1
|
Resendiz-Lara DA, Azhdari S, Gojzewski H, Gröschel AH, Wurm FR. Water-soluble polyphosphonate-based bottlebrush copolymers via aqueous ring-opening metathesis polymerization. Chem Sci 2023; 14:11273-11282. [PMID: 37860667 PMCID: PMC10583743 DOI: 10.1039/d3sc02649c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Ring-opening metathesis polymerization (ROMP) is a versatile method for synthesizing complex macromolecules from various functional monomers. In this work, we report the synthesis of water-soluble and degradable bottlebrush polymers, based on polyphosphoesters (PPEs) via ROMP. First, PPE-macromonomers were synthesized via organocatalytic anionic ring-opening polymerization of 2-ethyl-2-oxo-1,3,2-dioxaphospholane using N-(hydroxyethyl)-cis-5-norbornene-exo-2,3-dicarboximide as the initiator and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the catalyst. The resulting norbornene-based macromonomers had degrees of polymerization (DPn) ranging from 25 to 243 and narrow molar mass dispersity (Đ ≤ 1.10). Subsequently, these macromonomers were used in ROMP with the Grubbs 3rd-generation bispyridyl complex (Ru-G3) to produce a library of well-defined bottlebrush polymers. The ROMP was carried out either in dioxane or in aqueous conditions, resulting in well-defined and water-soluble bottlebrush PPEs. Furthermore, a two-step protocol was employed to synthesize double hydrophilic diblock bottlebrush copolymers via ROMP in water at neutral pH-values. This general protocol enabled the direct combination of PPEs with ROMP to synthesize well-defined bottlebrush polymers and block copolymers in water. Degradation of the PPE side chains was proven resulting in low molar mass degradation products only. The biocompatible and biodegradable nature of PPEs makes this pathway promising for designing novel biomedical drug carriers or viscosity modifiers, as well as many other potential applications.
Collapse
Affiliation(s)
- Diego A Resendiz-Lara
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Suna Azhdari
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
- Physical Chemistry, University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Hubert Gojzewski
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Andre H Gröschel
- Physical Chemistry, University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
2
|
Mekcham S, Nomura K. Synthesis of Bottlebrush Polymers by Z-/ E-Specific Living Ring-Opening Metathesis Polymerization, Exhibiting Different Thermal Properties. J Am Chem Soc 2023; 145:17001-17006. [PMID: 37498370 PMCID: PMC10416215 DOI: 10.1021/jacs.3c05795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 07/28/2023]
Abstract
Synthesis of bottlebrush polymers (BBPs) and block copolymers by Z-/E-specific living ring-opening metathesis polymerization (ROMP) of N-substituted-norbornene-2,3-dicarboximides containing long alkyl chains (n-octadecyl, n-tetradecyl, etc.) has been attained by the vanadium(V)-alkylidene catalysts V(CHSiMe3)(ArN)[OC(CF3)3](PMe3)2 [Ar = 2,6-Cl2C6H3 (1), C6F5 (2)] and V(CHSiMe3)(2,6-F2C6H3N)(OC6Cl5)(PMe3)2 (3). The ROMPs using 1 afforded the BBPs with exclusive Z selectivity (98 to >99% cis) even at high temperature (up to 80 °C) in the presence of PMe3, whereas the ROMPs using 3 gave the BBPs with high E selectivity (90% trans). These ROMPs proceeded in a living manner (even at 80 °C using 1), affording various (amphiphilic) block copolymers while maintaining high E/Z selectivity. The resultant Z- and E-selective BBPs especially prepared from N-(n-octadecyl)norbornene-2,3-dicarboximide possessed different melting temperatures due to different degrees of interpolymer alkyl side chain interaction (side chain crystallization).
Collapse
Affiliation(s)
- Sirilak Mekcham
- Department of Chemistry, Tokyo
Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kotohiro Nomura
- Department of Chemistry, Tokyo
Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
3
|
Wang X, Zhao W, Nomura K. Synthesis of High-Molecular-Weight Biobased Aliphatic Polyesters by Acyclic Diene Metathesis Polymerization in Ionic Liquids. ACS OMEGA 2023; 8:7222-7233. [PMID: 36844507 PMCID: PMC9948555 DOI: 10.1021/acsomega.3c00390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Acyclic diene metathesis (ADMET) polymerization of an α,ω-diene monomer of bis(undec-10-enoate) with isosorbide (M1) using a RuCl2(IMesH2)(CH-2-O i Pr-C6H4) (HG2, IMesH2 = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene) catalyst and conducted at 50 °C (in vacuo) in ionic liquids (ILs) afforded higher-molecular-weight polymers (P1, M n = 32 200-39 200) than those reported previously (M n = 5600-14700). 1-n-Butyl-3-methyl imidazolium hexafluorophosphate ([Bmim]PF6) and 1-n-hexyl-3-methyl imidazolium bis(trifluoromethanesulfonyl)imide ([Hmim]TFSI) were suitable as effective solvents among a series of imidazolium salts and the pyridinium salts. The polymerization of α,ω-diene monomers of bis(undec-10-enoate) with isomannide (M2), 1,4-cyclohexanedimethanol (M3), and 1,4-butanediol (M4) in [Bmim]PF6 and [Hmim]TFSI also afforded the higher-molecular-weight polymers. The M n values in the resultant polymers did not decrease even under the scale-up conditions (300 mg to 1.0 g scale, M1, M2, and M4) in the polymerizations in [Hmim]TFSI; the subsequent reaction of P1 with ethylene (0.8 MPa, 50 °C, and 5 h) gave oligomers (proceeded via depolymerization). Tandem hydrogenation of the resultant unsaturated polymers (P1) in a [Bmim]PF6-toluene biphasic system upon the addition of Al2O3 (1.0 MPa H2 at 50 °C) gave the corresponding saturated polymers (HP1), which waswere isolated by a phase separation in the toluene layer. The [Bmim]PF6 layer containing the ruthenium catalyst could be recycled without a decrease in the activity/selectivity of the olefin hydrogenation at least eight times.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Weizhen Zhao
- Beijing
Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhongguancun,
Haidian District, Beijing 100190, China
| | - Kotohiro Nomura
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
4
|
Sun H, Qiao B, Choi W, Hampu N, McCallum NC, Thompson MP, Oktawiec J, Weigand S, Ebrahim OM, de la Cruz MO, Gianneschi NC. Origin of Proteolytic Stability of Peptide-Brush Polymers as Globular Proteomimetics. ACS CENTRAL SCIENCE 2021; 7:2063-2072. [PMID: 34963898 PMCID: PMC8704038 DOI: 10.1021/acscentsci.1c01149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 05/03/2023]
Abstract
Peptide-brush polymers (PBPs), wherein every side-chain of the polymers is peptidic, represent a new class of proteomimetic with unusually high proteolytic resistance while maintaining bioactivity. Here, we sought to determine the origin of this behavior and to assess its generality via a combined theory and experimental approach. A series of PBPs with various polymer backbone structures were prepared and examined for their proteolytic stability and bioactivity. We discovered that an increase in the hydrophobicity of the polymer backbones is predictive of an elevation in proteolytic stability of the side-chain peptides. Computer simulations, together with small-angle X-ray scattering (SAXS) analysis, revealed globular morphologies for these polymers, in which pendant peptides condense around hydrophobic synthetic polymer backbones driven by the hydrophobic effect. As the hydrophobicity of the polymer backbones increases, the extent of solvent exposure of peptide cleavage sites decreases, reducing their accessibility to proteolytic enzymes. This study provides insight into the important factors driving PBP aqueous-phase structures to behave as globular, synthetic polymer-based proteomimetics.
Collapse
Affiliation(s)
- Hao Sun
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Baofu Qiao
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Wonmin Choi
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas Hampu
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Naneki C. McCallum
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew P. Thompson
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julia Oktawiec
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven Weigand
- Dupont-Northwestern-Dow
Collaborative Access Team (DND-CAT) Synchrotron Research Center, Northwestern University, Argonne, Illinois 60208, United States
| | - Omar M. Ebrahim
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C. Gianneschi
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Department of Pharmacology, Chemistry of
Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Abstract
The development of degradable polymers has commanded significant attention over the past half century. Approaches have predominantly relied on ring-opening polymerization of cyclic esters (e.g., lactones, lactides) and N-carboxyanhydrides, as well as radical ring-opening polymerizations of cyclic ketene acetals. In recent years, there has been a significant effort applied to expand the family of degradable polymers accessible via olefin metathesis polymerization. Given the excellent functional group tolerance of olefin metathesis polymerization reactions generally, a broad range of conceivable degradable moieties can be incorporated into appropriate monomers and thus into polymer backbones. This approach has proven particularly versatile in synthesizing a broad spectrum of degradable polymers including poly(ester), poly(amino acid), poly(acetal), poly(carbonate), poly(phosphoester), poly(phosphoramidate), poly(enol ether), poly(azobenzene), poly(disulfide), poly(sulfonate ester), poly(silyl ether), and poly(oxazinone) among others. In this review, we will highlight the main olefin metathesis polymerization strategies that have been used to access degradable polymers, including (i) acyclic diene metathesis polymerization, (ii) entropy-driven and (iii) enthalpy-driven ring-opening metathesis polymerization, as well as (iv) cascade enyne metathesis polymerization. In addition, the livingness or control of polymerization reactions via different strategies are highlighted and compared. Potential applications, challenges and future perspectives of this new library of degradable polyolefins are discussed. It is clear from recent and accelerating developments in this field that olefin metathesis polymerization represents a powerful synthetic tool towards degradable polymers with novel structures and properties inaccessible by other polymerization approaches.
Collapse
Affiliation(s)
- Hao Sun
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yifei Liang
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Matthew P. Thompson
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering,
Department of Biomedical Engineering, Department of Pharmacology, Chemistry of Life
Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
6
|
Shahrokhinia A, Biswas P, Reuther JF. Orthogonal synthesis and modification of polymer materials. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ali Shahrokhinia
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - Priyanka Biswas
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - James F. Reuther
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| |
Collapse
|
7
|
Barther D, Moatsou D. Ring-Opening Metathesis Polymerization of Norbornene-Based Monomers Obtained via the Passerini Three Component Reaction. Macromol Rapid Commun 2021; 42:e2100027. [PMID: 33644929 DOI: 10.1002/marc.202100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Indexed: 11/12/2022]
Abstract
Ring-opening metathesis polymerization is a robust method to synthesize a variety of polymers by using ring-strained molecules as monomers, e.g., norbornenes. However, the synthesis of monomers with multiple functional groups remains a challenge, albeit peptide functional norbornenes have previously been used. Here, the Passerini three component reaction is exploited to synthesize norbornenes with two variable functional groups varying in bulkiness and distance from the polymerizable alkene. The results indicate that the functional groups do not affect the kinetics of the polymerization, whereas the length of the linker has a minor effect. Furthermore, a diblock-type copolymer is synthesized in a one-pot fashion, also indicating good control of the polymerization process. The thermal properties of all polymers are evaluated, highlighting the effect of monomer composition. This synthetic approach can be transferred to a variety of compounds, thus promising highly diverse polymers with complex compositions and architectures.
Collapse
Affiliation(s)
- Dennis Barther
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Dafni Moatsou
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| |
Collapse
|
8
|
Choi W, Sun H, Battistella C, Berger O, Vratsanos MA, Wang MM, Gianneschi NC. Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angew Chem Int Ed Engl 2020; 59:19762-19772. [PMID: 32436259 PMCID: PMC11042487 DOI: 10.1002/anie.202005379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 01/19/2023]
Abstract
In this Minireview, we describe synthetic polymers densely functionalized with sequence-defined biomolecular sidechains. We focus on synthetic brush polymers of oligonucleotides, oligosaccharides, and oligopeptides, prepared via graft-through polymerization from biomolecule functionalized monomers. The resulting structures are brush polymers wherein a biomolecular graft is positioned at each monomer backbone unit. We describe key synthetic milestones, identify synthetic opportunities, and highlight recent advances in the field, including biological applications.
Collapse
Affiliation(s)
- Wonmin Choi
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Hao Sun
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Claudia Battistella
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Or Berger
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Maria A. Vratsanos
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Max M. Wang
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Nathan C. Gianneschi
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| |
Collapse
|
9
|
Choi W, Sun H, Battistella C, Berger O, Vratsanos MA, Wang MM, Gianneschi NC. Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wonmin Choi
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Hao Sun
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Claudia Battistella
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Or Berger
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Maria A. Vratsanos
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Max M. Wang
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Nathan C. Gianneschi
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| |
Collapse
|
10
|
Vrijsen JH, Rasines Mazo A, Junkers T, Qiao GG. Accelerated Polypeptide Synthesis via
N
‐Carboxyanhydride Ring Opening Polymerization in Continuous Flow. Macromol Rapid Commun 2020; 41:e2000071. [DOI: 10.1002/marc.202000071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Jeroen Hendrik Vrijsen
- The Polymer Science Group Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
- Organic and (Bio‐)Polymer Chemistry Institute for Materials Research Hasselt University Agoralaan D 3590 Diepenbeek Belgium
| | - Alicia Rasines Mazo
- The Polymer Science Group Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Tanja Junkers
- Organic and (Bio‐)Polymer Chemistry Institute for Materials Research Hasselt University Agoralaan D 3590 Diepenbeek Belgium
- Polymer Reaction Design Group School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Greg Guanghua Qiao
- The Polymer Science Group Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
11
|
Lv S, Kim H, Song Z, Feng L, Yang Y, Baumgartner R, Tseng KY, Dillon SJ, Leal C, Yin L, Cheng J. Unimolecular Polypeptide Micelles via Ultrafast Polymerization of N-Carboxyanhydrides. J Am Chem Soc 2020; 142:8570-8574. [PMID: 32196323 DOI: 10.1021/jacs.0c01173] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polypeptide micelles are widely used as biocompatible nanoplatforms but often suffer from their poor structural stability. Unimolecular polypeptide micelles can effectively address the structure instability issue, but their synthesis with uniform structure and well-controlled and desired sizes remains challenging. Herein we report the convenient preparation of spherical unimolecular micelles through dendritic polyamine-initiated ultrafast ring-opening polymerization of N-carboxyanhydrides (NCAs). Synthetic polypeptides with exceptionally high molecular weights (up to 85 MDa) and low dispersity (Đ < 1.05) can be readily obtained, which are the biggest synthetic polypeptides ever reported. The degree of polymerization was controlled in a vast range (25-3200), giving access to nearly monodisperse unimolecular micelles with predictable sizes. Many NCA monomers can be polymerized using this ultrafast polymerization method, which enables the incorporation of various structural and functional moieties into the unimolecular micelles. Because of the simplicity of the synthesis and superior control over the structure, the unimolecular polypeptide micelles may find applications in nanomedicine, supermolecular chemistry, and bionanotechnology.
Collapse
Affiliation(s)
- Shixian Lv
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Hojun Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lin Feng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yingfeng Yang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ryan Baumgartner
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kuan-Ying Tseng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shen J Dillon
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Peterson GI, Noh J, Bang KT, Ma H, Kim KT, Choi TL. Mechanochemical Degradation of Brush Polymers: Kinetics of Ultrasound-Induced Backbone and Arm Scission. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02721] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory I. Peterson
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinkyung Noh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Taek Bang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunji Ma
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Senkum H, Gramlich WM. Cationic Bottlebrush Polymers from Quaternary Ammonium Macromonomers by Grafting‐Through Ring‐Opening Metathesis Polymerization. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - William M. Gramlich
- Department of Chemistry University of Maine 5706 Orono ME 04469 USA
- Advanced Structures and Composites Center University of Maine Orono ME 04469 USA
| |
Collapse
|
14
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
15
|
Peterson GI, Lee J, Choi TL. Multimechanophore Graft Polymers: Mechanochemical Reactions at Backbone–Arm Junctions. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01996] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gregory I. Peterson
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Heo GS, Cho S, Wooley KL. Preparation of Degradable Polymeric Nanoparticles with Various Sizes and Surface Charges from Polycarbonate Block Copolymers. Macromol Res 2019. [DOI: 10.1007/s13233-020-8044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Barman R, Dey P, Mondal T, Ghosh S. Synthesis and Self‐assembly of a Helical Polymer Grafted from a Foldable Polyurethane Scaffold. Chem Asian J 2019; 14:4741-4747. [DOI: 10.1002/asia.201901119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata 700032 India
| | - Pradip Dey
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata 700032 India
| | - Tathagata Mondal
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata 700032 India
- Institut Charles Sadron 67034 Strasbourg France
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata 700032 India
| |
Collapse
|
18
|
Song Z, Tan Z, Cheng J. Recent Advances and Future Perspectives of Synthetic Polypeptides from N-Carboxyanhydrides. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01450] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zhengzhong Tan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Liu X, Li M, Han T, Cao B, Qiu Z, Li Y, Li Q, Hu Y, Liu Z, Lam JWY, Hu X, Tang BZ. In Situ Generation of Azonia-Containing Polyelectrolytes for Luminescent Photopatterning and Superbug Killing. J Am Chem Soc 2019; 141:11259-11268. [DOI: 10.1021/jacs.9b04757] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Mengge Li
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ting Han
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Bing Cao
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zijie Qiu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Qiyao Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Yubing Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zhiyang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Jacky W. Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Xianglong Hu
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
20
|
Biofilm Disruption Utilizing α/β Chimeric Polypeptide Molecular Brushes. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2278-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Li Y, Schacher FH, Ling J. Synthesis of Polypeptoid‐Polycaprolactone‐Polytetrahydrofuran Heterograft Molecular Polymer Brushes via a Combination of Janus Polymerization and ROMP. Macromol Rapid Commun 2019; 40:e1800905. [DOI: 10.1002/marc.201800905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/22/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Yao Li
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC)Friedrich‐Schiller‐University Jena Lessingstraße 8 D‐07743 Jena Germany
- Jena Center for Soft Matter (JCSM)Friedrich‐Schiller‐University Jena Philosophenweg 7 D‐07743 Jena Germany
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| |
Collapse
|
22
|
Nicolas C, Fontaine L, Montembault V. Nitroxide radical-containing polynorbornenes by ring-opening metathesis polymerization as stabilizing agents for polyolefins. Polym Chem 2019. [DOI: 10.1039/c9py00769e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of original 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-containing dicarboximide norbornene monomers have been synthesized and polymerized via ring-opening metathesis polymerization using the Grubbs 3rd generation catalyst.
Collapse
Affiliation(s)
- Clémence Nicolas
- Institut des Molécules et Matériaux du Mans (IMMM)
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex 9
- France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans (IMMM)
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex 9
- France
| | - Véronique Montembault
- Institut des Molécules et Matériaux du Mans (IMMM)
- UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans Cedex 9
- France
| |
Collapse
|
23
|
Teo YC, Xia Y. Facile Synthesis of Macromonomers via ATRP–Nitroxide Radical Coupling and Well-Controlled Brush Block Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yew Chin Teo
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Flid VR, Gringolts ML, Shamsiev RS, Finkelshtein ES. Norbornene, norbornadiene and their derivatives: promising semi-products for organic synthesis and production of polymeric materials. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4834] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The methods for synthesis of promising norbornene monomers from norbornadiene and quadricyclane are summarized. A strategy for their synthesis is discussed, combining theoretical and experimental approaches to the selection of catalysts and the conditions for carrying out stereoselective reactions. The mechanisms of catalytic reactions of synthesis of norbornene monomers, as well as the progress in the macromolecular design of functional polymeric materials based on them, are considered. The data on industrial processes of production of polynorbornenes and areas of their use are presented.
The bibliography includes 297 references.
Collapse
|
25
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Zheng B, Bai T, Tao X, Schlaad H, Ling J. Identifying the Hydrolysis of Carbonyl Sulfide as a Side Reaction Impeding the Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride. Biomacromolecules 2018; 19:4263-4269. [DOI: 10.1021/acs.biomac.8b01119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Botuo Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinfeng Tao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
27
|
Yang L, Tang H, Sun H. Progress in Photo-Responsive Polypeptide Derived Nano-Assemblies. MICROMACHINES 2018; 9:E296. [PMID: 30424229 PMCID: PMC6187351 DOI: 10.3390/mi9060296] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/03/2022]
Abstract
Stimuli-responsive polymeric materials have attracted significant attention in a variety of high-value-added and industrial applications during the past decade. Among various stimuli, light is of particular interest as a stimulus because of its unique advantages, such as precisely spatiotemporal control, mild conditions, ease of use, and tunability. In recent years, a lot of effort towards the synthesis of a biocompatible and biodegradable polypeptide has resulted in many examples of photo-responsive nanoparticles. Depending on the specific photochemistry, those polypeptide derived nano-assemblies are capable of crosslinking, disassembling, or morphing into other shapes upon light irradiation. In this mini-review, we aim to assess the current state of photo-responsive polypeptide based nanomaterials. Firstly, those 'smart' nanomaterials will be categorized by their photo-triggered events (i.e., crosslinking, degradation, and isomerization), which are inherently governed by photo-sensitive functionalities, including O-nitrobenzyl, coumarin, azobenzene, cinnamyl, and spiropyran. In addition, the properties and applications of those polypeptide nanomaterials will be highlighted as well. Finally, the current challenges and future directions of this subject will be evaluated.
Collapse
Affiliation(s)
- Lu Yang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Houliang Tang
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, USA.
| | - Hao Sun
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
28
|
Xie N, Feng K, Shao J, Chen B, Tung CH, Wu LZ. Luminescence-Tunable Polynorbornenes for Simultaneous Multicolor Imaging in Subcellular Organelles. Biomacromolecules 2018; 19:2750-2758. [DOI: 10.1021/acs.biomac.8b00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nan Xie
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianqun Shao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
29
|
Li P, Song Y, Dong CM. Hyperbranched polypeptides synthesized from phototriggered ROP of a photocaged Nε-[1-(2-nitrophenyl)ethoxycarbonyl]-l-lysine-N-carboxyanhydride: microstructures and effects of irradiation intensity and nitrogen flow rate. Polym Chem 2018. [DOI: 10.1039/c8py00641e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new photocaged amino acid monomer Nε-(1-(2-nitrophenyl)ethoxycarbonyl)-l-lysine-N-carboxyanhydride (NPE-Lys NCA) was designed to directly synthesize hyperbranched polypeptides by phototriggered ROP.
Collapse
Affiliation(s)
- Pan Li
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yingying Song
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
30
|
Magurudeniya HD, Ringstrand BS, Seifert S, Firestone MA. Reversible hierarchical structure induced by solvation and temperature modulation in an ionic liquid-based random bottlebrush copolymer. Polym Chem 2018. [DOI: 10.1039/c8py01218k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Discoidal bottlebrush poly(ionic liquid)s are reversibly stacked into 1-D rod like assembles by temperature changes.
Collapse
Affiliation(s)
- Harsha D. Magurudeniya
- Materials Physics & Applications Division
- Los Alamos National Laboratory
- Los Alamos
- USA 87545
| | - Bryan S. Ringstrand
- Materials Physics & Applications Division
- Los Alamos National Laboratory
- Los Alamos
- USA 87545
| | - Sönke Seifert
- X-ray Sciences Division
- Argonne National Laboratory
- Lemont
- USA 60439
| | - Millicent A. Firestone
- Materials Physics & Applications Division
- Los Alamos National Laboratory
- Los Alamos
- USA 87545
| |
Collapse
|
31
|
González-Henríquez CM, Sarabia-Vallejos MA, Rodríguez-Hernández J. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides. Polymers (Basel) 2017; 9:E551. [PMID: 30965855 PMCID: PMC6418556 DOI: 10.3390/polym9110551] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022] Open
Abstract
In this review, we provide a general and clear overview about the different alternatives reported to fabricate a myriad of polypeptide architectures based on the ring-opening polymerization of N-carbonyanhydrides (ROP NCAs). First of all, the strategies for the preparation of NCA monomers directly from natural occurring or from modified amino acids are analyzed. The synthetic alternatives to prepare non-functionalized and functionalized NCAs are presented. Protection/deprotection protocols, as well as other functionalization chemistries are discussed in this section. Later on, the mechanisms involved in the ROP NCA polymerization, as well as the strategies developed to reduce the eventually occurring side reactions are presented. Finally, a general overview of the synthetic strategies described in the literature to fabricate different polypeptide architectures is provided. This part of the review is organized depending on the complexity of the macromolecular topology prepared. Therefore, linear homopolypeptides, random and block copolypeptides are described first. The next sections include cyclic and branched polymers such as star polypeptides, polymer brushes and highly branched structures including arborescent or dendrigraft structures.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago 7800003, Chile.
| | - Mauricio A Sarabia-Vallejos
- Departamento de Ingeniería Estructural y Geotecnia, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago 7820436, Chile.
| | - Juan Rodríguez-Hernández
- Departamento de Química y Propiedades de Polímeros, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|