1
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Streicher M, Stamp C, Kluth MD, Ripp A, Calvino C. Harnessing the Photoperformance of N-Methyl-Quinolinone for Gated Photo-Driven Cyclability and Reversible Photoligation. Macromol Rapid Commun 2024; 45:e2400474. [PMID: 39096154 PMCID: PMC11583344 DOI: 10.1002/marc.202400474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 08/05/2024]
Abstract
[2π + 2π]-photocycloadditions and their ability to trigger controlled and reversible photoligation through disparate wavelengths provide an attractive platform to unlock advanced functionalities in soft materials. Yet, among the limited amount of functional motifs enabling reversible photoreactions, cyclability is often overlooked due to poor reaction yield and orthogonality. In this study, the advantageous photocharacteristics of the previously underexplored N-methyl-quinolinone photoresponsive motif are leveraged to create a covalent gated system, enabling controlled formation and cleavage of covalent bonds on demand. A systematic evaluation of individual cycloadditions and reversions on the molecular scale, including reaction rates, conversions, and photoproducts, allows identification of the required conditions for generating controlled photoreactions with a remarkable degree of cyclability; while, maintaining high reaction yields. Ultimately, these controlled and cyclable reactions are translated to a macromolecular scale, showcasing a comparable performance in initiating reversible photoligation, as observed at the molecular level. In addition, it is also shown that this progressive methodology can be leveraged to gain a comprehensive understanding of cyclability and clarify the factors contributing to its decreasing yield. Overall, unlocking the potential of quinolinone derivatives through this step-by-step approach lays the foundation for the development of highly controlled and responsive polymer materials with unprecedented potential.
Collapse
Affiliation(s)
- Moritz Streicher
- Cluster of Excellence livMatSFIT‐Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of Freiburg im BreisgauGeorges‐Köhler‐Allee 105D‐79110FreiburgGermany
| | - Claas‐Hendrik Stamp
- Cluster of Excellence livMatSFIT‐Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of Freiburg im BreisgauGeorges‐Köhler‐Allee 105D‐79110FreiburgGermany
| | - Marco Dante Kluth
- Department of Microsystems Engineering (IMTEK)University of Freiburg im BreisgauGeorges‐Köhler‐Allee 102D‐79110FreiburgGermany
| | - Alexander Ripp
- Cluster of Excellence livMatSFIT‐Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of Freiburg im BreisgauGeorges‐Köhler‐Allee 105D‐79110FreiburgGermany
| | - Céline Calvino
- Cluster of Excellence livMatSFIT‐Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of Freiburg im BreisgauGeorges‐Köhler‐Allee 105D‐79110FreiburgGermany
- Department of Microsystems Engineering (IMTEK)University of Freiburg im BreisgauGeorges‐Köhler‐Allee 102D‐79110FreiburgGermany
| |
Collapse
|
3
|
Koay WL, Gao C, Vu QT, Oh XY, Lin H, Mondal S, Singh NDP, Loh XJ, Le MTN, Truong VX. Light Switchable Bioorthogonal Reaction Manifold for Modulation of Hydrogel Properties. Biomacromolecules 2024; 25:6635-6644. [PMID: 39163639 DOI: 10.1021/acs.biomac.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Chemical reaction systems that can occur via multiple pathways in a controllable fashion are highly attractive for advanced materials applications and biological research. In this report, we introduce a bioorthogonal reaction manifold based on a chalcone pyrene (CPyr) moiety that can undergo either red-shifted photoreversible [2 + 2] cycloaddition or thiol-Michael addition click reaction. By coupling the CPyr to a water-soluble poly(ethylene glycol) end group, we demonstrate the efficient polymer dimerization and cleavage by blue light (λ = 450 nm) and UV light (λ = 340 nm), respectively. In the absence of light, CPyr rapidly reacts with thiols in aqueous environments, enabling fast and efficient polymer end-group functionalization. The chemical reaction manifold was further employed in polymer cross-linking for the preparation of hydrogels whose stiffness and morphology can be modulated by different photonic fields or the addition of a thiol cross-linker. The photoreversible cycloaddition and thiol-Michael addition click reaction can be used in conjunction for spatial and temporal conjugation of a streptavidin protein. Both cross-linking conditions are nontoxic to various cell lines, highlighting their potential in biomaterials applications.
Collapse
Affiliation(s)
- Wai Lean Koay
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Chang Gao
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Quyen Thi Vu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xin Yi Oh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Huihui Lin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Saugat Mondal
- Department of Chemistry, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302, India
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Vinh Xuan Truong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore
| |
Collapse
|
4
|
Michenfelder RT, Pashley‐Johnson F, Guschin V, Delafresnaye L, Truong VX, Wagenknecht H, Barner‐Kowollik C. Photochemical Action Plots Map Orthogonal Reactivity in Photochemical Release Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402011. [PMID: 38852174 PMCID: PMC11304248 DOI: 10.1002/advs.202402011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Indexed: 06/11/2024]
Abstract
The wavelength-by-wavelength resolved photoreactivity of two photo-caged carboxylic acids, i. e. 7-(diethylamino)-coumarin- and 3-perylene-modified substrates, is investigated via photochemical action plots. The observed wavelength-dependent reactivity of the chromophores is contrasted with their absorption profile. The photochemical action plots reveal a remarkable mismatch between the maximum reactivity and the absorbance. Through the action plot data, the study is able to uncover photochemical reactivity maxima at longer and shorter wavelengths, where the molar absorptivity of the chromophores is strongly reduced. Finally, the laser experiments are translated to light emitting diode (LED) irradiation and show efficient visible-light-induced release in a near fully wavelength-orthogonal, sequence-independent fashion (λLED1 = 405 nm, λLED2 = 505 nm) with both chromophores in the same reaction solution. The herein pioneered wavelength orthogonal release systems open an avenue for releasing two different molecular cargos with visible light in a fully orthogonal fashion.
Collapse
Affiliation(s)
- Rita T. Michenfelder
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 676131KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Fred Pashley‐Johnson
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC) and Laboratory of Organic SynthesisDepartment of Organic and Macromolecular ChemistryFaculty of SciencesGhent UniversityKrijgslaan 281‐S4Ghent9000Belgium
| | - Viktor Guschin
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 676131KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Laura Delafresnaye
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
| | - Vinh X. Truong
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for Science, Technology and Research (A*STAR)1 Pesek Round, Jurong IslandSingapore627833Republic of Singapore
| | - Hans‐Achim Wagenknecht
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 676131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)2 George StBrisbaneQLD4000Australia
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
5
|
Hoenders D, Ludwanowski S, Barner-Kowollik C, Walther A. Cyclodextrin 'Chaperones' Enable Quasi-Ideal Supramolecular Network Formation and Enhanced Photodimerization of Hydrophobic, Red-shifted Photoswitches in Water. Angew Chem Int Ed Engl 2024; 63:e202405582. [PMID: 38640085 DOI: 10.1002/anie.202405582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Precision-engineered light-triggered hydrogels are important for a diversity of applications. However, fields such as biomaterials require wavelength outside the harsh UV regime to prevent photodamage, typically requiring chromophores with extended π-conjugation that suffer from poor water solubility. Herein, we demonstrate how cyclodextrins can be used as auxiliary agents to not only solubilize such chromophores, but even to preorganize them in a 2 : 2 host-guest inclusion complex to facilitate photodimerization. We apply our concept to styrylpyrene-end-functionalized star-shaped polyethylene glycols (sPEGs). We initially unravel details of the host-guest inclusion complex using spectroscopy and mass spectrometry to give clear evidence of a 2 : 2 complex formation. Subsequently, we show that the resultant supramolecularly linked hydrogels conform to theories of supramolecular quasi-ideal model networks, and derive details on their association dynamics using in-depth rheological measurements and kinetic models. By comparing sPEGs of different arm length, we further elucidate the model network topology and the accessible mechanical property space. The photo-mediated dimerization proceeds smoothly, allowing to transform the supramolecular model networks into covalent ones. We submit that our strategy opens avenues for executing hydrophobic photochemistry in aqueous environments with enhanced control over reactivity, hydrogel topology or programmable mechanical properties.
Collapse
Affiliation(s)
- Daniel Hoenders
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Simon Ludwanowski
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000 Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Walther
- Life-Like Materials and Systems Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
6
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
7
|
Yang J, Tan Q, Li K, Liao J, Hao Y, Chen Y. Advances and Trends of Photoresponsive Hydrogels for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:1921-1945. [PMID: 38457377 DOI: 10.1021/acsbiomaterials.3c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The development of static hydrogels as an optimal choice for bone tissue engineering (BTE) remains a difficult challenge primarily due to the intricate nature of bone healing processes, continuous physiological functions, and pathological changes. Hence, there is an urgent need to exploit smart hydrogels with programmable properties that can effectively enhance bone regeneration. Increasing evidence suggests that photoresponsive hydrogels are promising bioscaffolds for BTE due to their advantages such as controlled drug release, cell fate modulation, and the photothermal effect. Here, we review the current advances in photoresponsive hydrogels. The mechanism of photoresponsiveness and its advanced applications in bone repair are also elucidated. Future research would focus on the development of more efficient, safer, and smarter photoresponsive hydrogels for BTE. This review is aimed at offering comprehensive guidance on the trends of photoresponsive hydrogels and shedding light on their potential clinical application in BTE.
Collapse
Affiliation(s)
- Juan Yang
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qingqing Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ying Hao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuwen Chen
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
8
|
Lu G, Tang R, Nie J, Zhu X. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices. Macromol Rapid Commun 2024; 45:e2300661. [PMID: 38271638 DOI: 10.1002/marc.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Photocuring 3D printing of hydrogels, with sophisticated, delicate structures and biocompatibility, attracts significant attention by researchers and possesses promising application in the fields of tissue engineering and flexible devices. After years of development, photocuring 3D printing technologies and hydrogel inks make great progress. Herein, the techniques of photocuring 3D printing of hydrogels, including direct ink writing (DIW), stereolithography (SLA), digital light processing (DLP), continuous liquid interface production (CLIP), volumetric additive manufacturing (VAM), and two photon polymerization (TPP) are reviewed. Further, the raw materials for hydrogel inks (photocurable polymers, monomers, photoinitiators, and additives) and applications in tissue engineering and flexible devices are also reviewed. At last, the current challenges and future perspectives of photocuring 3D printing of hydrogels are discussed.
Collapse
Affiliation(s)
- Guoqiang Lu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruifen Tang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Nie
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoqun Zhu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
10
|
Yuan W, Chen L, Yuan C, Zhang Z, Chen X, Zhang X, Guo J, Qian C, Zhao Z, Zhao Y. Cooperative supramolecular polymerization of styrylpyrenes for color-dependent circularly polarized luminescence and photocycloaddition. Nat Commun 2023; 14:8022. [PMID: 38049414 PMCID: PMC10696047 DOI: 10.1038/s41467-023-43830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Developing facile and efficient methods to obtain circularly polarized luminescence (CPL) materials with a large luminescence dissymmetry factor (glum) and fluorescence quantum yield (ΦY) is attractive but still challenging. Herein, supramolecular polymerization of styrylpyrenes (R/S-PEB) is utilized to attain this aim, which can self-assemble into helical nanoribbons. Benefiting from the dominant CH-π interactions between the chromophores, the supramolecular solution of S-PEB shows remarkable blue-color CPL property (glum: 0.011, ΦY: 69%). From supramolecular solution to gel, the emission color (blue to yellow-green) and handedness of CPL (glum: -0.011 to +0.005) are concurrently manipulated, while the corresponding supramolecular chirality maintains unchanged, representing the rare example of color-dependent CPL materials. Thanks to the supramolecular confine effect, the [2 + 2] cycloaddition reaction rate of the supramolecular solution is 10.5 times higher than that of the monomeric solution. In contrast, no cycloaddition reaction occurs for the gel and assembled solid samples. Our findings provide a vision for fabricating multi-modal and high-performance CPL-active materials, paving the way for the development of advanced photo-responsive chiral systems.
Collapse
Affiliation(s)
- Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Letian Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Chuting Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Cheng Qian
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
11
|
Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. MATERIALS HORIZONS 2023; 10:3325-3350. [PMID: 37387121 DOI: 10.1039/d3mh00399j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The field of tissue engineering and regenerative medicine has been evolving at a rapid pace with numerous novel and interesting biomaterials being reported. Hydrogels have come a long way in this regard and have been proven to be an excellent choice for tissue regeneration. This could be due to their innate properties such as water retention, and ability to carry and deliver a multitude of therapeutic and regenerative elements to aid in better outcomes. Over the past few decades, hydrogels have been developed into an active and attractive system that can respond to various stimuli, thereby presenting a wider control over the delivery of the therapeutic agents to the intended site in a spatiotemporal manner. Researchers have developed hydrogels that respond dynamically to a multitude of external as well as internal stimuli such as mechanics, thermal energy, light, electric field, ultrasonics, tissue pH, and enzyme levels, to name a few. This review gives a brief overview of the recent developments in such hydrogel systems which respond dynamically to various stimuli, some of the interesting fabrication strategies, and their application in cardiac, bone, and neural tissue engineering.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Richardson BJ, Zhang C, Rauthe P, Unterreiner AN, Golberg DV, Poad BLJ, Frisch H. Peptide Self-Assembly Controlled Photoligation of Polymers. J Am Chem Soc 2023. [PMID: 37433011 DOI: 10.1021/jacs.3c03961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Highly efficient chemical ligations that operate in water under mild conditions are the foundation of bioorthogonal chemistry. However, the toolbox of suitable reactions is limited. Conventional approaches to expand this toolbox aim at altering the inherent reactivity of functional groups to design new reactions that meet the required benchmarks. Inspired by controlled reaction environments that enzymes provide, we report a fundamentally different approach that makes inefficient reactions highly efficient within defined local environments. Contrasting enzymatically catalyzed reactions, the reactivity controlling self-assembled environment is brought about by the ligation targets themselves─avoiding the use of a catalyst. Targeting [2 + 2] photocycloadditions, which are inefficient at low concentrations and readily quenched by oxygen, short β-sheet encoded peptide sequences are inserted between a hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer. In water, electrostatic repulsion of deprotonated amino acid residues governs the formation of small self-assembled structures, which enable a highly efficient photoligation of the polymer, reaching ∼90% ligation within 2 min (0.034 mM). Upon protonation at low pH, the self-assembly changes into 1D fibers, altering photophysical properties and shutting down the photocycloaddition reaction. Using the reversible morphology change, it is possible to switch the photoligation "ON" or "OFF" under constant irradiation simply by varying the pH. Importantly, in dimethylformamide, the photoligation reaction did not occur even at 10-fold higher concentrations (0.34 mM). The self-assembly into a specific architecture, encoded into the polymer ligation target, enables a highly efficient ligation that overcomes the concentration limitations and high oxygen sensitivity of [2 + 2] photocycloadditions.
Collapse
Affiliation(s)
- Bailey J Richardson
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Chao Zhang
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Pascal Rauthe
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Dmitri V Golberg
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| |
Collapse
|
13
|
Madl CM. Accelerating aging with dynamic biomaterials: Recapitulating aged tissue phenotypes in engineered platforms. iScience 2023; 26:106825. [PMID: 37250776 PMCID: PMC10213044 DOI: 10.1016/j.isci.2023.106825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Aging is characterized by progressive decline in tissue function and represents the greatest risk factor for many diseases. Nevertheless, many fundamental mechanisms driving human aging remain poorly understood. Aging studies using model organisms are often limited in their applicability to humans. Mechanistic studies of human aging rely on relatively simple cell culture models that fail to replicate mature tissue function, making them poor surrogates for aged tissues. These culture systems generally lack well-controlled cellular microenvironments that capture the changes in tissue mechanics and microstructure that occur during aging. Biomaterial platforms presenting dynamic, physiologically relevant mechanical, structural, and biochemical cues can capture the complex changes in the cellular microenvironment in a well-defined manner, accelerating the process of cellular aging in model laboratory systems. By enabling selective tuning of relevant microenvironmental parameters, these biomaterials systems may enable identification of new therapeutic approaches to slow or reverse the detrimental effects of aging.
Collapse
Affiliation(s)
- Christopher M. Madl
- Department of Materials Science and Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Michenfelder RT, Delafresnaye L, Truong VX, Barner-Kowollik C, Wagenknecht HA. DNA labelling in live cells via visible light-induced [2+2] photocycloaddition. Chem Commun (Camb) 2023; 59:4012-4015. [PMID: 36920883 DOI: 10.1039/d3cc00817g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
We introduce a visible light-driven (λmax = 451 nm) photo-chemical strategy for labelling of DNA in living HeLa cells via the [2+2] cycloaddition of a styrylquinoxaline moiety, which we incorporate into both the DNA and the fluorescent label. Our methodology offers advanced opportunities for the mild remote labelling of DNA in water while avoiding UV light activation.
Collapse
Affiliation(s)
- Rita T Michenfelder
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, Karlsruhe 76131, Germany.
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
| | - Laura Delafresnaye
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
| | - Vinh X Truong
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, Karlsruhe 76131, Germany.
| |
Collapse
|
15
|
Jiang Y, Zhu H, Chen J, Ma Q, Liao S. Linear Cyclobutane-Containing Polymer Synthesis via [2 + 2] Photopolymerization in an Unconfined Environment under Visible Light. ACS Macro Lett 2022; 11:1336-1342. [PMID: 36394547 DOI: 10.1021/acsmacrolett.2c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The [2 + 2] photopolymerization of diolefinic monomers is an appealing approach for the construction of polymeric materials. Herein, we demonstrate that the establishment of an effective donor-acceptor conjugation by introducing electron-donating alkoxy groups at appropriate positions of the benzene ring could activate p-phenylenediacrylate (PDA), thus enabling the development of the first solution [2 + 2] photopolymerization of such monomers under the irradiation of visible light. Variation on the alkoxy groups and the ester parts could allow access to a series of linear cyclobutane-containing polymer products with high molecular weight (up to 140 kDa) and good solubility in common solvents. Further, temporal control and postpolymerization modification with preinstalled pendant C═C bonds via thiol-ene click reaction are also demonstrated with this [2 + 2] photopolymerization system.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hui Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianxu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qiang Ma
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
16
|
Zhang V, Kang B, Accardo JV, Kalow JA. Structure-Reactivity-Property Relationships in Covalent Adaptable Networks. J Am Chem Soc 2022; 144:22358-22377. [PMID: 36445040 PMCID: PMC9812368 DOI: 10.1021/jacs.2c08104] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer networks built out of dynamic covalent bonds offer the potential to translate the control and tunability of chemical reactions to macroscopic physical properties. Under conditions at which these reactions occur, the topology of covalent adaptable networks (CANs) can rearrange, meaning that they can flow, self-heal, be remolded, and respond to stimuli. Materials with these properties are necessary to fields ranging from sustainability to tissue engineering; thus the conditions and time scale of network rearrangement must be compatible with the intended use. The mechanical properties of CANs are based on the thermodynamics and kinetics of their constituent bonds. Therefore, strategies are needed that connect the molecular and macroscopic worlds. In this Perspective, we analyze structure-reactivity-property relationships for several classes of CANs, illustrating both general design principles and the predictive potential of linear free energy relationships (LFERs) applied to CANs. We discuss opportunities in the field to develop quantitative structure-reactivity-property relationships and open challenges.
Collapse
Affiliation(s)
| | | | | | - Julia A. Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
17
|
Burroughs MC, Schloemer TH, Congreve DN, Mai DJ. Gelation Dynamics during Photo-Cross-Linking of Polymer Nanocomposite Hydrogels. ACS POLYMERS AU 2022; 3:217-227. [PMID: 37065714 PMCID: PMC10103194 DOI: 10.1021/acspolymersau.2c00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/10/2022]
Abstract
Embedding nanomaterials into polymer hydrogels enables the design of functional materials with tailored chemical, mechanical, and optical properties. Nanocapsules that protect interior cargo and disperse readily through a polymeric matrix have drawn particular interest for their ability to integrate chemically incompatible systems and to further expand the parameter space for polymer nanocomposite hydrogels. The properties of polymer nanocomposite hydrogels depend on the material composition and processing route, which were explored systematically in this work. The gelation kinetics of network-forming polymer solutions with and without silica-coated nanocapsules bearing polyethylene glycol (PEG) surface ligands were investigated using in situ dynamic rheology measurements. Network-forming polymers comprised either 4-arm or 8-arm star PEG with terminal anthracene groups, which dimerize upon irradiation with ultraviolet (UV) light. The PEG-anthracene solutions exhibited rapid gel formation upon UV exposure (365 nm); gel formation was observed as a crossover from liquid-like to solid-like behavior during in situ small-amplitude oscillatory shear rheology. This crossover time was non-monotonic with polymer concentration. Far below the overlap concentration (c/c* ≪ 1), spatially separated PEG-anthracene molecules were subject to forming intramolecular loops over intermolecular cross-links, thereby slowing the gelation process. Near the polymer overlap concentration (c/c* ∼ 1), rapid gelation was attributed to the ideal proximity of anthracene end groups from neighboring polymer molecules. Above the overlap concentration (c/c* > 1), increased solution viscosities hindered molecular diffusion, thereby reducing the frequency of dimerization reactions. Adding nanocapsules to PEG-anthracene solutions resulted in faster gelation than nanocapsule-free PEG-anthracene solutions with equivalent effective polymer concentrations. The final elastic modulus of nanocomposite hydrogels increased with nanocapsule volume fraction, signifying synergistic mechanical reinforcement by nanocapsules despite not being cross-linked into the polymer network. Overall, these findings quantify the impact of nanocapsule addition on the gelation kinetics and mechanical properties of polymer nanocomposite hydrogels, which are promising materials for applications in optoelectronics, biotechnology, and additive manufacturing.
Collapse
Affiliation(s)
- Michael C. Burroughs
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
| | - Tracy H. Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, California94305, United States
| | - Daniel N. Congreve
- Department of Electrical Engineering, Stanford University, Stanford, California94305, United States
| | - Danielle J. Mai
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
18
|
Truong VX, Holloway JO, Barner-Kowollik C. Fluorescence turn-on by photoligation - bright opportunities for soft matter materials. Chem Sci 2022; 13:13280-13290. [PMID: 36507164 PMCID: PMC9682895 DOI: 10.1039/d2sc05403e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022] Open
Abstract
Photochemical ligation has become an indispensable tool for applications that require spatially addressable functionalisation, both in biology and materials science. Interestingly, a number of photochemical ligations result in fluorescent products, enabling a self-reporting function that provides almost instantaneous visual feedback of the reaction's progress and efficiency. Perhaps no other chemical reaction system allows control in space and time to the same extent, while concomitantly providing inherent feedback with regard to reaction success and location. While photoactivable fluorescent properties have been widely used in biology for imaging purposes, the expansion of the array of photochemical reactions has further enabled its utility in soft matter materials. Herein, we concisely summarise the key developments of fluorogenic-forming photoligation systems and their emerging applications in both biology and materials science. We further summarise the current challenges and future opportunities of exploiting fluorescent self-reporting reactions in a wide array of chemical disciplines.
Collapse
Affiliation(s)
- Vinh X Truong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138 634 Singapore
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
| | - Joshua O Holloway
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
19
|
Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids. Biointerphases 2022; 17:060801. [DOI: 10.1116/6.0002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.
Collapse
|
20
|
Budyka MF, Fedulova JA, Gavrishova TN, Li VM, Potashova NI, Tovstun SA. [2+2] Photocycloaddition in a bichromophoric dyad: photochemical concerted forward reaction following Woodward-Hoffmann rules and photoinduced stepwise reverse reaction of the ring opening via predissociation. Phys Chem Chem Phys 2022; 24:24137-24145. [PMID: 36168796 DOI: 10.1039/d2cp02865d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel biphotochromic dyad with styrylbenzo[f]quinoline photochromes was designed and synthesized to study the [2+2] photocycloaddition (PCA) reaction leading to cyclobutane with two benzo[f]quinoline (BQ) substituents and the reverse four-membered ring opening reaction. In the dyad, PCA occurs in a concerted manner according to the Woodward-Hoffmann rules in the ππ* excited state after excitation of the whole conjugated π-system comprising the ethylene group. Nanosecond time-resolved emission spectroscopy indicated formation of an excimer as a possible intermediate of the PCA reaction. The reverse reaction of photoinduced cyclobutane ring opening is assumed to proceed stepwise according to the predissociation mechanism: after excitation of the BQ substituent, energy transfer (ET) occurs from the bonding ππ* term localized on the BQ substituent to the dissociative πσ* term localized on cyclobutane; the efficiency of such a process was measured for the first time. For the first time, it is suggested that the predissociation mechanism is common to the ring-opening reaction of any cyclobutane with an unsaturated substituent where the π-system of the substituent rather than the σ-system of cyclobutane is excited under light irradiation.
Collapse
Affiliation(s)
- Mikhail F Budyka
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation.
| | - Julia A Fedulova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation. .,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatiana N Gavrishova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation.
| | - Vitalii M Li
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation.
| | - Natalia I Potashova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation.
| | - Sergey A Tovstun
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation.
| |
Collapse
|
21
|
Truong VX, Ehrmann K, Seifermann M, Levkin PA, Barner-Kowollik C. Wavelength Orthogonal Photodynamic Networks. Chemistry 2022; 28:e202104466. [PMID: 35213069 PMCID: PMC9310740 DOI: 10.1002/chem.202104466] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/17/2022]
Abstract
The ability of light to remotely control the properties of soft matter materials in a dynamic fashion has fascinated material scientists and photochemists for decades. However, only recently has our ability to map photochemical reactivity in a finely wavelength resolved fashion allowed for different colors of light to independently control the material properties of polymer networks with high precision, driven by monochromatic irradiation enabling orthogonal reaction control. The current concept article highlights the progress in visible light‐induced photochemistry and explores how it has enabled the design of polymer networks with dynamically adjustable properties. We will explore current applications ranging from dynamic hydrogel design to the light‐driven adaptation of 3D printed structures on the macro‐ and micro‐scale. While the alternation of mechanical properties via remote control is largely reality for soft matter materials, we herein propose the next frontiers for adaptive properties, including remote switching between conductive and non‐conductive properties, hydrophobic and hydrophilic surfaces, fluorescent or non‐fluorescent, and cell adhesive vs. cell repellent properties.
Collapse
Affiliation(s)
- Vinh X Truong
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Katharina Ehrmann
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Maximilian Seifermann
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Pl. 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| |
Collapse
|
22
|
Truong VX, Bachmann J, Unterreiner A, Blinco JP, Barner‐Kowollik C. Wavelength-Orthogonal Stiffening of Hydrogel Networks with Visible Light. Angew Chem Int Ed Engl 2022; 61:e202113076. [PMID: 35029002 PMCID: PMC9305448 DOI: 10.1002/anie.202113076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 01/05/2023]
Abstract
Herein, we introduce the wavelength-orthogonal crosslinking of hydrogel networks using two red-shifted chromophores, i.e. acrylpyerene (AP, λactivation =410-490 nm) and styrylpyrido[2,3-b]pyrazine (SPP, λactivation =400-550 nm), able to undergo [2+2] photocycloaddition in the visible-light regime. The photoreactivity of the SPP moiety is pH-dependent, whereby an acidic environment inhibits the cycloaddition. By employing a spiropyran-based photoacid generator with suitable absorption wavelength, we are able to restrict the activation wavelength of the SPP moiety to the green light region (λactivation =520-550 nm), enabling wavelength-orthogonal activation of the AP group. Our wavelength-orthogonal photochemical system was successfully applied in the design of hydrogels whose stiffness can be tuned independently by either green or blue light.
Collapse
Affiliation(s)
- Vinh X. Truong
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
| | - Julian Bachmann
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Andreas‐Neil Unterreiner
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - James P. Blinco
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
| | - Christopher Barner‐Kowollik
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George St.BrisbaneQLD 4000Australia
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
23
|
Bai J, Shi Z, Ma X, Yin J, Jiang X. Wavelength-Selective Photocycloadditions of Styryl-Anthracene. Macromol Rapid Commun 2022; 43:e2200055. [PMID: 35338541 DOI: 10.1002/marc.202200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/16/2022] [Indexed: 11/08/2022]
Abstract
Light-tunable covalent chemistry is highly urgent in the fields of chemistry, biology and material especially for the smart materials and surface, due to the spatiotemporal control and feasible operation. Here, we report a new type of wavelength-selective photo-cycloaddition of styryl-anthracene carboxylic acid (SACA). Upon the irradiation of 450 nm visible light or 365 nm UV light, SACA can undergo [2+2] or [2+4] photocycloaddition, respectively. Furthermore, the [2+2] photocycloaddition induced by vis-light of 450 nm is reversible and can be disrupted by 365 nm UV light to form dimer-24 which cannot be photo-cleavable. Owing to the feasibility and spatiotemporal characteristics of UV-Vis light-controlled photocycloaddition, the SACA possesses potential applications in various areas such as self-assembly, dynamic wrinkle and fluorescence patterns, which is also explored and exhibited in this work. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing Bai
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Zixing Shi
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
24
|
Yavitt FM, Kirkpatrick BE, Blatchley MR, Anseth KS. 4D Materials with Photoadaptable Properties Instruct and Enhance Intestinal Organoid Development. ACS Biomater Sci Eng 2022; 8:4634-4638. [PMID: 35298149 DOI: 10.1021/acsbiomaterials.1c01450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intestinal organoids are self-organized tissue constructs, grown in vitro, that resemble the structure and function of the intestine and are often considered promising as a prospective platform for drug testing and disease modeling. Organoid development in vitro is typically instructed by exogenous cues delivered from the media, but cellular responses also depend on properties of the surrounding microenvironmental niche, such as mechanical stiffness and extracellular matrix (ECM) ligands. In recent years, synthetic hydrogel platforms have been engineered to resemble the in vivo niche, with the goal of generating physiologically relevant environments that can promote mature and reproducible organoid development. However, a few of these approaches consider the importance of intestinal organoid morphology or how morphology changes during development, as cues that may dictate organoid functionality. For example, intestinal organoids grown in vitro often lack the physical boundary conditions found in vivo that are responsible for shaping a collection of cells into developmentally relevant morphologies, resulting in organoids that often differ in structure and cellular organization from the parent organ. This disconnect relates, in part, to a lack of appropriate adaptable and programmable materials for cell culture, especially those that enable control over colony growth and differentiation in space and time (i.e., 4D materials). We posit that the future of organoid culture platforms may benefit from advances in photoadaptable chemistries and integration into biomaterials scaffolds, thereby allowing greater user-directed control over both the macro- and microscale material properties. In this way, synthetic materials can begin to better replicate changes in the ECM during development or regeneration in vivo. Recapitulation of cellular and tissue morphological changes, along with an appreciation for the appropriate developmental time scales, should help instruct the next generation of organoid models to facilitate predictable outcomes.
Collapse
Affiliation(s)
| | - Bruce E Kirkpatrick
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | | |
Collapse
|
25
|
|
26
|
Truong VX, Bachmann J, Unterreiner A, Blinco JP, Barner‐Kowollik C. Wellenlängen‐Orthogonale Versteifung von Hydrogel‐Netzwerken mit sichtbarem Licht. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vinh X. Truong
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
| | - Julian Bachmann
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe Deutschland
| | - Andreas‐Neil Unterreiner
- Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe Deutschland
| | - James P. Blinco
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
| | - Christopher Barner‐Kowollik
- Centre for Materials Science Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George St. Brisbane QLD 4000 Australien
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
27
|
Truong VX, Barner-Kowollik C. Photodynamic covalent bonds regulated by visible light for soft matter materials. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Cao J, Zhang D, Zhou Y, Zhang Q, Wu S. Controlling Properties and Functions of Polymer Gels Using Photochemical Reactions. Macromol Rapid Commun 2022; 43:e2100703. [PMID: 35038195 DOI: 10.1002/marc.202100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Indexed: 11/08/2022]
Abstract
Photoresponsive polymer gels have attracted increasing interest owing to their potential applications in healable materials, drug release systems, and extracellular matrices. Because polymer gels provide suitable environments for photochemical reactions, their properties and functions can be controlled with light with a high spatiotemporal resolution. Herein, the design of photoresponsive polymer gels based on different types of photochemical reactions is introduced. The mechanism and applications of irreversible photoreactions, such as photoinduced free-radical polymerization, photoinduced click reactions, and photolysis, as well as reversible photoreactions such as photoinduced reversible cycloadditions, reversible photosubstitution of metal complexes, and photoinduced metathesis are reviewed. The remaining challenges of photoresponsive polymer gels are also discussed.
Collapse
Affiliation(s)
- Jingning Cao
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dachuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qijin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
29
|
Kamm PW, Rodrigues LL, Walden SL, Blinco JP, Unterreiner AN, Barner-Kowollik C. Sequence-independent activation of photocycloadditions using two colours of light. Chem Sci 2022; 13:531-535. [PMID: 35126985 PMCID: PMC8729803 DOI: 10.1039/d1sc06154b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022] Open
Abstract
We exploit two reactive chromophores to establish sequence-independent photochemical activation, employing ortho-methyl benzaldehyde (oMBA) and N,N-(dimethylamino)pyrene aryl tetrazole (APAT) with N-(2-hydroxy)ethyl maleimide (NHEM), without any additives. Critically, the order of the irradiation sequence is irrelevant, as the shorter wavelength does not activate the higher wavelength activated species. Therefore, full sequence-independent λ-orthogonality is achieved through differences in both the reaction quantum yields (Φ r,oMBA and Φ r,APAT) and wavelength-dependent reactivity profiles of the employed chromophores.
Collapse
Affiliation(s)
- Philipp W Kamm
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Molecular Physical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2, Geb. 30.44 Karlsruhe 76131 Germany
| | - Leona L Rodrigues
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Sarah L Walden
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - James P Blinco
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Andreas-Neil Unterreiner
- Molecular Physical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2, Geb. 30.44 Karlsruhe 76131 Germany
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
30
|
Nakagawa S, Yoshie N. Star polymer networks: a toolbox for cross-linked polymers with controlled structure. Polym Chem 2022. [DOI: 10.1039/d1py01547h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of precisely controlled polymer networks has been a long-cherished dream of polymer scientists. Traditional random cross-linking strategies often lead to uncontrolled networks with various kinds of defects. Recent...
Collapse
|
31
|
Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H. Stimuli-responsive destructible polymeric hydrogels based on irreversible covalent bond dissociation. Polym Chem 2022. [DOI: 10.1039/d1py01066b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Covalently crosslinked stimuli-destructible hydrogels with the ability of irreversible bond dissociation have attracted great attentions due to their biodegradability, stability against hydrolysis, and controlled solubility upon insertion of desired triggers.
Collapse
Affiliation(s)
- Sina Shahi
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Saeid Talebi
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Hanieh Mardani
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| |
Collapse
|
32
|
Peng K, Zheng L, Zhou T, Zhang C, Li H. Light manipulation for fabrication of hydrogels and their biological applications. Acta Biomater 2022; 137:20-43. [PMID: 34637933 DOI: 10.1016/j.actbio.2021.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The development of biocompatible materials with desired functions is essential for tissue engineering and biomedical applications. Hydrogels prepared from these materials represent an important class of soft matter for mimicking extracellular environments. In particular, dynamic hydrogels with responsiveness to environments are quite appealing because they can match the dynamics of biological processes. Among the external stimuli that can trigger responsive hydrogels, light is considered as a clean stimulus with high spatiotemporal resolution, complete bioorthogonality, and fine tunability regarding its wavelength and intensity. Therefore, photoresponsiveness has been broadly encoded in hydrogels for biological applications. Moreover, light can be used to initiate gelation during the fabrication of biocompatible hydrogels. Here, we present a critical review of light manipulation tools for the fabrication of hydrogels and for the regulation of physicochemical properties and functions of photoresponsive hydrogels. The materials, photo-initiated chemical reactions, and new prospects for light-induced gelation are introduced in the former part, while mechanisms to render hydrogels photoresponsive and their biological applications are discussed in the latter part. Subsequently, the challenges and potential research directions in this area are discussed, followed by a brief conclusion. STATEMENT OF SIGNIFICANCE: Hydrogels play a vital role in the field of biomaterials owing to their water retention ability and biocompatibility. However, static hydrogels cannot meet the dynamic requirements of the biomedical field. As a stimulus with high spatiotemporal resolution, light is an ideal tool for both the fabrication and operation of hydrogels. In this review, light-induced hydrogelation and photoresponsive hydrogels are discussed in detail, and new prospects and emerging biological applications are described. To inspire more research studies in this promising area, the challenges and possible solutions are also presented.
Collapse
|
33
|
Pelloth JL, Tran PA, Walther A, Goldmann AS, Frisch H, Truong VX, Barner-Kowollik C. Wavelength-Selective Softening of Hydrogel Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102184. [PMID: 34365684 DOI: 10.1002/adma.202102184] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Photoresponsive hydrogels hold key potential in advanced biomedical applications including tissue engineering, regenerative medicine, and drug delivery, as well as intricately engineered functions such as biosensing, soft robotics, and bioelectronics. Herein, the wavelength-dependent degradation of bio-orthogonal poly(ethylene glycol) hydrogels is reported, using three selective activation levels. Specifically, three chromophores are exploited, that is, ortho-nitrobenzene, dimethyl aminobenzene, and bimane, each absorbing light at different wavelengths. By examining their photochemical action plots, the wavelength-dependent reactivity of the photocleavable moieties is determined. The wavelength-selective addressability of individual photoreactive units is subsequently translated into hydrogel design, enabling wavelength-dependent cleavage of the hydrogel networks on-demand. Critically, this platform technology allows for the fabrication of various hydrogels, whose mechanical properties can be fine-tuned using different colors of light to reach a predefined value, according to the chromophore ratios used. The softening is shown to influence the spreading of pre-osteoblastic cells adhering to the gels as a demonstration of their potential utility. Furthermore, the materials and photodegradation processes are non-toxic to cells, making this platform attractive for biomaterials engineering.
Collapse
Affiliation(s)
- Jessica L Pelloth
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Phong A Tran
- Centre for Biomedical Technologies and Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Andreas Walther
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Department for Chemistry, Chemistry, Pharmacy, Geography and Geosciences, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Anja S Goldmann
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Vinh X Truong
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
34
|
Ting MS, Travas-Sejdic J, Malmström J. Modulation of hydrogel stiffness by external stimuli: soft materials for mechanotransduction studies. J Mater Chem B 2021; 9:7578-7596. [PMID: 34596202 DOI: 10.1039/d1tb01415c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mechanotransduction is an important process in determining cell survival, proliferation, migration and differentiation. The extracellular matrix (ECM) is the component of natural tissue that provides structural support and biochemical signals to adhering cells. The ECM is dynamic and undergoes physical and biochemical changes in response to various stimuli and there is an interest in understanding the effect of dynamic changes in stiffness on cell behaviour and fate. Therefore, stimuli-responsive hydrogels have been developed to mimic the cells' microenvironment in a controlled fashion. Herein, we review strategies for dynamic modulation of stiffness using various stimuli, such as light, temperature and pH. Special emphasis is placed on conducting polymer (CP) hydrogels and their fabrication procedures. We believe that the redox properties of CPs and hydrogels' biological properties make CPs hydrogels a promising substrate to investigate the effect of dynamic stiffness changes and mechanical actuation on cell fate in future studies.
Collapse
Affiliation(s)
- Matthew S Ting
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand. .,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.,Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jadranka Travas-Sejdic
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.,Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand. .,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.,Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Han J, Xie C, Huang YS, Wagner M, Liu W, Zeng X, Liu J, Sun S, Koynov K, Butt HJ, Wu S. Ru-Se Coordination: A New Dynamic Bond for Visible-Light-Responsive Materials. J Am Chem Soc 2021; 143:12736-12744. [PMID: 34346213 DOI: 10.1021/jacs.1c05648] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photodynamic bonds are stable in the dark and can reversibly dissociate/form under light irradiation. Photodynamic bonds are promising building blocks for responsive or healable materials, photoactivated drugs, nanocarriers, extracellular matrices, etc. However, reactive intermediates from photodynamic bonds usually lead to side reactions, which limit the use of photodynamic bonds. Here, we report that the Ru-Se coordination bond is a new photodynamic bond that reversibly dissociates under mild visible-light-irradiation conditions. We observed that Ru-Se bonds form via the coordination of a selenoether ligand with [Ru(tpy)(biq)(H2O)]Cl2 (tpy = 2,2':6',2″-terpyridine, biq = 2,2'-biquinoline) in the dark, while the Ru-Se bond reversibly dissociates under visible-light irradiation. No side reaction is detected in the formation and dissociation of Ru-Se bonds. To demonstrate that the Ru-Se bond is applicable to different operating environments, we prepared photoresponsive amphiphiles, surfaces, and polymer gels using Ru-Se bonds. The amphiphiles with Ru-Se bonds showed reversible morphological transitions between spherical micelles and bowl-shaped assemblies for dark/light irradiation cycles. The surfaces modified with Ru-Se-bond-containing compounds showed photoswitchable wettability. Polymer gels with Ru-Se cross-links underwent photoinduced reversible sol-gel transitions, which can be used for reshaping and healing. Our work demonstrates that the Ru-Se bond is a new type of dynamic bond, which can be used for constructing responsive, reprocessable, switchable, and healable materials that work in a variety of environments.
Collapse
Affiliation(s)
- Jianxiong Han
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yun-Shuai Huang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Wendong Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaolong Zeng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jiahui Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shijie Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
36
|
Shahrokhinia A, Biswas P, Reuther JF. Orthogonal synthesis and modification of polymer materials. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ali Shahrokhinia
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - Priyanka Biswas
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| | - James F. Reuther
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts USA
| |
Collapse
|
37
|
Chitosan-anthracene hydrogels as controlled stiffening networks. Int J Biol Macromol 2021; 185:165-175. [PMID: 34146562 DOI: 10.1016/j.ijbiomac.2021.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
In this study, we report the synthesis of single and dual-crosslinked anthracene-functional chitosan-based hydrogels in the absence of toxic initiators. Single crosslinking was achieved through dimerization of anthracene, whereas dual-crosslinked hydrogel was formed through dimerization of anthracene and free radical photopolymerization of methacrylated-chitosan in the presence of non-toxic initiator riboflavin, a well-known vitamin B2. Both single and dual-crosslinked hydrogels were found to be elastic, as was determined through rheological analysis. We observed that the dual-crosslinked hydrogels exhibited higher Young's modulus than the single-crosslinked hydrogels, where the modulus for single and dual-crosslinked hydrogels were measured as 9.2 ± 1.0 kPa and 26 ± 2.8 kPa, respectively resulting in significantly high volume of cells in dual-crosslinked hydrogel (2.2 × 107 μm3) compared to single-crosslinked (4.9 × 106 μm3). Furthermore, we investigated the cytotoxicity of both hydrogels towards 3T3-J2 fibroblast cells through CellTiter-Glo assay. Finally, immunofluorescence staining was carried out to evaluate the impact of hydrogel modulus on cell morphology. This study comprehensively presents functionalization of chitosan with anthracene, uses nontoxic initiator riboflavin, modulates the degree of crosslinking through dimerization of anthracene and free radical photopolymerization, and further modulates cell behavior through the alterations of hydrogel properties.
Collapse
|
38
|
Peng K, Liu X, Zhao H, Lu H, Lv F, Liu L, Huang Y, Wang S, Gu Q. 3D Bioprinting of Reinforced Vessels by Dual-Cross-linked Biocompatible Hydrogels. ACS APPLIED BIO MATERIALS 2021; 4:4549-4556. [PMID: 35006791 DOI: 10.1021/acsabm.1c00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
3D bioprinting offers a powerful tool to fabricate vessel channels in tissue engineering applications, but inadequate strength of the vascular walls limited the development of this strategy and reinforced channels were highly desired for vascular constructions. Herein, we demonstrated a dual cross-linking system for 3D bioprinting of tubular structures, achieved by a combination of photo-cross-linking and enzymatic cross-linking. Photo-cross-linking of gelatin methacryloyl (GelMA) was achieved with a photoactive conjugated polymer PBF under 550 nm irradiation. Enzymatic cross-linking utilized cascade reactions catalyzed by glucose peroxidase and horseradish peroxidase that can cross-link both methacrylate and tyrosine moieties of GelMA. After removing the 3D-printed sacrificial layer (Pluronic F-127), the obtained perfusable channels showed great biocompatibility that allowed endothelial cells to adhere and proliferate. Our dual cross-linking strategy has great potential in 3D bioprinting of tubular structure for biomedical applications, especially for artificial blood vessels.
Collapse
Affiliation(s)
- Ke Peng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huan Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qi Gu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
39
|
Kamm PW, Blinco JP, Unterreiner AN, Barner-Kowollik C. Green-light induced cycloadditions. Chem Commun (Camb) 2021; 57:3991-3994. [PMID: 33885643 DOI: 10.1039/d1cc00340b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We introduce a red-shifted tetrazole that is able to undergo efficient nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) under blue and green light irradiation. We provide a detailed wavelength-dependent reactivity map, and employ a number of LEDs for high-conversion small molecule and polymer end-group modification.
Collapse
Affiliation(s)
- Philipp W Kamm
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia. and School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia and Molecular Physical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Geb. 30.44, Karlsruhe 76131, Germany.
| | - James P Blinco
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia. and School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Andreas-Neil Unterreiner
- Molecular Physical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Geb. 30.44, Karlsruhe 76131, Germany.
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia. and School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
40
|
Özkale B, Sakar MS, Mooney DJ. Active biomaterials for mechanobiology. Biomaterials 2021; 267:120497. [PMID: 33129187 PMCID: PMC7719094 DOI: 10.1016/j.biomaterials.2020.120497] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Active biomaterials offer novel approaches to study mechanotransduction in mammalian cells. These material systems probe cellular responses by dynamically modulating their resistance to endogenous forces or applying exogenous forces on cells in a temporally controlled manner. Stimuli-responsive molecules, polymers, and nanoparticles embedded inside cytocompatible biopolymer networks transduce external signals such as light, heat, chemicals, and magnetic fields into changes in matrix elasticity (few kPa to tens of kPa) or forces (few pN to several μN) at the cell-material interface. The implementation of active biomaterials in mechanobiology has generated scientific knowledge and therapeutic potential relevant to a variety of conditions including but not limited to cancer metastasis, fibrosis, and tissue regeneration. We discuss the repertoire of cellular responses that can be studied using these platforms including receptor signaling as well as downstream events namely, cytoskeletal organization, nuclear shuttling of mechanosensitive transcriptional regulators, cell migration, and differentiation. We highlight recent advances in active biomaterials and comment on their future impact.
Collapse
Affiliation(s)
- Berna Özkale
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| | - David J Mooney
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA.
| |
Collapse
|
41
|
Ludwanowski S, Hoenders D, Kalayci K, Frisch H, Barner-Kowollik C, Walther A. Modular functionalization and hydrogel formation via red-shifted and self-reporting [2+2] cycloadditions. Chem Commun (Camb) 2021; 57:805-808. [DOI: 10.1039/d0cc07429b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce a modular photodynamic covalent crosslinker, named qStyPy, with an increased water-solubility that undergoes [2+2] cycloadditions upon irradiation with 470 nm and directly self-reports on its cycloadduct formation.
Collapse
Affiliation(s)
- Simon Ludwanowski
- Institute for Macromolecular Chemistry
- University of Freiburg
- Stefan-Meier-Straße 31
- 79104 Freiburg
- Germany
| | - Daniel Hoenders
- Institute for Macromolecular Chemistry
- University of Freiburg
- Stefan-Meier-Straße 31
- 79104 Freiburg
- Germany
| | - Kubra Kalayci
- Centre for Materials Science
- Queensland University of Technology (QUT), 2 George Street
- Brisbane
- Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street
| | - Hendrik Frisch
- Centre for Materials Science
- Queensland University of Technology (QUT), 2 George Street
- Brisbane
- Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street
| | - Christopher Barner-Kowollik
- Centre for Materials Science
- Queensland University of Technology (QUT), 2 George Street
- Brisbane
- Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street
| | - Andreas Walther
- Institute for Macromolecular Chemistry
- University of Freiburg
- Stefan-Meier-Straße 31
- 79104 Freiburg
- Germany
| |
Collapse
|
42
|
Gelmi A, Schutt CE. Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control. Adv Healthc Mater 2021; 10:e2001125. [PMID: 32996270 PMCID: PMC11468740 DOI: 10.1002/adhm.202001125] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Stem cell fate is closely intertwined with microenvironmental and endogenous cues within the body. Recapitulating this dynamic environment ex vivo can be achieved through engineered biomaterials which can respond to exogenous stimulation (including light, electrical stimulation, ultrasound, and magnetic fields) to deliver temporal and spatial cues to stem cells. These stimuli-responsive biomaterials can be integrated into scaffolds to investigate stem cell response in vitro and in vivo, and offer many pathways of cellular manipulation: biochemical cues, scaffold property changes, drug release, mechanical stress, and electrical signaling. The aim of this review is to assess and discuss the current state of exogenous stimuli-responsive biomaterials, and their application in multipotent stem cell control. Future perspectives in utilizing these biomaterials for personalized tissue engineering and directing organoid models are also discussed.
Collapse
Affiliation(s)
- Amy Gelmi
- School of ScienceCollege of Science, Engineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - Carolyn E. Schutt
- Department of Biomedical EngineeringKnight Cancer Institute Cancer Early Detection Advanced Research Center (CEDAR)Oregon Health and Science UniversityPortlandOR97201USA
| |
Collapse
|
43
|
Wu D, Liu K, Ren L, Zhu L, Yan J, Li W, Zhang X, Zhang A. [2 + 2] Photocycloaddition-Mediated Intra- and Intermolecular Cross-Linking of Thermoresponsive Dendronized Polymethacrylates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Di Wu
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Kun Liu
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Liangxuan Ren
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Li Zhu
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Jiatao Yan
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Wen Li
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Xiacong Zhang
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Afang Zhang
- Laboratory of Polymer Chemistry, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| |
Collapse
|
44
|
Lee SC, Gillispie G, Prim P, Lee SJ. Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Chem Rev 2020; 120:10834-10886. [PMID: 32815369 PMCID: PMC7673205 DOI: 10.1021/acs.chemrev.0c00015] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioprinting researchers agree that "printability" is a key characteristic for bioink development, but neither the meaning of the term nor the best way to experimentally measure it has been established. Furthermore, little is known with respect to the underlying mechanisms which determine a bioink's printability. A thorough understanding of these mechanisms is key to the intentional design of new bioinks. For the purposes of this review, the domain of printability is defined as the bioink requirements which are unique to bioprinting and occur during the printing process. Within this domain, the different aspects of printability and the factors which influence them are reviewed. The extrudability, filament classification, shape fidelity, and printing accuracy of bioinks are examined in detail with respect to their rheological properties, chemical structure, and printing parameters. These relationships are discussed and areas where further research is needed, are identified. This review serves to aid the bioink development process, which will continue to play a major role in the successes and failures of bioprinting, tissue engineering, and regenerative medicine going forward.
Collapse
Affiliation(s)
- Sang Cheon Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gregory Gillispie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina 27157, USA
| | - Peter Prim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
45
|
Corrigan N, Ciftci M, Jung K, Boyer C. Gesteuerte Reaktionsorthogonalität in der Polymer‐ und Materialwissenschaft. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Mustafa Ciftci
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
- Department of Chemistry Faculty of Engineering and Natural Science Bursa Technical University Bursa 16310 Turkey
| | - Kenward Jung
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| |
Collapse
|
46
|
Corrigan N, Ciftci M, Jung K, Boyer C. Mediating Reaction Orthogonality in Polymer and Materials Science. Angew Chem Int Ed Engl 2020; 60:1748-1781. [DOI: 10.1002/anie.201912001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Mustafa Ciftci
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
- Department of Chemistry Faculty of Engineering and Natural Science Bursa Technical University Bursa 16310 Turkey
| | - Kenward Jung
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| |
Collapse
|
47
|
Kalayci K, Frisch H, Truong VX, Barner-Kowollik C. Green light triggered [2+2] cycloaddition of halochromic styrylquinoxaline-controlling photoreactivity by pH. Nat Commun 2020; 11:4193. [PMID: 32826921 PMCID: PMC7443129 DOI: 10.1038/s41467-020-18057-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Photochemical reactions are a powerful tool in (bio)materials design due to the spatial and temporal control light can provide. To extend their applications in biological setting, the use of low-energy, long wavelength light with high penetration propertiesis required. Further regulation of the photochemical process by additional stimuli, such as pH, will open the door for construction of highly regulated systems in nanotechnology- and biology-driven applications. Here we report the green light induced [2+2] cycloaddition of a halochromic system based on a styrylquinoxaline moiety, which allows for its photo-reactivity to be switched on and off by adjusting the pH of the system. Critically, the [2+2] photocycloaddition can be activated by green light (λ up to 550 nm), which is the longest wavelength employed to date in catalyst-free photocycloadditions in solution. Importantly, the pH-dependence of the photo-reactivity was mapped by constant photon action plots. The action plots further indicate that the choice of solvent strongly impacts the system's photo-reactivity. Indeed, higher conversion and longer activation wavelengths were observed in water compared to acetonitrile under identical reaction conditions. The wider applicability of the system was demonstrated in the crosslinking of an 8-arm PEG to form hydrogels (ca. 1 cm in thickness) with a range of mechanical properties and pH responsiveness, highlighting the potential of the system in materials science.
Collapse
Affiliation(s)
- Kubra Kalayci
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Hendrik Frisch
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| | - Vinh X Truong
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
48
|
Truong VX. Break Up to Make Up: Utilization of Photocleavable Groups in Biolabeling of Hydrogel Scaffolds. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vinh X. Truong
- School of Chemistry and PhysicsQueensland University of Technology 2 George St. QLD 4000 Brisbane Australia
- Centre for Materials ScienceQueensland University of Technology 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
49
|
Li Y, Xue B, Cao Y. 100th Anniversary of Macromolecular Science Viewpoint: Synthetic Protein Hydrogels. ACS Macro Lett 2020; 9:512-524. [PMID: 35648497 DOI: 10.1021/acsmacrolett.0c00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our bodies are composed of soft tissues made of various proteins. In contrast, most hydrogels designed for biological applications are made of synthetic polymers. Recently, it is increasingly recognized that genetically synthesized proteins can be tailored as building blocks of hydrogels with biological, chemical, and mechanical properties similar to native soft tissues. In this Viewpoint, we summarize recent progress in synthetic protein hydrogels. We compare the structural and mechanical properties of different protein building blocks. We discuss various biocompatible cross-linking strategies based on covalent chemical reactions and noncovalent physical interactions. We introduce how stimulus-responsive conformational changes or intermolecular interactions at the molecular level can be used to engineer responsive hydrogels. We highlight that hydrogel network structures are as important as the protein sequences for the properties and functions of protein hydrogels and should be carefully designed. Despite great progress and potentials of synthetic protein hydrogels, there are still quite a few unsettled challenges and unexploited opportunities, providing abundant room for future investigation and development, particularly as this field is quickly expanding beyond its initial stage. We discuss a number of possible directions, including optimizing protein production and reducing cost, engineering anisotropic hydrogels to better mimic native tissues, rationally designing hydrogel mechanical properties, investigating interplays of hydrogels and residing cells for 3D cell culture and organoid construction, and evaluating long-term cytotoxicity and immune response.
Collapse
Affiliation(s)
- Ying Li
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology (NUIST), Nanjing, China 210044
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China 210093
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China 210093
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China, 210023
- Institute of Brain Science, Nanjing University, Nanjing, China, 210023
| |
Collapse
|
50
|
Frisch H, Mundsinger K, Poad BLJ, Blanksby SJ, Barner-Kowollik C. Wavelength-gated photoreversible polymerization and topology control. Chem Sci 2020; 11:2834-2842. [PMID: 32206267 PMCID: PMC7069517 DOI: 10.1039/c9sc05381f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
We exploit the wavelength dependence of [2 + 2] photocycloadditions and -reversions of styrylpyrene to exert unprecedented control over the photoreversible polymerization and topology of telechelic building blocks. Blue light (λ max = 460 nm) initiates a catalyst-free polymerization yielding high molar mass polymers (M n = 60 000 g mol-1), which are stable at wavelengths exceeding 430 nm, yet highly responsive to shorter wavelengths. UVB irradiation (λ max = 330 nm) induces a rapid depolymerization affording linear oligomers, whereas violet light (λ max = 410 nm) generates cyclic entities. Thus, different colors of light allow switching between a depolymerization that either proceeds through cyclic or linear topologies. The light-controlled topology formation was evidenced by correlation of mass spectrometry (MS) with size exclusion chromatography (SEC) and ion mobility data. Critically, the color-guided topology control was also possible with ambient laboratory light affording cyclic oligomers, while sunlight activated the linear depolymerization pathway. These findings suggest that light not only induces polymerization and depolymerization but that its color can control the topological outcomes.
Collapse
Affiliation(s)
- Hendrik Frisch
- Centre for Materials Science , School of Chemistry and Physics , Queensland University of Technology (QUT) , 2 George Street , Brisbane , QLD 4000 , Australia .
| | - Kai Mundsinger
- Centre for Materials Science , School of Chemistry and Physics , Queensland University of Technology (QUT) , 2 George Street , Brisbane , QLD 4000 , Australia .
| | - Berwyck L J Poad
- Central Analytical Research Facility , Institute for Future Environments , Queensland University of Technology (QUT) , 2 George Street , Brisbane , QLD 4000 , Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility , Institute for Future Environments , Queensland University of Technology (QUT) , 2 George Street , Brisbane , QLD 4000 , Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science , School of Chemistry and Physics , Queensland University of Technology (QUT) , 2 George Street , Brisbane , QLD 4000 , Australia .
- Macromolecular Architectures , Institut für Technische Chemie und Polymerchemie , Karlsruhe Institute of Technology (KIT) , Engesserstrasse 18 , 76131 Karlsruhe , Germany
| |
Collapse
|