm-2 , respectively. The multiconnective devices' power density can approach 10 µW cm-2 . The rectified output power is capable of charging capacitors, driving light-emitting diode lights, powering a digital watch and interfacing with a commercial microcontroller board to operate as a piezoresistive force sensor switch as a proof of concept. Magnetoelectric studies show that the composites have the potential to be incorporated into magnetoelectric systems. The biopolymeric composites prove to be desirable candidates for multifunctional energy harvesters and electronic devices.
Collapse
Affiliation(s)
- Alfred Mensah
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang, 330201, P. R. China
| | - Jeremiah Amesimeku
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Pengfei Lv
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yajun Chen
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang, 330201, P. R. China
| |
Collapse
|
10
|
Liang H, Wei Y, Ji Y. Magnetic-responsive Covalent Adaptable Networks. Chem Asian J 2023; 18:e202201177. [PMID: 36645376 DOI: 10.1002/asia.202201177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Covalent adaptable networks (CANs) are reprocessable polymers whose structural arrangement is based on the recombination of dynamic covalent bonds. Composite materials prepared by incorporating magnetic particles into CANs attract much attention due to their remote and precise control, fast response speed, high biological safety and strong penetration of magnetic stimuli. These properties often involve magnetothermal effect and direct magnetic-field guidance. Besides, some of them can also respond to light, electricity or pH values. Thus, they are favorable for soft actuators since various functions are achieved such as magnetic-assisted self-healing (heating or at ambient temperature), welding (on land or under water), shape-morphing, and so on. Although magnetic CANs just start to be studied in recent two years, their advances are promised to expand the practical applications in both cutting-edge academic and engineering fields. This review aims to summarize recent progress in magnetic-responsive CANs, including their design, synthesis and application.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University Chung-Li, 32023, Taiwan, P. R. China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Tan S, Wang C, Yang B, Luo J, Wu Y. Unbreakable Hydrogels with Self-Recoverable 10 200% Stretchability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206904. [PMID: 36000832 DOI: 10.1002/adma.202206904] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Design of tough hydrogels maintaining structural integrity under multivariable mechanical loads remains hugely challenging because the anticipated characteristics such as stretchability, strength, toughness, and fracture resistance can hardly be compatible. Herein, a simple but robust hydrogel network formed by copolymerization of divinyl benzene with acrylamide in micellar solutions for ultra-high fracture resistance and self-recoverable stretchability is proposed. The network provides dynamic association of hydrophobic domains and homogeneous crosslinking of hydrophilic chains, which shows step-by-step deformation process. The dynamic associations allow recoverable small deformations, then the homogeneous crosslinking ensures reversible unfolding and alignment of polymer chains to self-strengthen for ultra-large deformations without crack propagations. The resultant hydrogels exhibit comprehensive unbreakable feature with self-recoverable ultra-high stretchability (100% recovery from 10 200% strain), superior fracture resistance (toughness > 26 kJ m-2 ), and anticrack propagation and fatigue (fatigue threshold: ≈2.5 kJ m-2 ). Even the prenotched hydrogels can undergo tens cyclic loads at 10 200% strain and thousands cyclic loads at 200% strain without noticeable changes in mechanical performance. The robust network prepared from homogeneous hydrophobic crosslinking provides a facile approach and a new mechanism to explore tough hydrogels with superior antifracture and extreme self-recoverable deformability for diverse applications.
Collapse
Affiliation(s)
- Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Baibin Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Jie Luo
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| |
Collapse
|
12
|
Wong JHM, Tan RPT, Chang JJ, Chan BQY, Zhao X, Cheng JJW, Yu Y, Boo YJ, Lin Q, Ow V, Su X, Lim JYC, Loh XJ, Xue K. Injectable Hybrid-Crosslinked Hydrogels as Fatigue-Resistant and Shape-Stable Skin Depots. Biomacromolecules 2022; 23:3698-3712. [PMID: 35998618 DOI: 10.1021/acs.biomac.2c00574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Injectable hydrogels have gained considerable attention, but they are typically mechanically weak and subject to repeated physiological stresses in the body. Herein, we prepared polyurethane diacrylate (EPC-DA) hydrogels, which are injectable and can be photocrosslinked into fatigue-resistant implants. The mechanical properties can be tuned by changing photocrosslinking conditions, and the hybrid-crosslinked EPC-DA hydrogels exhibited high stability and sustained release properties. In contrast to common injectable hydrogels, EPC-DA hydrogels exhibited excellent antifatigue properties with >90% recovery during cyclic compression tests and showed shape stability after application of force and immersion in an aqueous buffer for 35 days. The EPC-DA hydrogel formed a shape-stable hydrogel depot in an ex vivo porcine skin model, with establishment of a temporary soft gel before in situ fixing by UV crosslinking. Hybrid crosslinking using injectable polymeric micelles or nanoparticles may be a general strategy for producing hydrogel implants resistant to physiological stresses.
Collapse
Affiliation(s)
- Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Rebekah Pei Ting Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Jun Jie Chang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Xinxin Zhao
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jayce Jian Wei Cheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Valerie Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Xinyi Su
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.,School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue, #01-30 General Office, Block N4.1, Singapore 639798, Singapore
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| |
Collapse
|
13
|
A laboratory study of self-healing hydrophobic association gels used as lost circulation material. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Xue X, Liang K, Huang W, Yang H, Jiang L, Jiang Q, Jiang T, Lin B, Chen Y, Jiang B, Komarneni S. Molecular Engineering of Injectable, Fast Self-Repairing Hydrogels with Tunable Gelation Time: Characterization by Diffusing Wave Spectroscopy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoqiang Xue
- Industrial College of Carbon Fiber and New Materials, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213000, People’s Republic of China
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215006, People’s Republic of China
| | - Kang Liang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People’s Republic of China
| | - Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People’s Republic of China
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People’s Republic of China
| | - Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People’s Republic of China
| | - Tao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Binzhe Lin
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Yangjing Chen
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People’s Republic of China
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People’s Republic of China
| | - Sridhar Komarneni
- Materials Research Institute and Department of Ecosystem Science and Management, 204EEL, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Carboxymethyl chitosan-based hydrogels containing fibroblast growth factors for triggering diabetic wound healing. Carbohydr Polym 2022; 287:119336. [DOI: 10.1016/j.carbpol.2022.119336] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
|
16
|
Chen L, Wang S, Guo Z, Hu Y. Double dynamic bonds tough hydrogel with high self‐healing properties based on acylhydrazone bonds and borate bonds. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| |
Collapse
|
17
|
Superstretchable, yet stiff, fatigue-resistant ligament-like elastomers. Nat Commun 2022; 13:2279. [PMID: 35477583 PMCID: PMC9046184 DOI: 10.1038/s41467-022-30021-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Ligaments are flexible and stiff tissues around joints to support body movements, showing superior toughness and fatigue-resistance. Such a combination of mechanical properties is rarely seen in synthetic elastomers because stretchability, stiffness, toughness, and fatigue resistance are seemingly incompatible in materials design. Here we resolve this long-standing mismatch through a hierarchical crosslinking design. The obtained elastomer can endure 30,000% stretch and exhibit a Young’s modulus of 18 MPa and toughness of 228 MJ m−3, outperforming all the reported synthetic elastomers. Furthermore, the fatigue threshold is as high as 2,682 J m−2, the same order of magnitude as the ligaments (~1,000 J m−2). We reveal that the dynamic double-crosslinking network composed of Li+-O interactions and PMMA nanoaggregates allows for a hierarchical energy dissipation, enabling the elastomers as artificial ligaments in soft robotics. Stiffness, toughness, and fatigue resistance are seemingly incompatible in materials design. Here the authors demonstrate a hierarchical crosslinking strategy using lithium ion oxygen interactions and PMMA nanoaggregates to enable energy dissipation in the network, leading to stiff yet tough polymer materials.
Collapse
|
18
|
Luo C, Huang M, Liu H. A highly resilient and
ultra‐sensitive
hydrogel for wearable sensors. J Appl Polym Sci 2022. [DOI: 10.1002/app.51925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chunhui Luo
- College of Chemistry and Chemical Engineering North Minzu University Yinchuan China
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission North Minzu University Yinchuan China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology North Minzu University Yinchuan China
| | - Min Huang
- College of Chemistry and Chemical Engineering North Minzu University Yinchuan China
| | - Hongmin Liu
- College of Chemistry and Chemical Engineering North Minzu University Yinchuan China
| |
Collapse
|
19
|
Hao Y, Yuan C, Deng J, Zheng W, Ji Y, Zhou Q. Injectable Self-Healing First-Aid Tissue Adhesives with Outstanding Hemostatic and Antibacterial Performances for Trauma Emergency Care. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16006-16017. [PMID: 35378035 DOI: 10.1021/acsami.2c00877] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft-tissue trauma emergency caused by natural disasters and traffic accidents is highly prevalent, which can result in massive bleeding, pathogen infection, and even death. Although numerous tissue adhesives can bind to tissue surfaces and cover wounds, most of them still have several deficiencies, including long gelation time, poor adhesive strength, and anti-infection, making them inappropriate for use as first-aid bandages. Herein, injectable and self-healing four-arm-PEG-CHO/polyethyleneimine (PEI) tissue adhesives as liquid first-aid supplies are developed via the dynamic Schiff base reaction for trauma emergency. It is found that the prepared hydrogel adhesives exhibit short and controlled gelation time (9∼88 s), strong adhesive strength, and excellent antibacterial ability. Their hemostatic and antimicrobial performances can be tailored by the mass ratio of four-arm-PEG-CHO/PEI. Moreover, in vitro biological assays display that the developed tissue adhesives possess satisfactory cyto/hemocompatibility. Importantly, in vivo the designed adhesives show fast hemostatic capacity and excellent anti-infection as compared to commercial Prontosan gel. Thus, this work indicates that the four-arm-PEG-CHO/PEI first-aid tissue adhesives display great potential for wound emergency management.
Collapse
Affiliation(s)
- Yuanping Hao
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Changqing Yuan
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Jing Deng
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Weiping Zheng
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Yanjing Ji
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| |
Collapse
|
20
|
Deng P, Chen F, Zhang H, Chen Y, Zhou J. Multifunctional Double-Layer Composite Hydrogel Conduit Based on Chitosan for Peripheral Nerve Repairing. Adv Healthc Mater 2022; 11:e2200115. [PMID: 35396930 DOI: 10.1002/adhm.202200115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Indexed: 12/21/2022]
Abstract
Peripheral nerve regeneration and functional recovery is a major challenge in clinical practice. Nerve conduit is an effective treatment for peripheral nerve repair, but the traditional hollow nerve conduit is not satisfactory in peripheral nerve repair due to the limitation of cell migration and nutrient transport. Herein, the double cross-linked hydrogels with injectable, self-healing, and conductive properties are synthesized by the Schiff base reaction between polyaniline-modified carboxymethyl chitosan and aldehyde-modified Pluronic F-127 (F127-CHO), and the hydrophobic interaction of F127-CHO. The conductive hydrogel is injected into the cavity of chitosan conduit prepared by electrodeposition. The inner conductive hydrogel and the outer chitosan conduit are formed into a whole through the Schiff base reaction to obtain a double-layer composite hydrogel nerve conduit. The double-layer composite hydrogel neural conduit loaded with 7,8-dihydroxyflavone (DHF) has excellent degradability, biocompatibility, antioxidant activity, and Schwann cell proliferation activity. In the rat sciatic nerve defect model, the double-layer composite hydrogel nerve conduit significantly promotes sciatic nerve regeneration compared with the chitosan hollow conduit. Surprisingly, the repair ability of double-layered hydrogel nerve conduit loaded with DHF is comparable to that of autologous transplantation. Therefore, this multifunctional double-layer composite hydrogel conduit has great potential for peripheral nerve repairing.
Collapse
Affiliation(s)
- Pengpeng Deng
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
- Department of Biomedical Engineering Hubei Province Key Laboratory of Allergy and Immune Related Diseases School of Basic Medical Science Wuhan University Wuhan 430071 China
| | - Feixiang Chen
- Glyn O. Philips Hydrocolloid Research Centre at HUT Hubei University of Technology Wuhan 430068 China
| | - Haodong Zhang
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
| | - Yun Chen
- Glyn O. Philips Hydrocolloid Research Centre at HUT Hubei University of Technology Wuhan 430068 China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
| |
Collapse
|
21
|
Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H. Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Luo C, Xie S, Deng X, Sun Y, Shen Y, Li M, Fu W. From Micelle-like Aggregates to Extremely-stretchable, Fatigue-resistant, Highly-resilient and Self-healable Hydrogels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
|
24
|
|
25
|
Ganewatta MS, Wang Z, Tang C. Chemical syntheses of bioinspired and biomimetic polymers toward biobased materials. Nat Rev Chem 2021; 5:753-772. [PMID: 36238089 PMCID: PMC9555244 DOI: 10.1038/s41570-021-00325-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 12/21/2022]
Abstract
The rich structures and hierarchical organizations in nature provide many sources of inspiration for advanced material designs. We wish to recapitulate properties such as high mechanical strength, colour-changing ability, autonomous healing and antimicrobial efficacy in next-generation synthetic materials. Common in nature are non-covalent interactions such as hydrogen bonding, ionic interactions and hydrophobic effects, which are all useful motifs in tailor-made materials. Among these are biobased components, which are ubiquitously conceptualized in the space of recently developed bioinspired and biomimetic materials. In this regard, sustainable organic polymer chemistry enables us to tune the properties and functions of such materials that are essential for daily life. In this Review, we discuss recent progress in bioinspired and biomimetic polymers and provide insights into biobased materials through the evolution of chemical approaches, including networking/crosslinking, dynamic interactions and self-assembly. We focus on advances in biobased materials; namely polymeric mimics of resilin and spider silk, mechanically and optically adaptive materials, self-healing elastomers and hydrogels, and antimicrobial polymers.
Collapse
Affiliation(s)
- Mitra S Ganewatta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Anhui Agricultural University, Hefei, China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
26
|
Tough and Resilient Hydrogels Enabled by a Multifunctional Initiating and Cross-Linking Agent. Gels 2021; 7:gels7040177. [PMID: 34698196 PMCID: PMC8544387 DOI: 10.3390/gels7040177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Many high-strength hydrogels have been developed in recent years; however, few of them are both tough and resilient, and their intrinsic paradoxical nature makes designing a gel with both high toughness and high resilience a great challenge. To address this problem, we introduced both N,N,N,N-pentamethyldiethylenetriamine (PA) and N,N-methylenebisacrylamide (MBA) into polyacrylamide hydrogel networks to construct an entangled network that contains chemically cross-linked chains and branched chains simultaneously. The entanglements of branched chains can act as a physical cross-linking point to uniformly disperse stress on molecular chains, and chemical cross-linking ensures the stability of the hydrogel network. The increase in the number and length of branched chains is able to achieve an enhancement in strength while the slip of the entangled polymer chains can effectively achieve energy dissipation and can improve the toughness of the gel. Moreover, the resultant hydrogels exhibit an excellent resilience (>98%). Therefore, high toughness and resilience are achieved simultaneously. In addition, we also investigated the initiation mechanism of PA. This strategy creates a new way for the preparation of next-generation high toughness and high resilience hydrogel-based materials, which have promising applications in wearable, flexible strain/pressure sensors.
Collapse
|
27
|
Apostolides DE, Patrickios CS. Model dynamic covalent organogels based on end‐linked three‐armed oligo(ethylene glycol) star macromonomers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Kadumudi FB, Hasany M, Pierchala MK, Jahanshahi M, Taebnia N, Mehrali M, Mitu CF, Shahbazi MA, Zsurzsan TG, Knott A, Andresen TL, Dolatshahi-Pirouz A. The Manufacture of Unbreakable Bionics via Multifunctional and Self-Healing Silk-Graphene Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100047. [PMID: 34247417 DOI: 10.1002/adma.202100047] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Indexed: 06/13/2023]
Abstract
Biomaterials capable of transmitting signals over longer distances than those in rigid electronics can open new opportunities for humanity by mimicking the way tissues propagate information. For seamless mirroring of the human body, they also have to display conformability to its curvilinear architecture, as well as, reproducing native-like mechanical and electrical properties combined with the ability to self-heal on demand like native organs and tissues. Along these lines, a multifunctional composite is developed by mixing silk fibroin and reduced graphene oxide. The material is coined "CareGum" and capitalizes on a phenolic glue to facilitate sacrificial and hierarchical hydrogen bonds. The hierarchal bonding scheme gives rise to high mechanical toughness, record-breaking elongation capacity of ≈25 000%, excellent conformability to arbitrary and complex surfaces, 3D printability, a tenfold increase in electrical conductivity, and a fourfold increase in Young's modulus compared to its pristine counterpart. By taking advantage of these unique properties, a durable and self-healing bionic glove is developed for hand gesture sensing and sign translation. Indeed, CareGum is a new advanced material with promising applications in fields like cyborganics, bionics, soft robotics, human-machine interfaces, 3D-printed electronics, and flexible bioelectronics.
Collapse
Affiliation(s)
- Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Masoud Hasany
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | | | | | - Nayere Taebnia
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Mehdi Mehrali
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
- Department of Mechanical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Cristian Florian Mitu
- Department of Electrical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Tiberiu-Gabriel Zsurzsan
- Department of Electrical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Arnold Knott
- Department of Electrical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| |
Collapse
|
29
|
Xie H, Liu X, Sheng D, Wu H, Zhou Y, Tian X, Sun Y, Shi B, Yang Y. Novel titin-inspired high-performance polyurethanes with self-healing and recyclable capacities based on dual dynamic network. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Cai Y, Johnson M, A S, Xu Q, Tai H, Wang W. A Hybrid Injectable and Self-Healable Hydrogel System as 3D Cell Culture Scaffold. Macromol Biosci 2021; 21:e2100079. [PMID: 34145758 DOI: 10.1002/mabi.202100079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Indexed: 01/06/2023]
Abstract
Cell therapies have great potential for the treatment of many different diseases, while the direct application of cells to the targeted location leads to limited therapeutic outcomes due to the low cell engraftment and cell survival rate. Injectable hydrogels have been developed to facilitate cell delivery; however, those currently developed hydrogel systems still face the limited cell survival rate. Here, an injectable and self-healable hydrogel is reported through the combination of hyperbranched PEG-based multi-hydrazide macro-crosslinker (HB-PEG-HDZ) and aldehyde-functionalized hyaluronic acid (HA-CHO), with gelatin added to increase the crosslinking density and cell activity. The hydrogels can be formed only in 7 s due to the relatively high content of the functional end groups. The reversible crosslinking mechanism between the hydrazide and aldehyde groups endows the hydrogel with shear-thinning and self-healing properties. The hydrogels with gelatin exhibit relatively better mechanical properties and cell activity. The hydrogels can improve the survival, attachment, and engraftment of injected cells due to the rapid sol-gel transition, which can promote an enhanced regenerative response.
Collapse
Affiliation(s)
- Yi Cai
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Dublin 4, Ireland.,Blafar Limited, NovaUCD, Belfield Innovation Park Belfield, Dublin, Dublin 4, Ireland
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Dublin 4, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Dublin 4, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Dublin 4, Ireland
| | - Hongyun Tai
- Blafar Limited, NovaUCD, Belfield Innovation Park Belfield, Dublin, Dublin 4, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Dublin 4, Ireland.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
31
|
Chen D, Zhou X, Chang L, Wang Y, Li W, Qin J. Hemostatic Self-Healing Hydrogel with Excellent Biocompatibility Composed of Polyphosphate-Conjugated Functional PNIPAM-Bearing Acylhydrazide. Biomacromolecules 2021; 22:2272-2283. [PMID: 33905651 DOI: 10.1021/acs.biomac.1c00349] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biocompatible self-healing hydrogels present an effective application as drug-releasing vehicles for tissue engineering and wound repairing. At the same time, the effective hemostatic property of the hydrogels also improves the application property as wound dressing materials. In this research, the PNIPAM-bearing acylhydrazide P(NIPAM-co-AH) was synthesized and then hemostatic polyphosphate (PolyP) was imported to prepare polyphosphate-conjugated P(NIPAM-co-AH) (PNAP). Through the acylhydrazone connection of PNAP and aldehyde functional PEO (PEO DA), the self-healing hydrogel with a hemostatic property was fabricated with good flexibility and sealing effect. The resultant hydrogels kept excellent biocompatibility and showed controlled drug release behavior. More importantly, the hydrogel accelerated the coagulation rate in vitro and presented a strong hemostatic effect as the binder in the hemorrhage model in vivo, which endow the hemostatic hydrogel with a very useful drug delivery carrier for wound healing applications or first aid treatment of the wounded in critical situations.
Collapse
Affiliation(s)
- Danyang Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, China
| | - Xiangyang Zhou
- Medical College, Hebei University, Baoding City, Hebei Province 071002, China
| | - Limin Chang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, China
| | - Yong Wang
- Medical College, Hebei University, Baoding City, Hebei Province 071002, China.,Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding 071002, China
| | - Wenjuan Li
- Medical College, Hebei University, Baoding City, Hebei Province 071002, China.,Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, China.,Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding 071002, China
| |
Collapse
|
32
|
Luo C, Wei N, Fu W. A highly elastic and sensitive sensor based on
GSP
/
HPAM
composited hydrogel. J Appl Polym Sci 2021. [DOI: 10.1002/app.50192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunhui Luo
- College of Chemistry and Chemical Engineering North Minzu University Yinchuan China
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission North Minzu University Yinchuan China
| | - Ning Wei
- College of Chemistry and Chemical Engineering North Minzu University Yinchuan China
| | - Weinxin Fu
- Key Laboratory of Science and Technology on High‐tech Polymer Materials Chinese Academy of Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing China
| |
Collapse
|
33
|
Gao Y, Deng A, Wu X, Sun C, Qi C. Injectable multi-responsive hydrogels cross-linked by responsive macromolecular micelles. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Cross-linking induced thermo-responsive self-healing hydrogel with gel-sol–gel transition constructed on dynamic covalent bond. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02492-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Zhao Z, Bai Y, Sun J, Lv K, Lei S, Qiu J. Tough and self‐healing hydrophobic association hydrogels with cationic surfactant. J Appl Polym Sci 2021. [DOI: 10.1002/app.50645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhen Zhao
- School of Petroleum Engineering China University of Petroleum (East China) Qingdao Shandong China
| | - Yingrui Bai
- School of Petroleum Engineering China University of Petroleum (East China) Qingdao Shandong China
| | - Jinsheng Sun
- School of Petroleum Engineering China University of Petroleum (East China) Qingdao Shandong China
- CNPC Engineering Technology R&D Company Limited China National Petroleum Corporation Beijing China
| | - Kaihe Lv
- School of Petroleum Engineering China University of Petroleum (East China) Qingdao Shandong China
| | - Shaofei Lei
- School of Petroleum Engineering China University of Petroleum (East China) Qingdao Shandong China
| | - Jiaxian Qiu
- School of Petroleum Engineering China University of Petroleum (East China) Qingdao Shandong China
| |
Collapse
|
36
|
A S, Xu Q, Johnson M, Creagh-Flynn J, Venet M, Zhou D, Lara-Sáez I, Tai H, Wang W. An injectable multi-responsive hydrogel as self-healable and on-demand dissolution tissue adhesive. APPLIED MATERIALS TODAY 2021; 22:100967. [DOI: 10.1016/j.apmt.2021.100967] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Kim J, Oh I, Park S, Nguyen NQ, Ryu J, Sohn D. Characteristics of self-healable laponite-poly(N-isopropylacrylamide) hydrogels prepared by γ-ray irradiation. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Zhang H, Yang S, Yang Z, Wang D, Han J, Li C, Zhu C, Xu J, Zhao N. An Extremely Stretchable and Self-Healable Supramolecular Polymer Network. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4499-4507. [PMID: 33433191 DOI: 10.1021/acsami.0c19560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of a single polymer network with extreme stretchability, relatively high mechanical strength, and fast and facile autonomous room-temperature self-healing capability still remains a challenge. Herein, supramolecular polymer networks are fabricated by synergistically incorporating metal-ligand and hydrogen bonds in poly(propylene glycol) (PPG). The representative specimen, PPG-Im-MDA-1.5-0.25-Cu, shows a combination of notable mechanical properties involving an extreme stretching ratio of 346 ± 14× and a Young's modulus of 2.10 ± 0.14 MPa, which are superior to the previously reported extremely stretchable polymeric materials. Notably, the destroyed specimen can fully recover mechanical performances within 1 h. The tunability of mechanical properties and self-healing capability has been actualized by merely tailoring the content of a chain extender. The application of the as-prepared supramolecular PPG network in constructing a flexible and self-healable conductor has been demonstrated. This strategy provides some insights for preparing extremely stretchable and self-healable polymeric materials.
Collapse
Affiliation(s)
- Huan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shijia Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhusheng Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juanjuan Han
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cuihua Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Caizhen Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
39
|
Hammer L, Van Zee NJ, Nicolaÿ R. Dually Crosslinked Polymer Networks Incorporating Dynamic Covalent Bonds. Polymers (Basel) 2021; 13:396. [PMID: 33513741 PMCID: PMC7865237 DOI: 10.3390/polym13030396] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Covalent adaptable networks (CANs) are polymeric networks containing covalent crosslinks that are dynamic under specific conditions. In addition to possessing the malleability of thermoplastics and the dimensional stability of thermosets, CANs exhibit a unique combination of physical properties, including adaptability, self-healing, shape-memory, stimuli-responsiveness, and enhanced recyclability. The physical properties and the service conditions (such as temperature, pH, and humidity) of CANs are defined by the nature of their constituent dynamic covalent bonds (DCBs). In response to the increasing demand for more sophisticated and adaptable materials, the scientific community has identified dual dynamic networks (DDNs) as a promising new class of polymeric materials. By combining two (or more) distinct crosslinkers in one system, a material with tailored thermal, rheological, and mechanical properties can be designed. One remarkable ability of DDNs is their capacity to combine dimensional stability, bond dynamicity, and multi-responsiveness. This review aims to give an overview of the advances in the emerging field of DDNs with a special emphasis on their design, structure-property relationships, and applications. This review illustrates how DDNs offer many prospects that single (dynamic) networks cannot provide and highlights the challenges associated with their synthesis and characterization.
Collapse
Affiliation(s)
| | | | - Renaud Nicolaÿ
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, CNRS, Université PSL, 10 rue Vauquelin, 75005 Paris, France; (L.H.); (N.J.V.Z.)
| |
Collapse
|
40
|
Zheng N, Xu Y, Zhao Q, Xie T. Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chem Rev 2021; 121:1716-1745. [DOI: 10.1021/acs.chemrev.0c00938] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, People’s Republic of China
- Center for Chemistry of High-Performance and Novel Materials, Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
| | - Yang Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, People’s Republic of China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, People’s Republic of China
| |
Collapse
|
41
|
Li X, Mutlu H, Fengler C, Wilhelm M, Theato P. Dual-faced borax mediated synthesis of self-healable hydrogels merging dynamic covalent bonding and micellization. Polym Chem 2021. [DOI: 10.1039/d0py01354d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A facile route towards multifunctional hydrogels was proposed via borax catalyzed thiol-acrylate and borax–diol chemistry. The hydrogels exhibited self-healable ability and anti-fatigue property by merging dynamic boronate ester bonds and micellization in one system.
Collapse
Affiliation(s)
- Xiaohui Li
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
- Soft Matter Synthesis Laboratory
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory
- Institute for Biological Interfaces III (IBG 3)
- Karlsruhe Institute of Technology (KIT)
- D-76344 Eggenstein-Leopoldshafen
- Germany
| | - Christian Fengler
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| | - Patrick Theato
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
- Soft Matter Synthesis Laboratory
| |
Collapse
|
42
|
The flexible segment adjusted gelation of the aliphatic polycarbonates: Preparation, mechanical properties, and self-healing behavior. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
|
44
|
Zhang X, Pan Y, Li S, Xing L, Du S, Yuan G, Li J, Zhou T, Xiong D, Tan H, Ling Z, Chen Y, Hu X, Niu X. Doubly crosslinked biodegradable hydrogels based on gellan gum and chitosan for drug delivery and wound dressing. Int J Biol Macromol 2020; 164:2204-2214. [DOI: 10.1016/j.ijbiomac.2020.08.093] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/16/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022]
|
45
|
Patrickios CS, Matyjaszewski K. Amphiphilic polymer co‐networks: 32 years old and growing stronger – a perspective. POLYM INT 2020. [DOI: 10.1002/pi.6138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh PA USA
| |
Collapse
|
46
|
Das Mahapatra R, Imani KBC, Yoon J. Integration of Macro-Cross-Linker and Metal Coordination: A Super Stretchable Hydrogel with High Toughness. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40786-40793. [PMID: 32805982 DOI: 10.1021/acsami.0c11167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of multifunctional hydrogels with high strength and stretchability is one of the most important topics in soft-matter research owing to their potential applications in various fields. In this work, a dual physically cross-linked network was designed for the fabrication of ultrastretchable tough hydrogels. The hydrogels were prepared through in situ polymerization of acrylic acid and acrylamide in the presence of positively charged quaternary poly(ethylene imine) (Q-PEI) and micelle-forming Pluronic F127 diacrylate, thus introducing electrostatic interactions between the positively charged Q-PEI and negatively charged poly(acrylic acid-co-acrylamide). For further mechanical reinforcement, Ca2+ and Cu2+ ions were introduced into the hydrogel network to construct coordination bonds, significantly enhancing tensile strength as well as stretchability. The hydrogel prepared with Ca2+ ion coordination bonds was found to be stretchable to 108 times its original length and exhibited a maximum toughness of 177 MJ·m-3, representing one of the most robust systems with both extraordinary toughness and superstretchability prepared to date. The hydrogels also exhibited excellent recovery of dimensions and reproducibility in terms of mechanical properties, providing a promising ultrastretchable soft-matter system with outstanding mechanical strength.
Collapse
Affiliation(s)
- Rita Das Mahapatra
- Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Kusuma Betha Cahaya Imani
- Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jinhwan Yoon
- Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
47
|
A S, Lyu J, Johnson M, Creagh-Flynn J, Zhou D, Lara-Sáez I, Xu Q, Tai H, Wang W. Instant Gelation System as Self-Healable and Printable 3D Cell Culture Bioink Based on Dynamic Covalent Chemistry. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38918-38924. [PMID: 32805952 DOI: 10.1021/acsami.0c08567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rapid development of additive manufacturing techniques in the field of tissue regeneration offers unprecedented success for artificial tissue and organ fabrication. However, some limitations still remain for current bioinks, such as the compromised cell viability after printing, the low cross-linking efficiency leading to poor printing resolution and speed due to the relatively slow gelation rate, and the requirement of external stimuli for gelation. To address these problems, herein, a biocompatible and printable instant gelation hydrogel system has been developed based on a designed hyperbranched poly(ethylene glycol) (PEG)-based multihydrazide macro-cross-linker (HB-PEG-HDZ) and an aldehyde-functionalized hyaluronic acid (HA-CHO). HB-PEG-HDZ is prepared by the postfunctionalization of hyperbranched PEG-based multivinyl macromer via thiol-ene chemistry. Owing to the high functional group density of HB-PEG-HDZ, the hydrogel can be formed instantly upon mixing the solutions of two components. The reversible cross-linking mechanism between the hydrazide and aldehyde groups endows the hydrogel with shear-thinning and self-healing properties. The minimally toxic components and cross-linking chemistry allow the resulting hydrogel to be a biocompatible niche. Moreover, the fast sol-to-gel transition of the hydrogel, combining all of the advanced characteristics of this platform, protects the cells during the printing procedure, avoids their damage during extrusion, and improves the transplanted cell survival.
Collapse
Affiliation(s)
- Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Jack Creagh-Flynn
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Dezhong Zhou
- School of Chemical Engineering and Technology (SCET), Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Hongyun Tai
- School of Chemistry, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
48
|
Chen X, Zhong Q, Cui C, Ma L, Liu S, Zhang Q, Wu Y, An L, Cheng Y, Ye S, Chen X, Dong Z, Chen Q, Zhang Y. Extremely Tough, Puncture-Resistant, Transparent, and Photoluminescent Polyurethane Elastomers for Crack Self-Diagnose and Healing Tracking. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30847-30855. [PMID: 32597173 DOI: 10.1021/acsami.0c07727] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ensuring material performance reliability and lifetime is crucial for practical operations. Small cracks on the material surface are often detrimental to its safe operation. This study describes the development of a hydrogen bond-rich puncture-resistant polyurethane elastomer with supertoughness. The as-prepared polyurethane transparent films feature high tensile break strength (57.4 MPa) and great toughness (228 MJ m-3). Additionally, a facile, low-cost, crack self-diagnostic approach through photoluminescence using a small luminous pen is reported. The materials efficiently achieved self-healing at 90 °C after the crack formation. The change of fluorescence intensity on the crack can be used to track the self-healing process. Therefore, this work provides a guideline for the material design of supertough, puncture-resistant, transparent, and healable elastomers and a crack self-diagnosis and healing approach.
Collapse
Affiliation(s)
- Xingxing Chen
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qianyun Zhong
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chenhui Cui
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Ma
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qiang Zhang
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youshen Wu
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le An
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yilong Cheng
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shibo Ye
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoming Chen
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhen Dong
- Inose Corporation, Beijing 100089, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanfeng Zhang
- Department of Applied Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Lab for Strength and Vibration of Mechanical Structures; Xi'an Jiaotong University & Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
49
|
Liu J, Huang J, Cai Q, Yang Y, Luo W, Zeng B, Xu Y, Yuan C, Dai L. Design of Slidable Polymer Networks: A Rational Strategy to Stretchable, Rapid Self-Healing Hydrogel Electrolytes for Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20479-20489. [PMID: 32283918 DOI: 10.1021/acsami.0c03224] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogel electrolytes are of particular interest in the fabrication of flexible supercapacitors that are able to withstand deformation and physical damage. Nevertheless, there still exists a huge space in the design of hydrogel electrolytes with comprehensive performances including high processability, conductivity, mechanical strength, and self-healability. Herein, a slidable polymer network is constructed through the cross-linking reaction among commercially available polyethyleneimine (PEI), polyvinyl alcohol (PVA), and 4-formylphenylboronic acid (Bn) to generate PEI-PVA-Bn hydrogels, which have high adaptability to various electrolytes such as LiCl, NaCl, KCl, and ionic liquids. The as formed hydrogel electrolytes not only show excellent mechanical property (elongation at break up to 1223%, strength of 34.6 kPa) and self-healability (highest strain self-healing efficiency reaches 94.3% within 2 min) but also exhibit high conductivity (up to 21.49 mS cm-1). Flexible supercapacitors constructed by sandwiching the PEI-PVA-Bn-LiCl hydrogel electrolyte between two multiwalled carbon nanotube electrodes demonstrate a broadened operating potential window of 1.4 V, specific capacitance of 16.7 mF cm-2, high cycling stability up to 10 000 charge/discharge cycles, and excellent mechanical stability.
Collapse
Affiliation(s)
- Jun Liu
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Junwen Huang
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Qipeng Cai
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuxin Yang
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Weiang Luo
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Birong Zeng
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yiting Xu
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Conghui Yuan
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Lizong Dai
- College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
50
|
Guo Z, Gu H, He Y, Zhang Y, Xu W, Zhang J, Liu Y, Xiong L, Chen A, Feng Y. Dual dynamic bonds enable biocompatible and tough hydrogels with fast self-recoverable, self-healable and injectable properties. CHEMICAL ENGINEERING JOURNAL 2020; 388:124282. [DOI: 10.1016/j.cej.2020.124282] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|