1
|
Roszyk M, Wałęsa-Chorab M. Electrochemical and Optical Properties of D-A-A-A-D Azomethine Triad and Its NIR-Active Polymer. Molecules 2024; 29:4470. [PMID: 39339464 PMCID: PMC11434257 DOI: 10.3390/molecules29184470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The azomethine TPA-(BTZ)3-TPA with a donor-acceptor-acceptor-acceptor-donor structure has been synthesized and characterized. Azomethine TPA-(BTZ)3-TPA exhibited luminescence properties and a positive solvatochromic effect. Electropolymerization on terminated triphenylamine groups was used to obtain a thin layer of the polyazomethine poly-[TPA-(BTZ)3-TPA]. Further investigation of oxidation/reduction properties of poly-[TPA-(BTZ)3-TPA] via cyclic voltammetry showed that the polymer undergoes two reversible oxidation/reduction processes due to the presence of tetraphenylbenzidine moieties. Electrochromic properties of the polyazomethine poly-[TPA-(BTZ)3-TPA] were investigated via spectroelectrochemistry. It was observed that the polymer in its neutral state is orange, and the color changes to green upon electro-oxidation. The stability of the polymer during multiple oxidation/reduction cycles, response times, and coloration efficiency were also investigated.
Collapse
Affiliation(s)
- Mateusz Roszyk
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Monika Wałęsa-Chorab
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Supramolecular organogel of polyureas containing POSS units in the main chain: dependence on the POSS and comonomer structures. Polym J 2021. [DOI: 10.1038/s41428-021-00578-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Ishida A, Fujii S, Sumida A, Kamitani T, Minami S, Urayama K, Imoto H, Naka K. Supramolecular organogel formation behaviors of beads-on-string shaped poly(azomethine)s dependent on POSS structures in the main chains. Polym Chem 2021. [DOI: 10.1039/d1py00346a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organogel formation was observed for isobutyl-substituted cage octasilsesquioxane (T8) in the main-chain type polyazomethines, while precipitates instead of gel formation were observed for phenyl-substituted double-decker-shaped silsesquioxanes (DDSQ)-poly(azomethine)s.
Collapse
Affiliation(s)
- Ayano Ishida
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Shunichi Fujii
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Akifumi Sumida
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Tasuku Kamitani
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Saori Minami
- Faculty of Material Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Kenji Urayama
- Faculty of Material Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
- Materials Innovation Lab
| |
Collapse
|
4
|
Li L, Imoto H, Naka K. Soluble network polymers based on
trifluoropropyl‐substituted open‐cage
silsesquioxane: Synthesis, properties, and application for surface modifiers. J Appl Polym Sci 2020. [DOI: 10.1002/app.50167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lina Li
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| |
Collapse
|
5
|
Sato Y, Imoto H, Naka K. Soluble and film‐formable homopolymer tethering side‐opened cage silsesquioxane pendants. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuri Sato
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Kyoto Japan
| |
Collapse
|
6
|
Hashimoto M, Imoto H, Matsukawa K, Naka K. Coexistence of Optical Transparency, Hydrophobicity, and High Thermal Conductivity in Beads-on-String-Shaped Polyureas Induced by Disordered Hydrogen-Bond Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Mari Hashimoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kimihiro Matsukawa
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
7
|
Imoto H, Ueda Y, Sato Y, Nakamura M, Mitamura K, Watase S, Naka K. Corner‐ and Side‐Opened Cage Silsesquioxanes: Structural Effects on the Materials Properties. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Yukiho Ueda
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Yuri Sato
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Masashi Nakamura
- Morinomiya Center Osaka Research Institute of Industrial Science and Technology Morinomiya Center 1‐6–50 Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| | - Koji Mitamura
- Morinomiya Center Osaka Research Institute of Industrial Science and Technology Morinomiya Center 1‐6–50 Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| | - Seiji Watase
- Morinomiya Center Osaka Research Institute of Industrial Science and Technology Morinomiya Center 1‐6–50 Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| |
Collapse
|
8
|
Delgado-Montiel T, Soto-Rojo R, Baldenebro-López J, Glossman-Mitnik D. Theoretical Study of the Effect of Different π Bridges Including an Azomethine Group in Triphenylamine-Based Dye for Dye-Sensitized Solar Cells. Molecules 2019; 24:E3897. [PMID: 31671874 PMCID: PMC6864646 DOI: 10.3390/molecules24213897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Ten molecules were theoretically calculated and studied through density functional theory with the M06 density functional and the 6-31G(d) basis set. The molecular systems have potential applications as sensitizers for dye-sensitized solar cells. Three molecules were taken from the literature, and seven are proposals inspired in the above, including the azomethine group in the π-bridge expecting a better charge transfer. These molecular structures are composed of triphenylamine (donor part); different combinations of azomethine, thiophene, and benzene derivatives (π-bridge); and cyanoacrylic acid (acceptor part). This study focused on the effect that the azomethine group caused on the π-bridge. Ground-state geometry optimization, the highest occupied molecular orbital, the lowest unoccupied molecular orbital, and their energy levels were obtained and analyzed. Absorption wavelengths, oscillator strengths, and electron transitions were obtained via time-dependent density functional theory using the M06-2X density functional and the 6-31G(d) basis set. The free energy of electron injection (ΔGinj) was calculated and analyzed. As an important part of this study, chemical reactivity parameters are discussed, such as chemical hardness, electrodonating power, electroaccepting power, and electrophilicity index. In conclusion, the inclusion of azomethine in the π-bridge improved the charge transfer and the electronic properties of triphenylamine-based dyes.
Collapse
Affiliation(s)
- Tomás Delgado-Montiel
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S/N, Los Mochis 81223, Sinaloa, Mexico.
| | - Rody Soto-Rojo
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S/N, Los Mochis 81223, Sinaloa, Mexico.
| | - Jesús Baldenebro-López
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S/N, Los Mochis 81223, Sinaloa, Mexico.
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chihuahua 31136, Mexico.
| |
Collapse
|
9
|
Imoto H, Ishida A, Hashimoto M, Mizoue Y, Yusa SI, Naka K. Soluble Network Polymers Based on Trifunctional Open-cage Silsesquioxanes. CHEM LETT 2019. [DOI: 10.1246/cl.190536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ayano Ishida
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mari Hashimoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yoko Mizoue
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
10
|
Kato K, Gon M, Tanaka K, Chujo Y. Stretchable Conductive Hybrid Films Consisting of Cubic Silsesquioxane-capped Polyurethane and Poly(3-hexylthiophene). Polymers (Basel) 2019; 11:E1195. [PMID: 31319479 PMCID: PMC6680475 DOI: 10.3390/polym11071195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
We fabricated stretchable and electric conductive hybrids consisting of polyhedral oligomeric silsesquioxane (POSS)-capped polyurethane (PUPOSS) and doped poly(3-hexylthiophene) (P3HT). In order to realize robust films coexisting polar conductive components in hydrophobic elastic matrices, we employed POSS introduced into the terminals of the polyurethane chains as a compatibilizer. Through the simple mixing and drop-casting with the chloroform solutions containing doped P3HT and polyurethane polymers, homogeneous hybrid films were obtained. From the conductivity and mechanical measurements, it was indicated that hybrid materials consisting of PUPOSS and doped P3HT showed high conductivity and stretchability even with a small content of doped P3HT. From the mechanical studies, it was proposed that POSS promoted aggregation of doped P3HT in the films, and ordered structures should be involved in the aggregates. Efficient carrier transfer could occur through the POSS-inducible ordered structures in the aggregates.
Collapse
Affiliation(s)
- Keigo Kato
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
11
|
Wada S, Imoto H, Naka K. Palladium-Catalyzed Arylation of Open-Cage Silsesquioxanes toward Thermally Stable and Highly Dispersible Nanofillers. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satoshi Wada
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
12
|
Imoto H, Wada S, Yumura T, Naka K. Transition‐Metal‐Catalyzed Direct Arylation of Caged Silsesquioxanes: Substrate Scope and Mechanistic Study. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Satoshi Wada
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Takashi Yumura
- Faculty of Material Science and Technology Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| |
Collapse
|
13
|
Katoh R, Imoto H, Naka K. One-pot strategy for synthesis of open-cage silsesquioxane monomers. Polym Chem 2019. [DOI: 10.1039/c9py00036d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synthetic strategy to access POSS monomers has been proposed; one reaction site of an open-cage POSS was capped, and the remaining two silanol groups were functionalized for polymerization. Importantly, the monomer can be obtained by one-pot synthesis without any troublesome isolation process.
Collapse
Affiliation(s)
- Ryoichi Katoh
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| |
Collapse
|
14
|
Imoto H, Katoh R, Naka K. Open-cage silsesquioxane necklace polymers having closed-cage silsesquioxane pendants. Polym Chem 2018. [DOI: 10.1039/c8py00758f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel POSS monomer design has been proposed; a closed-cage POSS was tethered to an open-cage POSS, and the remaining two functional groups were employed for polymerization. The thermal and optical properties of the obtained main-chain type POSS polymers can be widely tuned by the substituents at the corners of the POSSs.
Collapse
Affiliation(s)
- Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Ryoichi Katoh
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| |
Collapse
|