1
|
Abbasi Moud A, Abbasi Moud A. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. Int J Biol Macromol 2023; 232:123391. [PMID: 36716841 DOI: 10.1016/j.ijbiomac.2023.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Cellulosic sources, such as lignocellulose-rich biomass, can be mechanically or acid degraded to produce inclusions called cellulose nanocrystals (CNCs). They have several uses in the sectors of biomedicine, photonics, and material engineering because of their biodegradability, renewability, sustainability, and mechanical qualities. The processing and design of CNC-based products are inextricably linked to the rheological behaviour of CNC suspension or in combination with other chemicals, such as surfactants or polymers; in this context, rheology offers a significant link between microstructure and macro scale flow behaviour that is intricately linked to material response in applications. The flow behaviour of CNC items must be properly specified in order to produce goods with value-added characteristics. In this review article, we provide new research on the shear rheology of CNC dispersion and CNC-based hydrogels in the linear and nonlinear regime, with storage modulus values reported to range from ~10-3 to 103 Pa. Applications in technology and material science are also covered simultaneously. We carefully examined the effects of charge density, aspect ratio, concentration, persistence length, alignment, liquid crystal formation, the cause of chirality in CNCs, interfacial behaviour and interfacial rheology, linear and nonlinear viscoelasticity of CNC suspension in bulk and at the interface using the currently available literature.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran.
| | - Aliyeh Abbasi Moud
- Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran
| |
Collapse
|
2
|
Calabrese V, Shen AQ, Haward SJ. Naturally derived colloidal rods in microfluidic flows. BIOMICROFLUIDICS 2023; 17:021301. [PMID: 37035099 PMCID: PMC10076066 DOI: 10.1063/5.0142867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Naturally derived colloidal rods (CR) are promising building blocks for developing sustainable soft materials. Engineering new materials based on naturally derived CR requires an in-depth understanding of the structural dynamics and self-assembly of CR in dispersion under processing conditions. With the advancement of microfabrication techniques, many microfluidic platforms have been employed to study the structural dynamics of CR under flow. However, each microfluidic design has its pros and cons which need careful evaluation in order to fully meet the experimental goal and correctly interpret the data. We analyze recent results obtained from naturally derived CR and relevant rod-like macromolecules under microfluidic flows, with emphasis on the dynamical behavior in shear- and extensional-dominated flows. We highlight the key concepts required in order to assess and evaluate the results obtained from different CR and microfluidic platforms as a whole and to aid interconnections with neighboring fields. Finally, we identify and discuss areas of interest for future research directions.
Collapse
|
3
|
Gowda VK, Rosén T, Roth SV, Söderberg LD, Lundell F. Nanofibril Alignment during Assembly Revealed by an X-ray Scattering-Based Digital Twin. ACS NANO 2022; 16:2120-2132. [PMID: 35104107 PMCID: PMC8867913 DOI: 10.1021/acsnano.1c07769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/27/2022] [Indexed: 05/11/2023]
Abstract
The nanostructure, primarily particle orientation, controls mechanical and functional (e.g., mouthfeel, cell compatibility, optical, morphing) properties when macroscopic materials are assembled from nanofibrils. Understanding and controlling the nanostructure is therefore an important key for the continued development of nanotechnology. We merge recent developments in the assembly of biological nanofibrils, X-ray diffraction orientation measurements, and computational fluid dynamics of complex flows. The result is a digital twin, which reveals the complete particle orientation in complex and transient flow situations, in particular the local alignment and spatial variation of the orientation distributions of different length fractions, both along the process and over a specific cross section. The methodology forms a necessary foundation for analysis and optimization of assembly involving anisotropic particles. Furthermore, it provides a bridge between advanced in operandi measurements of nanostructures and phenomena such as transitions between liquid crystal states and in silico studies of particle interactions and agglomeration.
Collapse
Affiliation(s)
- V. Krishne Gowda
- Department
of Engineering Mechanics, Royal Institute
of Technology, 100 44 Stockholm, Sweden
- FLOW, Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Tomas Rosén
- Treesearch, Royal
Institute of Technology, 100 44 Stockholm, Sweden
- Wallenberg
Wood Science Center, Royal Institute of
Technology, 100 44 Stockholm, Sweden
- Department
of Fibre and Polymer Technology, Royal Institute
of Technology, 100 44 Stockholm, Sweden
| | - Stephan V. Roth
- Treesearch, Royal
Institute of Technology, 100 44 Stockholm, Sweden
- Wallenberg
Wood Science Center, Royal Institute of
Technology, 100 44 Stockholm, Sweden
- Department
of Fibre and Polymer Technology, Royal Institute
of Technology, 100 44 Stockholm, Sweden
- Deutches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - L. Daniel Söderberg
- FLOW, Royal Institute of Technology, 100 44 Stockholm, Sweden
- Treesearch, Royal
Institute of Technology, 100 44 Stockholm, Sweden
- Wallenberg
Wood Science Center, Royal Institute of
Technology, 100 44 Stockholm, Sweden
- Department
of Fibre and Polymer Technology, Royal Institute
of Technology, 100 44 Stockholm, Sweden
| | - Fredrik Lundell
- Department
of Engineering Mechanics, Royal Institute
of Technology, 100 44 Stockholm, Sweden
- FLOW, Royal Institute of Technology, 100 44 Stockholm, Sweden
- Wallenberg
Wood Science Center, Royal Institute of
Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
4
|
Munier P, Hadi SE, Segad M, Bergström L. Rheo-SAXS study of shear-induced orientation and relaxation of cellulose nanocrystal and montmorillonite nanoplatelet dispersions. SOFT MATTER 2022; 18:390-396. [PMID: 34901987 DOI: 10.1039/d1sm00837d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of robust production processes is essential for the introduction of advanced materials based on renewable and Earth-abundant resources. Cellulose nanomaterials have been combined with other highly available nanoparticles, in particular clays, to generate multifunctional films and foams. Here, the structure of dispersions of rod-like cellulose nanocrystals (CNC) and montmorillonite nanoplatelets (MNT) was probed using small-angle X-ray scattering within a rheological cell (Rheo-SAXS). Shear induced a high degree of particle orientation in both the CNC-only and CNC:MNT composite dispersions. Relaxation of the shear-induced orientation in the CNC-only dispersion decayed exponentially and reached a steady-state within 20 seconds, while the relaxation of the CNC:MNT composite dispersion was found to be strongly retarded and partially inhibited. Viscoelastic measurements and Guinier analysis of dispersions at the shear rate of 0.1 s-1 showed that the addition of MNT promotes gel formation of the CNC:MNT composite dispersions. A better understanding of shear-dependent assembly and orientation of multi-component nanoparticle dispersions can be used to process materials with improved mechanical and functional properties.
Collapse
Affiliation(s)
- Pierre Munier
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.
| | - Seyed Ehsan Hadi
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.
- Wallenberg Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Mo Segad
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden.
| |
Collapse
|
5
|
Abakumov S, Deschaume O, Bartic C, Lang C, Korculanin O, Dhont JKG, Lettinga MP. Uncovering Log Jamming in Semidilute Suspensions of Quasi-Ideal Rods. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sergey Abakumov
- Laboratory for Molecular Imaging and Photonics, KU Leuven, B-3001 Leuven, Belgium
| | - Olivier Deschaume
- Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium
| | - Carmen Bartic
- Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium
| | - Christian Lang
- JCNS-4, Forschungzentrum Jülich, DE 85748 Jülich, Germany
| | | | | | - Minne Paul Lettinga
- Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium
- IBI-4, Forschungzentrum Jülich, DE 52425 Jülich, Germany
| |
Collapse
|
6
|
de Vries L, Guevara-Rozo S, Cho M, Liu LY, Renneckar S, Mansfield SD. Tailoring renewable materials via plant biotechnology. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:167. [PMID: 34353358 PMCID: PMC8344217 DOI: 10.1186/s13068-021-02010-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 05/03/2023]
Abstract
Plants inherently display a rich diversity in cell wall chemistry, as they synthesize an array of polysaccharides along with lignin, a polyphenolic that can vary dramatically in subunit composition and interunit linkage complexity. These same cell wall chemical constituents play essential roles in our society, having been isolated by a variety of evolving industrial processes and employed in the production of an array of commodity products to which humans are reliant. However, these polymers are inherently synthesized and intricately packaged into complex structures that facilitate plant survival and adaptation to local biogeoclimatic regions and stresses, not for ease of deconstruction and commercial product development. Herein, we describe evolving techniques and strategies for altering the metabolic pathways related to plant cell wall biosynthesis, and highlight the resulting impact on chemistry, architecture, and polymer interactions. Furthermore, this review illustrates how these unique targeted cell wall modifications could significantly extend the number, diversity, and value of products generated in existing and emerging biorefineries. These modifications can further target the ability for processing of engineered wood into advanced high performance materials. In doing so, we attempt to illuminate the complex connection on how polymer chemistry and structure can be tailored to advance renewable material applications, using all the chemical constituents of plant-derived biopolymers, including pectins, hemicelluloses, cellulose, and lignins.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA
| | - Sydne Guevara-Rozo
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - MiJung Cho
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Li-Yang Liu
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Scott Renneckar
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA.
| |
Collapse
|
7
|
Brouzet C, Mittal N, Rosén T, Takeda Y, Söderberg LD, Lundell F, Takana H. Effect of Electric Field on the Hydrodynamic Assembly of Polydisperse and Entangled Fibrillar Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8339-8347. [PMID: 34176263 DOI: 10.1021/acs.langmuir.1c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamics of colloidal particles can be controlled by the application of electric fields at micrometer-nanometer length scales. Here, an electric field-coupled microfluidic flow-focusing device is designed for investigating the effect of an externally applied alternating current (AC) electric field on the hydrodynamic assembly of cellulose nanofibrils (CNFs). We first discuss how the nanofibrils align parallel to the direction of the applied field without flow. Then, we apply an electric field during hydrodynamic assembly in the microfluidic channel and observe the effects on the mechanical properties of the assembled nanostructures. We further discuss the nanoscale orientational dynamics of the polydisperse and entangled fibrillar suspension of CNFs in the channel. It is shown that electric fields induced with the electrodes locally increase the degree of orientation. However, hydrodynamic alignment is demonstrated to be much more efficient than the electric field for aligning CNFs. The results are useful for understanding the development of the nanostructure when designing high-performance materials with microfluidics in the presence of external stimuli.
Collapse
Affiliation(s)
- Christophe Brouzet
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Nitesh Mittal
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Tomas Rosén
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Yusuke Takeda
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - L Daniel Söderberg
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Fredrik Lundell
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Hidemasa Takana
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
8
|
Rosén T, Hsiao BS, Söderberg LD. Elucidating the Opportunities and Challenges for Nanocellulose Spinning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001238. [PMID: 32830341 PMCID: PMC11468825 DOI: 10.1002/adma.202001238] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/31/2020] [Indexed: 05/07/2023]
Abstract
Man-made continuous fibers play an essential role in society today. With the increase in global sustainability challenges, there is a broad spectrum of societal needs where the development of advanced biobased fibers could provide means to address the challenges. Biobased regenerated fibers, produced from dissolved cellulose are widely used today for clothes, upholstery, and linens. With new developments in the area of advanced biobased fibers, it would be possible to compete with high-performance synthetic fibers such as glass fibers and carbon fibers as well as to provide unique functionalities. One possible development is to fabricate fibers by spinning filaments from nanocellulose, Nature's nanoscale high-performance building block, which will require detailed insights into nanoscale assembly mechanisms during spinning, as well as knowledge regarding possible functionalization. If successful, this could result in a new class of man-made biobased fibers. This work aims to identify the progress made in the field of spinning of nanocellulose filaments, as well as outline necessary steps for efficient fabrication of such nanocellulose-based filaments with controlled and predictable properties.
Collapse
Affiliation(s)
- Tomas Rosén
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmS‐100 44Sweden
| | - Benjamin S. Hsiao
- Chemistry DepartmentStony Brook UniversityStony BrookNY11794‐3400USA
| | - L. Daniel Söderberg
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmS‐100 44Sweden
| |
Collapse
|
9
|
Rosén T, Mittal N, Roth SV, Zhang P, Lundell F, Söderberg LD. Flow fields control nanostructural organization in semiflexible networks. SOFT MATTER 2020; 16:5439-5449. [PMID: 32469347 DOI: 10.1039/c9sm01975h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Hydrodynamic alignment of proteinaceous or polymeric nanofibrillar building blocks can be utilized for subsequent assembly into intricate three-dimensional macrostructures. The non-equilibrium structure of flowing nanofibrils relies on a complex balance between the imposed flow-field, colloidal interactions and Brownian motion. The understanding of the impact of non-equilibrium dynamics is not only weak, but is also required for structural control. Investigation of underlying dynamics imposed by the flow requires in situ dynamic characterization and is limited by the time-resolution of existing characterization methods, specifically on the nanoscale. Here, we present and demonstrate a flow-stop technique, using polarized optical microscopy (POM) to quantify the anisotropic orientation and diffusivity of nanofibrils in shear and extensional flows. Microscopy results are combined with small-angle X-ray scattering (SAXS) measurements to estimate the orientation of nanofibrils in motion and simultaneous structural changes in a loose network. Diffusivity of polydisperse systems is observed to act on multiple timescales, which is interpreted as an effect of apparent fibril lengths that also include nanoscale entanglements. The origin of the fastest diffusivity is correlated to the strength of velocity gradients, independent of type of deformation (shear or extension). Fibrils in extensional flow results in highly anisotropic systems enhancing interfibrillar contacts, which is evident through a slowing down of diffusive timescales. Our results strongly emphasize the need for careful design of fluidic microsystems for assembling fibrillar building blocks into high-performance macrostructures relying on improved understanding of nanoscale physics.
Collapse
Affiliation(s)
- Tomas Rosén
- Wallenberg Wood Science Center, Royal Institute of Technology, SE-100 44 Stockholm, Sweden. and Linné FLOW Center, KTH Mechanics, Royal Institute of Technology, Qsquars Backe 18, SE-100 44 Stockholm, Sweden
| | - Nitesh Mittal
- Wallenberg Wood Science Center, Royal Institute of Technology, SE-100 44 Stockholm, Sweden. and Linné FLOW Center, KTH Mechanics, Royal Institute of Technology, Qsquars Backe 18, SE-100 44 Stockholm, Sweden
| | - Stephan V Roth
- DESY, Notkestrasse 85, Hamburg, Germany and Department of Fibre and Polymer Technology, Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | | | - Fredrik Lundell
- Wallenberg Wood Science Center, Royal Institute of Technology, SE-100 44 Stockholm, Sweden. and Linné FLOW Center, KTH Mechanics, Royal Institute of Technology, Qsquars Backe 18, SE-100 44 Stockholm, Sweden
| | - L Daniel Söderberg
- Wallenberg Wood Science Center, Royal Institute of Technology, SE-100 44 Stockholm, Sweden. and Linné FLOW Center, KTH Mechanics, Royal Institute of Technology, Qsquars Backe 18, SE-100 44 Stockholm, Sweden
| |
Collapse
|
10
|
Rosén T, Wang R, Zhan C, He H, Chodankar S, Hsiao BS. Cellulose nanofibrils and nanocrystals in confined flow: Single-particle dynamics to collective alignment revealed through scanning small-angle x-ray scattering and numerical simulations. Phys Rev E 2020; 101:032610. [PMID: 32289908 DOI: 10.1103/physreve.101.032610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/09/2020] [Indexed: 01/04/2023]
Abstract
Nanostructured materials made through flow-assisted assembly of proteinaceous or polymeric nanosized fibrillar building blocks are promising contenders for a family of high-performance biocompatible materials in a wide variety of applications. Optimization of these processes relies on improving our knowledge of the physical mechanisms from nano- to macroscale and especially understanding the alignment of elongated nanoparticles in flows. Here, we study the full projected orientation distributions of cellulose nanocrystals (CNCs) and nanofibrils (CNFs) in confined flow using scanning microbeam SAXS. For CNCs, we further compare with a simulated system of dilute Brownian ellipsoids, which agrees well at dilute concentrations. However, increasing CNC concentration to a semidilute regime results in locally arranged domains called tactoids, which aid in aligning the CNC at low shear rates, but limit alignment at higher rates. Similarly, shear alignment of CNF at semidilute conditions is also limited owing to probable bundle or flock formation of the highly entangled nanofibrils. This work provides a quantitative comparison of full projected orientation distributions of elongated nanoparticles in confined flow and provides an important stepping stone towards predicting and controlling processes to create nanostructured materials on an industrial scale.
Collapse
Affiliation(s)
- Tomas Rosén
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA.,Treesearch, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Ruifu Wang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Chengbo Zhan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Hongrui He
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Shirish Chodankar
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
11
|
Mittal N, Benselfelt T, Ansari F, Gordeyeva K, Roth SV, Wågberg L, Söderberg LD. Ion-Specific Assembly of Strong, Tough, and Stiff Biofibers. Angew Chem Int Ed Engl 2019; 58:18562-18569. [PMID: 31600016 PMCID: PMC6916401 DOI: 10.1002/anie.201910603] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/01/2019] [Indexed: 11/29/2022]
Abstract
Designing engineering materials with high stiffness and high toughness is challenging as stiff materials tend to be brittle. Many biological materials realize this objective through multiscale (i.e., atomic- to macroscale) mechanisms that are extremely difficult to replicate in synthetic materials. Inspired from the architecture of such biological structures, we here present flow-assisted organization and assembly of renewable native cellulose nanofibrils (CNFs), which yields highly anisotropic biofibers characterized by a unique combination of high strength (1010 MPa), high toughness (62 MJ m-3 ) and high stiffness (57 GPa). We observed that properties of the fibers are primarily governed by specific ion characteristics such as hydration enthalpy and polarizability. A fundamental facet of this study is thus to elucidate the role of specific anion binding following the Hofmeister series on the mechanical properties of wet fibrillar networks, and link this to the differences in properties of dry nanostructured fibers. This knowledge is useful for rational design of nanomaterials and is critical for validation of specific ion effect theories. The bioinspired assembly demonstrated here is relevant example for designing high-performance materials with absolute structural control.
Collapse
Affiliation(s)
- Nitesh Mittal
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
| | - Tobias Benselfelt
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
| | - Farhan Ansari
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305-2205USA
| | - Korneliya Gordeyeva
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
| | - Stephan V. Roth
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Deutsches Elektronen-Synchrotron (DESY)22607HamburgGermany
| | - Lars Wågberg
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
| | - L. Daniel Söderberg
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
| |
Collapse
|
12
|
Wan Z, Chen C, Meng T, Mojtaba M, Teng Y, Feng Q, Li D. Multifunctional Wet-Spun Filaments through Robust Nanocellulose Networks Wrapping to Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42808-42817. [PMID: 31625715 DOI: 10.1021/acsami.9b15153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cellulose nanofibrils (CNFs) and single-walled carbon nanotubes (SWNTs) hold potential for fabricating multifunctional composites with remarkable performance. However, it is technically tough to fabricate materials by CNFs and SWNTs with their intact properties, mainly because of the weakly synergistic interaction. Hence, constructing sturdy interfaces and sequential connectivity not only can enhance mechanical strength but also are capable of improving the electrical conductivity. In that way, we report CNF/SWNT filaments composed of axially oriented building blocks with robust CNF networks wrapping to SWNTs. The composite filaments obtained through the combination of three-mill-roll and wet-spinning strategy display high strength up to ∼472.17 MPa and a strain of ∼11.77%, exceeding most results of CNF/SWNT composites investigated in the previous literature. Meanwhile, the filaments possess an electrical conductivity of ∼86.43 S/cm, which is also positively dependent on temperature changes. The multifunctional filaments are further manufactured as a strain sensor to measure mass variation and survey muscular movements, leading to becoming optimistic incentives in the fields of portable gauge measuring and wearable bioelectronic therapeutics.
Collapse
Affiliation(s)
- Zhangmin Wan
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| | - Chuchu Chen
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| | - Taotao Meng
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| | - Mansoorianfar Mojtaba
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| | - Youchao Teng
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| | - Qian Feng
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| | - Dagang Li
- College of Material Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu Province 210037 , P.R. China
| |
Collapse
|
13
|
Mittal N, Benselfelt T, Ansari F, Gordeyeva K, Roth SV, Wågberg L, Söderberg LD. Ion‐Specific Assembly of Strong, Tough, and Stiff Biofibers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nitesh Mittal
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Department of Chemical EngineeringMassachusetts Institute of Technology Cambridge MA 02142 USA
| | - Tobias Benselfelt
- Wallenberg Wood Science CenterKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
| | - Farhan Ansari
- Department of Materials Science and EngineeringStanford University Stanford CA 94305-2205 USA
| | - Korneliya Gordeyeva
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
| | - Stephan V. Roth
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Deutsches Elektronen-Synchrotron (DESY) 22607 Hamburg Germany
| | - Lars Wågberg
- Wallenberg Wood Science CenterKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Department of Fibre and Polymer TechnologyKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
| | - L. Daniel Söderberg
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of Technology Stockholm SE-100 44 Sweden
| |
Collapse
|
14
|
Tanaka R, Kashiwagi Y, Okada Y, Inoue T. Viscoelastic Relaxation of Cellulose Nanocrystals in Fluids: Contributions of Microscopic Internal Motions to Flexibility. Biomacromolecules 2019; 21:408-417. [DOI: 10.1021/acs.biomac.9b00943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Reina Tanaka
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Yu Kashiwagi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Okada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Tadashi Inoue
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
15
|
Biopolymer Solution Evaluation Methodology: Thermal and Mechanical Assessment for Enhanced Oil Recovery with High Salinity Brines. Processes (Basel) 2019. [DOI: 10.3390/pr7060339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The methodology to study an eco-friendly and non-toxic, Schizophyllan, biopolymer for enhanced oil recovery (EOR) polymer flooding is described. The methodology is divided into two parts; the first part estimates the molar concentration of the biopolymer, which is needed to prepare the biopolymer solution with optimal viscosity. This is required to improve the sweep efficiency for the selected reservoir in Kuwait. The second part of this generalized methodology evaluates the biopolymer solution capability to resist degradation and maintain its essential properties with the selected reservoir conditions. The evaluation process includes thermal and mechanical assessment. Furthermore, to study the biopolymer solution behavior in both selected reservoir and extreme conditions, the biopolymer solution samples were prepared using 180 g/L and 309 g/L brine. It was found that the prepared biopolymer solution demonstrated great capability in maintaining its properties; and therefore, can be introduced as a strong candidate for EOR polymer flooding with high salinity brines.
Collapse
|
16
|
Karatrantos A, Composto RJ, Winey KI, Clarke N. Nanorod Diffusion in Polymer Nanocomposites by Molecular Dynamics Simulations. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Argyrios Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nigel Clarke
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
17
|
Brouzet C, Mittal N, Lundell F, Söderberg LD. Characterizing the Orientational and Network Dynamics of Polydisperse Nanofibers on the Nanoscale. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Christophe Brouzet
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Nitesh Mittal
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Fredrik Lundell
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - L. Daniel Söderberg
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|