1
|
Vesamäki S, Meteling H, Nasare R, Siiskonen A, Patrakka J, Roas-Escalona N, Linder M, Virkki M, Priimagi A. Strategies to control humidity sensitivity of azobenzene isomerisation kinetics in polymer thin films. COMMUNICATIONS MATERIALS 2024; 5:209. [PMID: 39371916 PMCID: PMC11446815 DOI: 10.1038/s43246-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Azobenzenes are versatile photoswitches that garner interest in applications ranging from photobiology to energy storage. Despite their great potential, transforming azobenzene-based discoveries and proof-of-concept demonstrations from the lab to the market is highly challenging. Herein we give an overview of a journey that started from a discovery of hydroxyazobenzene's humidity sensitive isomerisation kinetics, developed into commercialization efforts of azobenzene-containing thin film sensors for optical monitoring of the relative humidity of air, and arrives to the present work aiming for better design of such sensors by understanding the different factors affecting the humidity sensitivity. Our concept is based on thermal isomerisation kinetics of tautomerizable azobenzenes in polymer matrices which, using pre-defined calibration curves, can be converted to relative humidity at known temperature. We present a small library of tautomerizable azobenzenes exhibiting humidity sensitive isomerisation kinetics in hygroscopic polymer films. We also investigate how water absorption properties of the polymer used, and the isomerisation kinetics are linked and how the azobenzene content in the thin film affects both properties. Based on our findings we propose simple strategies for further development of azobenzene-based optical humidity sensors.
Collapse
Affiliation(s)
- Sami Vesamäki
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Henning Meteling
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Roshan Nasare
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Antti Siiskonen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Jani Patrakka
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | | | - Markus Linder
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Matti Virkki
- VTT Technical Research Centre of Finland Ltd, Oulu, Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Kim M, Hillel C, Edwards K, Pietro W, Mermut O, Barrett CJ. Chitosan-azo dye bioplastics that are reversibly resoluble and recoverable under visible light irradiation. RSC Adv 2024; 14:25771-25784. [PMID: 39156744 PMCID: PMC11327658 DOI: 10.1039/d4ra02211d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024] Open
Abstract
Biopolymer composite materials were prepared by combining bio-sourced cationic water-soluble chitosan with bi-functional water-soluble anionic azo food dyes amaranth (AMA) or allura red (ALR) as ionic cross-linkers, mixing well in water, and then slow-drying in air. The electrostatically-assembled ionically-paired films showed good long-term stability to dissolution, with no re-solubility in water, and competitive mechanical properties as plastic materials. However, upon exposure of the bioplastics to low power light at sunlight wavelengths and intensities stirring in water, the stable materials photo-disassembled back to their water-soluble and low-toxicity (edible) constituent components, via structural photo-isomerization of the azo ionic crosslinkers. XRD, UV-vis, and IR spectroscopy confirmed that these assemblies are reversibly recoverable and so can in principle represent fully recyclable, environmentally degradable materials triggered by exposure to sunlight and water after use, with full recovery of starting components ready for re-use. A density functional theory treatment of the amaranth azo dye identified a tautomeric equilibrium favouring the hydrazone form and rationalized geometrical isomerization as a mechanism for photo-disassembly. The proof-of-principle suitability of films of these biomaterial composites as food industry packaging was assessed via measurement of mechanical, water and vapour barrier properties, and stability to solvent tests. Tensile strength of the composite materials was found to be 25-30 MPa, with elongation at break 3-5%, in a range acceptable as competitive for some applications to replace oil-based permanently insoluble non-recyclable artificial plastics, as fully recyclable, recoverable, and reusable low-toxicity green biomaterials in natural environmental conditions.
Collapse
Affiliation(s)
- Mikhail Kim
- Department of Chemistry, McGill University Montreal QC Canada
| | - Coral Hillel
- Department of Physics and Astronomy, York University Toronto ON Canada
| | - Kayrel Edwards
- Department of Chemistry, McGill University Montreal QC Canada
| | - William Pietro
- Department of Chemistry, York University Toronto ON Canada
| | - Ozzy Mermut
- Department of Physics and Astronomy, York University Toronto ON Canada
- Department of Chemistry, York University Toronto ON Canada
| | - Christopher J Barrett
- Department of Chemistry, McGill University Montreal QC Canada
- Department of Physics and Astronomy, York University Toronto ON Canada
| |
Collapse
|
3
|
Kuntze K, Isokuortti J, van der Wal JJ, Laaksonen T, Crespi S, Durandin NA, Priimagi A. Detour to success: photoswitching via indirect excitation. Chem Sci 2024; 15:11684-11698. [PMID: 39092110 PMCID: PMC11290455 DOI: 10.1039/d4sc02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Photoswitchable molecules that undergo nanoscopic changes upon photoisomerisation can be harnessed to control macroscopic properties such as colour, solubility, shape, and motion of the systems they are incorporated into. These molecules find applications in various fields of chemistry, physics, biology, and materials science. Until recently, research efforts have focused on the design of efficient photoswitches responsive to low-energy (red or near-infrared) irradiation, which however may compromise other molecular properties such as thermal stability and robustness. Indirect isomerisation methods enable photoisomerisation with low-energy photons without altering the photoswitch core, and also open up new avenues in controlling the thermal switching mechanism. In this perspective, we present the state of the art of five indirect excitation methods: two-photon excitation, triplet sensitisation, photon upconversion, photoinduced electron transfer, and indirect thermal methods. Each impacts our understanding of the fundamental physicochemical properties of photochemical switches, and offers unique application prospects in biomedical technologies and beyond.
Collapse
Affiliation(s)
- Kim Kuntze
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Jussi Isokuortti
- Department of Chemistry, University of Texas at Austin Austin TX USA
| | - Jacob J van der Wal
- Department of Chemistry, Ångström Laboratory, Uppsala University Uppsala Sweden
| | - Timo Laaksonen
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
- Faculty of Pharmacy, University of Helsinki Helsinki Finland
| | - Stefano Crespi
- Department of Chemistry, Ångström Laboratory, Uppsala University Uppsala Sweden
| | - Nikita A Durandin
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| |
Collapse
|
4
|
Pinchin NP, Guo H, Meteling H, Deng Z, Priimagi A, Shahsavan H. Liquid Crystal Networks Meet Water: It's Complicated! ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303740. [PMID: 37392137 DOI: 10.1002/adma.202303740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Soft robots are composed of compliant materials that facilitate high degrees of freedom, shape-change adaptability, and safer interaction with humans. An attractive choice of material for soft robotics is crosslinked networks of liquid crystal polymers (LCNs), as they are responsive to a wide variety of external stimuli and capable of undergoing fast, programmable, complex shape morphing, which allows for their use in a wide range of soft robotic applications. However, unlike hydrogels, another popular material in soft robotics, LCNs have limited applicability in flooded or aquatic environments. This can be attributed not only to the poor efficiency of common LCN actuation methods underwater but also to the complicated relationship between LCNs and water. In this review, the relationship between water and LCNs is elaborated and the existing body of literature is surveyed where LCNs, both hygroscopic and non-hygroscopic, are utilized in aquatic soft robotic applications. Then the challenges LCNs face in widespread adaptation to aquatic soft robotic applications are discussed and, finally, possible paths forward for their successful use in aquatic environments are envisaged.
Collapse
Affiliation(s)
- Natalie P Pinchin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hongshuang Guo
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Henning Meteling
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Zixuan Deng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Hamed Shahsavan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
5
|
Kuntze K, Viljakka J, Virkki M, Huang CYD, Hecht S, Priimagi A. Red-light photoswitching of indigos in polymer thin films. Chem Sci 2023; 14:2482-2488. [PMID: 36908950 PMCID: PMC9993840 DOI: 10.1039/d2sc06790k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/29/2023] [Indexed: 02/25/2023] Open
Abstract
Through simple synthetic derivatisation, the parent indigo dye becomes a red-light E-Z photoswitch exhibiting negative photochromism and tuneable thermal isomerisation kinetics. These attributes make indigo derivatives extremely attractive for applications related to materials and living systems. However, there is a lack of knowledge in translating indigo photoswitching dynamics from solution to solid state - the environment crucial for most applications. Herein, we study the photoswitching performance of six structurally distinct indigo derivatives in five polymers of varying rigidity. Three key strategies are identified to enable efficient photoswitching under red (660 nm) light: (i) choosing a soft polymer matrix to minimise its resistance toward the isomerisation, (ii) creating free volume around the indigo molecules through synthetic modifications, and (iii) applying low dye loading (<1% w/w) to inhibit aggregation. These strategies are shown to improve both photostationary state distributions and the thermal stability of the Z isomer. When all three strategies are implemented, the isomerisation performance (>80% Z form in the photostationary state) is nearly identical to that in solution. These findings thus pave the way for designing new red-light photochromic materials based on indigos.
Collapse
Affiliation(s)
- Kim Kuntze
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University Fi-33101 Tampere Finland
| | - Jani Viljakka
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University Fi-33101 Tampere Finland
| | - Matti Virkki
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University Fi-33101 Tampere Finland
| | - Chung-Yang Dennis Huang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Stefan Hecht
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany .,DWI - Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University Fi-33101 Tampere Finland
| |
Collapse
|
6
|
Dutta Choudhury S. Multiple Effects of an Anionic Cyclodextrin Macrocycle on the Reversible Isomerization of a Photoactive Guest Dye. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14819-14826. [PMID: 36398364 DOI: 10.1021/acs.langmuir.2c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding and controlling the reversible isomerization of photoactive molecules in order to obtain a tunable optical response is desirable for many photofunctional applications. This study describes the interesting effects of an anionic cyclodextrin host (sulfated-βCD, SCD) on the photoisomerization and protonation equilibrium of an important hemicyanine dye (trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide, DSP). The SCD host assists in unlocking the photoisomerization potential of DSP by promoting protonation of the dye. It also assists in stabilizing the cis isomer of the protonated dye, thereby significantly delaying the reverse cis to trans isomerization of DSPH+. Furthermore, the interplay of both hydrophobic and electrostatic interactions in the complex formation of SCD with DSPH+ makes the reverse cis to trans isomerization of DSPH+ amenable to influence by the added salt. The stimuli-responsive reversible isomerization of SCD-DSPH+ is an interesting case from the perspective of chemical sensing or light operated functional materials with host-guest systems.
Collapse
Affiliation(s)
- Sharmistha Dutta Choudhury
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai400 085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai400094, India
| |
Collapse
|
7
|
Fedele C, Ruoko TP, Kuntze K, Virkki M, Priimagi A. New tricks and emerging applications from contemporary azobenzene research. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:1719-1734. [PMID: 35896915 DOI: 10.1007/s43630-022-00262-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/29/2022] [Indexed: 10/16/2022]
Abstract
Azobenzenes have many faces. They are well-known as dyes, but most of all, azobenzenes are versatile photoswitchable molecules with powerful photochemical properties. Azobenzene photochemistry has been extensively studied for decades, but only relatively recently research has taken a steer towards applications, ranging from photonics and robotics to photobiology. In this perspective, after an overview of the recent trends in the molecular design of azobenzenes, we highlight three research areas where the azobenzene photoswitches may bring about promising technological innovations: chemical sensing, organic transistors, and cell signaling. Ingenious molecular designs have enabled versatile control of azobenzene photochemical properties, which has in turn facilitated the development of chemical sensors and photoswitchable organic transistors. Finally, the power of azobenzenes in biology is exemplified by vision restoration and photactivation of neural signaling. Although the selected examples reveal only some of the faces of azobenzenes, we expect the fields presented to develop rapidly in the near future, and that azobenzenes will play a central role in this development.
Collapse
Affiliation(s)
- Chiara Fedele
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Tero-Petri Ruoko
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Kim Kuntze
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Matti Virkki
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland.
| |
Collapse
|
8
|
Fan S, Lam Y, He L, Xin J. Synthesis and photochromism of catechol-containing symmetrical azobenzene compounds. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211894. [PMID: 35706672 PMCID: PMC9174713 DOI: 10.1098/rsos.211894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/09/2022] [Indexed: 05/03/2023]
Abstract
Symmetrical azobenzene derivatives with two catechol groups, 1d-4d, were synthesized as kinds of novel compounds, and the structures were confirmed using mass spectrometry and nuclear magnetic resonance spectroscopy. These compounds could attain photostationary state rapidly in solution upon UV irradiation, and their photochromism had good reversibility. Substituents and their positions on azobenzene chromophore had obvious influence on the maximum absorption and photochromic performances of these as-synthesized compounds. Electron-donating group on ortho positions could contribute to the redshift π-π* band. The sulfonamide group that is bonded to dopamine molecules and azobenzene rings caused a negligible n-π* transition of cis isomer, resulting in photobleaching upon UV irradiation. Among the four compounds, 4d had the strongest electron-donating ortho-methoxy substituents and lower planarity; thus its absorption could decrease more significantly upon UV irradiation of the same intensity, and its cis-to-trans conversion could be up to 63%. Furthermore, owing to the presence of catechol groups, 4d showed an effective affinity and adhesion to substrate, and on the surface of substrate, a weak colour change could be observed upon UV irradiation, but the reversibility was poorer than that in solution.
Collapse
Affiliation(s)
- Suju Fan
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Hong Kong
| | - Yintung Lam
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Hong Kong
| | - Liang He
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Hong Kong
| | - John H. Xin
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Hong Kong
| |
Collapse
|
9
|
Azobenzene/Tetraethyl Ammonium Photochromic Potassium Channel Blockers: Scope and Limitations for Design of Para-Substituted Derivatives with Specific Absorption Band Maxima and Thermal Isomerization Rate. Int J Mol Sci 2021; 22:ijms222313171. [PMID: 34884976 PMCID: PMC8658355 DOI: 10.3390/ijms222313171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Azobenzene/tetraethyl ammonium photochromic ligands (ATPLs) are photoactive compounds with a large variety of photopharmacological applications such as nociception control or vision restoration. Absorption band maximum and lifetime of the less stable isomer are important characteristics that determine the applicability of ATPLs. Substituents allow to adjust these characteristics in a range limited by the azobenzene/tetraethyl ammonium scaffold. The aim of the current study is to find the scope and limitations for the design of ATPLs with specific spectral and kinetic properties by introducing para substituents with different electronic effects. To perform this task we synthesized ATPLs with various electron acceptor and electron donor functional groups and studied their spectral and kinetic properties using flash photolysis and conventional spectroscopy techniques as well as quantum chemical modeling. As a result, we obtained diagrams that describe correlations between spectral and kinetic properties of ATPLs (absorption maxima of E and Z isomers of ATPLs, the thermal lifetime of their Z form) and both the electronic effect of substituents described by Hammett constants and structural parameters obtained from quantum chemical calculations. The provided results can be used for the design of ATPLs with properties that are optimal for photopharmacological applications.
Collapse
|
10
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
11
|
Abstract
The reversible photoisomerization of azobenzenes has been extensively studied to construct systems with optical responsiveness; however, this process limits the luminescence of these compounds. Recently, there have been many efforts to design and synthesize fluorescent azobenzene compounds, such as inhibition of electron transfer, inducing aggregation, and metal-enhancement, which make the materials ideal for application in fluorescence probes, light-emitting devices, molecular detection, etc. Herein, we review the recently reported progress in the development of various fluorescent azobenzenes and summarize the possible mechanism of their fluorescence emission. The potential applications of these materials are also discussed. Finally, in order to guide research in this field, the existing problems and future development prospects are discussed.
Collapse
|
12
|
Lyu X, Xiao A, Shi D, Li Y, Shen Z, Chen EQ, Zheng S, Fan XH, Zhou QF. Liquid crystalline polymers: Discovery, development, and the future. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Sánchez-León AM, Cintas P, Light ME, Palacios JC. Thermal and Photochemical Switching of Chiral Sugar Azoalkenes: A Mechanistic Interrogation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ana María Sánchez-León
- Departamento de Química Orgánica e Inorgánica; Facultad de Ciencias, and; IACYS-Unidad de Química Verde y Desarrollo Sostenible; Universidad de Extremadura; 06006 Badajoz Spain
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica; Facultad de Ciencias, and; IACYS-Unidad de Química Verde y Desarrollo Sostenible; Universidad de Extremadura; 06006 Badajoz Spain
| | - Mark E. Light
- Department of Chemistry; Faculty of Natural and Environmental Sciences; University of Southampton; SO 17 1BJ Southampton U.K
| | - Juan Carlos Palacios
- Departamento de Química Orgánica e Inorgánica; Facultad de Ciencias, and; IACYS-Unidad de Química Verde y Desarrollo Sostenible; Universidad de Extremadura; 06006 Badajoz Spain
| |
Collapse
|
14
|
Rustler K, Nitschke P, Zahnbrecher S, Zach J, Crespi S, König B. Photochromic Evaluation of 3(5)-Arylazo-1H-pyrazoles. J Org Chem 2020; 85:4079-4088. [DOI: 10.1021/acs.joc.9b03097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karin Rustler
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Philipp Nitschke
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Sophie Zahnbrecher
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Julia Zach
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Chu Z, Klajn R. Polysilsesquioxane Nanowire Networks as an "Artificial Solvent" for Reversible Operation of Photochromic Molecules. NANO LETTERS 2019; 19:7106-7111. [PMID: 31539469 DOI: 10.1021/acs.nanolett.9b02642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Efficient isomerization of photochromic molecules often requires conformational freedom and is typically not available under solvent-free conditions. Here, we report a general methodology allowing for reversible switching of such molecules on the surfaces of solid materials. Our method is based on dispersing photochromic compounds within polysilsesquioxane nanowire networks (PNNs), which can be fabricated as transparent, highly porous, micrometer-thick layers on various substrates. We found that azobenzene switching within the PNNs proceeded unusually fast compared with the same molecules in liquid solvents. Efficient isomerization of another photochromic system, spiropyran, from a colorless to a colored form was used to create reversible images in PNN-coated glass. The coloration reaction could be induced with sunlight and is of interest for developing "smart" windows.
Collapse
Affiliation(s)
- Zonglin Chu
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Rafal Klajn
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
16
|
Silver nanoparticles as interactive media for the azobenzenes isomerization in aqueous solution: From linear to stretched kinetics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Crespi S, Simeth NA, Bellisario A, Fagnoni M, König B. Unraveling the Thermal Isomerization Mechanisms of Heteroaryl Azoswitches: Phenylazoindoles as Case Study. J Phys Chem A 2019; 123:1814-1823. [PMID: 30741541 DOI: 10.1021/acs.jpca.8b11734] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The research on heteroaromatic azoswitches has been blossoming in recent years due to their astonishingly broad range of properties. Minimal chemical modifications can drastically change the demeanor of these switches, regarding photophysical and (photo)chemical properties, promoting them as ideal scaffolds for a vast variety of applications based on bistable light-addressable systems. However, most of the characteristics exhibited by heteroaryl azoswitches were found empirically, and only a few works focus on their rationalization. Herein we report on a mechanistic study employing phenylazoindoles as a model reference, combining spectroscopic experiments with comprehensive computational analysis. This approach will elucidate the intrinsic correlations between the molecular structure of the switch and its thermal behavior, allowing a more rational design transferable to various heteroaryl azoswitches.
Collapse
Affiliation(s)
- Stefano Crespi
- Institut für Organische Chemie , Universität Regensburg , Universitätsstrasse 31 , 93040 Regensburg , Germany
| | - Nadja A Simeth
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Alfredo Bellisario
- Department of Physics , University of Pavia , Via Bassi 6 , 27100 Pavia , Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry , University of Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Burkhard König
- Institut für Organische Chemie , Universität Regensburg , Universitätsstrasse 31 , 93040 Regensburg , Germany
| |
Collapse
|
18
|
|
19
|
Chu Z, Han Y, Bian T, De S, Král P, Klajn R. Supramolecular Control of Azobenzene Switching on Nanoparticles. J Am Chem Soc 2018; 141:1949-1960. [DOI: 10.1021/jacs.8b09638] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zonglin Chu
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yanxiao Han
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Tong Bian
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Soumen De
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Physics and Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Hutchins KM. Functional materials based on molecules with hydrogen-bonding ability: applications to drug co-crystals and polymer complexes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180564. [PMID: 30110449 PMCID: PMC6030288 DOI: 10.1098/rsos.180564] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/25/2018] [Indexed: 05/31/2023]
Abstract
The design, synthesis and property characterization of new functional materials has garnered interest in a variety of fields. Materials that are capable of recognizing and binding with small molecules have applications in sensing, sequestration, delivery and property modification. Specifically, recognition of pharmaceutical compounds is of interest in each of the aforementioned application areas. Numerous pharmaceutical compounds comprise functional groups that are capable of engaging in hydrogen-bonding interactions; thus, materials that are able to act as hydrogen-bond receptors are of significant interest for these applications. In this review, we highlight some crystalline and polymeric materials that recognize and engage in hydrogen-bonding interactions with pharmaceuticals or small biomolecules. Moreover, as pharmaceuticals often exhibit multiple hydrogen-bonding sites, many donor/acceptor molecules have been specifically designed to interact with the drug via such multiple-point hydrogen bonds. The formation of multiple hydrogen bonds not only increases the strength of the interaction but also affords unique hydrogen-bonded architectures.
Collapse
Affiliation(s)
- Kristin M. Hutchins
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|