1
|
Zhang C, Sun X, Song P, Rao Y. The application of PROTACs in immune-inflammation diseases. Bioorg Med Chem 2024; 115:117967. [PMID: 39481183 DOI: 10.1016/j.bmc.2024.117967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Immune-inflammatory diseases are a class of conditions with high prevalence that severely impact the quality of life. Current treatment strategies include immunosuppressants, glucocorticoids, and monoclonal antibodies. However, these approaches have certain limitations, such as poor membrane permeability, immunogenicity, and the requirement for injection in large molecule drugs. Small molecule compounds, on the other hand, suffer from issues like poor selectivity, inability to inhibit non-enzymatic functions, and biological compensation. These factors constrain the effectiveness of current therapeutic strategies in immune-inflammatory diseases. As a novel small molecule drug development technology, proteolysis-targeting chimeras (PROTACs) regulate protein levels by inducing interactions between target proteins and E3 ubiquitin ligases, leading to the selective degradation of target proteins. This technology has already shown promising therapeutic effects in the treatment of immune-inflammatory diseases. This review aims to comprehensively summarize the application of PROTAC technology in the field of immune inflammation and provide insights into its potential in treating immune-inflammatory diseases.
Collapse
Affiliation(s)
- Chao Zhang
- Changping Laboratory, Beijing 102206, China.
| | - Xiuyun Sun
- Changping Laboratory, Beijing 102206, China
| | - Peilu Song
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Rao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
2
|
Kamaraj R, Ghosh S, Das S, Sen S, Kumar P, Majumdar M, Dasgupta R, Mukherjee S, Das S, Ghose I, Pavek P, Raja Karuppiah MP, Chuturgoon AA, Anand K. Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions. Bioconjug Chem 2024; 35:1089-1115. [PMID: 38990186 PMCID: PMC11342303 DOI: 10.1021/acs.bioconjchem.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Targeted protein degradation or TPD, is rapidly emerging as a treatment that utilizes small molecules to degrade proteins that cause diseases. TPD allows for the selective removal of disease-causing proteins, including proteasome-mediated degradation, lysosome-mediated degradation, and autophagy-mediated degradation. This approach has shown great promise in preclinical studies and is now being translated to treat numerous diseases, including neurodegenerative diseases, infectious diseases, and cancer. This review discusses the latest advances in TPD and its potential as a new chemical modality for immunotherapy, with a special focus on the innovative applications and cutting-edge research of PROTACs (Proteolysis TArgeting Chimeras) and their efficient translation from scientific discovery to technological achievements. Our review also addresses the significant obstacles and potential prospects in this domain, while also offering insights into the future of TPD for immunotherapeutic applications.
Collapse
Affiliation(s)
- Rajamanikkam Kamaraj
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Subhrojyoti Ghosh
- Department
of Biotechnology, Indian Institute of Technology
Madras, Chennai 600036, India
| | - Souvadra Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shinjini Sen
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Priyanka Kumar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Madhurima Majumdar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Renesa Dasgupta
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Sampurna Mukherjee
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shrimanti Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Indrilla Ghose
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Petr Pavek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Muruga Poopathi Raja Karuppiah
- Department
of Chemistry, School of Physical Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod District, Kerala 671320, India
| | - Anil A. Chuturgoon
- Discipline
of Medical Biochemistry, School of Laboratory Medicine and Medical
Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Free State 9300, South Africa
| |
Collapse
|
3
|
Galla MS, Sharma N, Mishra P, Shankaraiah N. Recent insights of PROTAC developments in inflammation-mediated and autoimmune targets: a critical review. RSC Med Chem 2024; 15:2585-2600. [PMID: 39149114 PMCID: PMC11324044 DOI: 10.1039/d4md00142g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 08/17/2024] Open
Abstract
According to the mounting evidence in the literature, pro-inflammatory mediators/targets activate multiple signalling pathways to trigger illnesses that are ultimately responsible for acute pain, chronic inflammatory diseases, and several auto-immune disorders. Conventional drugs have been ruled out since proteolysis-targeting chimeras (PROTACs) are poised to overcome the limitations of traditional therapies. These heterobifunctional molecules help to degrade the targeted proteins of interest through ubiquitination. This review encompasses current and future aspects of PROTACs in inflammation-mediated and autoimmune targets. Different key points are highlighted and discussed, such as why PROTACs are preferred in this disease area, drawbacks and lessons learnt from the past, the role of linkers in establishing crucial degradation, in vitro findings, pharmacokinetics, in silico parameters, limitations of PROTACs in clinical settings, and future outcomes.
Collapse
Affiliation(s)
- Mary Sravani Galla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nitika Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Priyanka Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
4
|
Guo NJ, Wang B, Zhang Y, Kang HQ, Nie HQ, Feng MK, Zhang XY, Zhao LJ, Wang N, Liu HM, Zheng YC, Li W, Gao Y. USP7 as an emerging therapeutic target: A key regulator of protein homeostasis. Int J Biol Macromol 2024; 263:130309. [PMID: 38382779 DOI: 10.1016/j.ijbiomac.2024.130309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.
Collapse
Affiliation(s)
- Ning-Jie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui-Qin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hai-Qian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Meng-Kai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xi-Ya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Wen Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
5
|
Bhole RP, Kute PR, Chikhale RV, Bonde CG, Pant A, Gurav SS. Unlocking the potential of PROTACs: A comprehensive review of protein degradation strategies in disease therapy. Bioorg Chem 2023; 139:106720. [PMID: 37480814 DOI: 10.1016/j.bioorg.2023.106720] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The technology known asPROTACs (PROteolysisTArgeting Chimeras) is a method of protein degradation. Utilising bifunctional small molecules, the ubiquitin-proteosome system (UPS) is used to induce the ubiquitination and degradation of target proteins. In addition to being novel chemical knockdown agents for biological studies that are catalytic, reversible, and rapid, PROTACs used in the treatment for disorders like cancer, immunological disorders, viral diseases, and neurological disorders. The protein degradation field has advanced quickly over the last two years, with a significant rise in research articles on the subject as well as a quick rise in smallmolecule degraders that are currently in or will soon enter the clinical stage. Other new degrading technologies, in addition to PROTAC and molecular glue technology, are also emerging rapidly. In this review article, we mainly focuses on various PROTAC molecules designed with special emphasis on targeted cellular pathways for different diseases i.e., cancer, Viral diseases Immune disorders, Neurodegenerative diseases, etc. We discussed about new technologies based on PROTACs such as Antibody PROTAC, Aptamers, Dual target, Folate caged, TF PROTAC, etc. Also, we listed out the PROTACs which are in clinical trials.
Collapse
Affiliation(s)
- Ritesh P Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.
| | - Payal R Kute
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | | | - C G Bonde
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur Campus 425 405, India.
| | - Amit Pant
- School of Medicine Creighton University, Omaha, Neraska, USA.
| | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa 403001, India.
| |
Collapse
|
6
|
Sakanyan V, Iradyan N, Alves de Sousa R. Targeted Strategies for Degradation of Key Transmembrane Proteins in Cancer. BIOTECH 2023; 12:57. [PMID: 37754201 PMCID: PMC10526213 DOI: 10.3390/biotech12030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 09/28/2023] Open
Abstract
Targeted protein degradation is an attractive technology for cancer treatment due to its ability to overcome the unpredictability of the small molecule inhibitors that cause resistance mutations. In recent years, various targeted protein degradation strategies have been developed based on the ubiquitin-proteasome system in the cytoplasm or the autophagy-lysosomal system during endocytosis. In this review, we describe and compare technologies for the targeted inhibition and targeted degradation of the epidermal growth factor receptor (EGFR), one of the major proteins responsible for the onset and progression of many types of cancer. In addition, we develop an alternative strategy, called alloAUTO, based on the binding of new heterocyclic compounds to an allosteric site located in close proximity to the EGFR catalytic site. These compounds cause the targeted degradation of the transmembrane receptor, simultaneously activating both systems of protein degradation in cells. Damage to the EGFR signaling pathways promotes the inactivation of Bim sensor protein phosphorylation, which leads to the disintegration of the cytoskeleton, followed by the detachment of cancer cells from the extracellular matrix, and, ultimately, to cancer cell death. This hallmark of targeted cancer cell death suggests an advantage over other targeted protein degradation strategies, namely, the fewer cancer cells that survive mean fewer chemotherapy-resistant mutants appear.
Collapse
Affiliation(s)
- Vehary Sakanyan
- Faculté de Pharmacie, Université de Nantes, 44035 Nantes, France
- ProtNeteomix, 29 rue de Provence, 44700 Orvault, France
| | - Nina Iradyan
- Institute of Fine Organic Chemistry after A. Mnjoyan, National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia;
| | - Rodolphe Alves de Sousa
- Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, UMR 8601, CBMIT, 75006 Paris, France;
| |
Collapse
|
7
|
Wang C, Zhang Y, Deng J, Liang B, Xing D. Developments of PROTACs technology in immune-related diseases. Eur J Med Chem 2023; 249:115127. [PMID: 36724631 DOI: 10.1016/j.ejmech.2023.115127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Traditional chemotherapy and immunotherapy are primary disease-treatment strategies. However, they face numerous challenges, including limited therapeutic benefits, off-target effects, serious adverse effects, drug resistance, long half-life time, poor oral bioavailability, and drugging undruggable proteins. Proteolytic targeted chimeras (PROTACs) were suggested to solve these problems. PROTACs are heterogeneous functional molecules linked by a chemical linker and contain a binding ligand for the protein of interest and a recruiting ligand for the E3 ligand. The binding of a PROTAC to a target protein brings the E3 ligand enzyme into proximity, initiating polyubiquitination of the target protein, followed by protease-mediated degradation. To date, PROTACs against dozens of immunological targets have been successfully developed, many of which have been clinically validated drug targets, and several have entered clinical trials for immune-related diseases. This article reviews the role of PROTACs-mediated degradation of critical proteins in immune disorders and cancer immunotherapy. Chemical structures, cellular and in vivo activities, and pharmacodynamics of these PROTACs are summarized. Lastly, we also discuss the prospects and potential limitations that PROTACs face.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Abstract
Proteolysis-targeting chimeras (PROTACs) have shown great therapeutic potential by degrading various disease-causing proteins, particularly those related to tumors. Therefore, the introduction of PROTACs has ushered in a new chapter of antitumor drug development, marked by significant advances over recent years. Herein, we describe recent developments in PROTAC technology, focusing on design strategy, development workflow, and future outlooks. We also discuss potential opportunities and challenges for PROTAC research.
Collapse
Affiliation(s)
- Minglei Li
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Ying Zhi
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Bo Liu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| |
Collapse
|
9
|
Zhao HY, Xin M, Zhang SQ. Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Dev Res 2023; 84:337-394. [PMID: 36606428 DOI: 10.1002/ddr.22026] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023]
Abstract
Recent years have witnessed the rapid development of targeted protein degradation (TPD), especially proteolysis targeting chimeras. These degraders have manifested many advantages over small molecule inhibitors. To date, a huge number of degraders have been excavated against over 70 disease-related targets. In particular, degraders against estrogen receptor and androgen receptor have crowded into phase II clinical trial. TPD technologies largely expand the scope of druggable targets, and provide powerful tools for addressing intractable problems that can not be tackled by traditional small molecule inhibitors. In this review, we mainly focus on the structures and biological activities of small molecule degraders as well as the elucidation of mechanisms of emerging TPD technologies. We also propose the challenges that exist in the TPD field at present.
Collapse
Affiliation(s)
- Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Murakami Y, Osawa H, Kurohara T, Yanase Y, Ito T, Yokoo H, Shibata N, Naito M, Aritake K, Demizu Y. Structure-activity relationship study of PROTACs against hematopoietic prostaglandin D 2 synthase. RSC Med Chem 2022; 13:1495-1503. [PMID: 36561070 PMCID: PMC9749925 DOI: 10.1039/d2md00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 12/25/2022] Open
Abstract
Degradation of hematopoietic prostaglandin D2 synthase (H-PGDS) by proteolysis-targeting chimeras (PROTACs) is expected to be important in the treatment of allergic diseases and Duchenne's muscular dystrophy. We recently reported that PROTAC(H-PGDS)-7 (PROTAC1), which is composed of H-PGDS inhibitor (TFC-007) and cereblon (CRBN) E3 ligase ligand (pomalidomide), showed potent H-PGDS degradation activity. Here, we investigated the structure-activity relationships of PROTAC1, focusing on the C4- or C5-conjugation of pomalidomide, in addition, the H-PGDS ligand exchanging from TFC-007 with the biaryl ether to TAS-205 with the pyrrole. Three new PROTACs were evaluated for H-PGDS affinity, H-PGDS degrading activity, and inhibition of prostaglandin D2 production. All compounds showed high H-PGDS degrading activities, but PROTAC(H-PGDS)-4-TAS-205 (PROTAC3) was slightly less active than the other compounds. Molecular dynamics simulations suggested that the decrease in activity of PROTAC3 may be due to the lower stability of the CRBN-PROTAC-H-PGDS ternary complex.
Collapse
Affiliation(s)
- Yuki Murakami
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
| | - Hinata Osawa
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University 1-1-1 Tsushimanaka Kita 700-8530 Japan
| | - Takashi Kurohara
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
| | - Yuta Yanase
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
| | - Takahito Ito
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
| | - Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto 606-0823 Japan
| | - Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
| | - Mikihiko Naito
- Laboratory of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo Tokyo 113-0033 Japan
| | - Kosuke Aritake
- Laboratory of Chemical Pharmacology, Daiichi University of Pharmacy Fukuoka 815-8511 Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University 1-1-1 Tsushimanaka Kita 700-8530 Japan
| |
Collapse
|
11
|
Singh H, Agrawal DK. Recent advancements in the discovery of cereblon-based protease-targeted chimeras with potential for therapeutic intervention. Future Med Chem 2022; 14:1403-1416. [PMID: 36047364 PMCID: PMC9518005 DOI: 10.4155/fmc-2022-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Protease-targeted chimeras (PROTACs) have been employed as a novel therapeutic approach, utilizing the ubiquitin-proteasome system for targeted protein degradation. PROTACs are heterobifunctional molecules consisting of an E3 ligase ligand and a small-molecule inhibitor for recruiting a protein of interest. After binding, PROTAC molecules recruit E3 ligase for ubiquitination of the protein of interest, which is followed by its proteasome-mediated degradation. PROTAC molecules have several advantages over traditional small-molecule inhibitors. A number of PROTAC molecules based on small-molecule inhibitors have been developed against various diseases, among which cereblon-based PROTAC molecules have received the greatest interest due to their promising clinical use. This article highlights the current trends in the discovery of cereblon-based PROTAC molecules along with their medicinal chemistry, clinical progression and future outlook in cancers, cardiovascular diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Recent Advances in PROTACs for Drug Targeted Protein Research. Int J Mol Sci 2022; 23:ijms231810328. [PMID: 36142231 PMCID: PMC9499226 DOI: 10.3390/ijms231810328] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023] Open
Abstract
Proteolysis-targeting chimera (PROTAC) is a heterobifunctional molecule. Typically, PROTAC consists of two terminals which are the ligand of the protein of interest (POI) and the specific ligand of E3 ubiquitin ligase, respectively, via a suitable linker. PROTAC degradation of the target protein is performed through the ubiquitin–proteasome system (UPS). The general process is that PROTAC binds to the target protein and E3 ligase to form a ternary complex and label the target protein with ubiquitination. The ubiquitinated protein is recognized and degraded by the proteasome in the cell. At present, PROTAC, as a new type of drug, has been developed to degrade a variety of cancer target proteins and other disease target proteins, and has shown good curative effects on a variety of diseases. For example, PROTACs targeting AR, BR, BTK, Tau, IRAK4, and other proteins have shown unprecedented clinical efficacy in cancers, neurodegenerative diseases, inflammations, and other fields. Recently, PROTAC has entered a phase of rapid development, opening a new field for biomedical research and development. This paper reviews the various fields of targeted protein degradation by PROTAC in recent years and summarizes and prospects the hot targets and indications of PROTAC.
Collapse
|
13
|
Fang Y, Wang J, Zhao M, Zheng Q, Ren C, Wang Y, Zhang J. Progress and Challenges in Targeted Protein Degradation for Neurodegenerative Disease Therapy. J Med Chem 2022; 65:11454-11477. [PMID: 36006861 DOI: 10.1021/acs.jmedchem.2c00844] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are currently incurable diseases that cause progressive degeneration of nerve cells. Many of the disease-causing proteins of NDs are "undruggable" for traditional small-molecule inhibitors (SMIs). None of the compounds that attenuated the amyloid-β (Aβ) accumulation process have entered clinical practice, and many phase III clinical trials of SMIs for Alzheimer's disease (AD) have failed. In recent years, emerging targeted protein degradation (TPD) technologies such as proteolysis-targeting chimeras (PROTACs), lysosome-targeting chimaeras (LYTACs), and autophagy-targeting chimeras (AUTACs) with TPD-assistive technologies such as click-formed proteolysis-targeting chimeras (CLIPTACs) and deubiquitinase-targeting chimera (DUBTAC) have developed rapidly. In vitro and in vivo experiments have also confirmed that TPD technology can target the degradation of ND pathogenic proteins, bringing hope for the treatment of NDs. Herein, we review the latest TPD technologies, introduce their targets and technical characteristics, and discuss the emerging TPD technologies with potential in ND research, with the hope of providing a new perspective for the development of TPD technology in the NDs field.
Collapse
Affiliation(s)
- Yingxu Fang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Min Zhao
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Tianfu Jincheng Laboratory, Chengdu 610041, Sichuan, China
| | - Qinwen Zheng
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, Sichuan, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Tianfu Jincheng Laboratory, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Tianfu Jincheng Laboratory, Chengdu 610041, Sichuan, China
| |
Collapse
|
14
|
Xu H, Kurohara T, Takano R, Yokoo H, Shibata N, Ohoka N, Inoue T, Naito M, Demizu Y. Development of Rapid and Facile Solid-Phase Synthesis of PROTACs via a Variety of Binding Styles. ChemistryOpen 2022; 11:e202200131. [PMID: 35822913 PMCID: PMC9278092 DOI: 10.1002/open.202200131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Optimizing linker design is important for ensuring efficient degradation activity of proteolysis-targeting chimeras (PROTACs). Therefore, developing a straightforward synthetic approach that combines the protein-of-interest ligand (POI ligand) and the ligand for E3 ubiquitin ligase (E3 ligand) in various binding styles through a linker is essential for rapid PROTAC syntheses. Herein, a solid-phase approach for convenient PROTAC synthesis is presented. We designed azide intermediates with different linker lengths to which the E3 ligand, pomalidomide, is attached and performed facile PROTACs synthesis by forming triazole, amide, and urea bonds from the intermediates.
Collapse
Affiliation(s)
- Hanqiao Xu
- National Institute of Health Sciences3-25-26 TonomachiKawasakiKanagawa210-9501Japan
- Graduate School of Medical Life ScienceYokohama City University 1-7-29YokohamaKanagawa230-0045Japan
| | - Takashi Kurohara
- National Institute of Health Sciences3-25-26 TonomachiKawasakiKanagawa210-9501Japan
| | - Reina Takano
- National Institute of Health Sciences3-25-26 TonomachiKawasakiKanagawa210-9501Japan
- Graduate School of Medical Life ScienceYokohama City University 1-7-29YokohamaKanagawa230-0045Japan
| | - Hidetomo Yokoo
- National Institute of Health Sciences3-25-26 TonomachiKawasakiKanagawa210-9501Japan
- Medical ChemistryGraduate School of Medical ScienceKyoto Prefectural University of MedicineKyoto606-0823Japan
| | - Norihito Shibata
- National Institute of Health Sciences3-25-26 TonomachiKawasakiKanagawa210-9501Japan
| | - Nobumichi Ohoka
- National Institute of Health Sciences3-25-26 TonomachiKawasakiKanagawa210-9501Japan
| | - Takao Inoue
- National Institute of Health Sciences3-25-26 TonomachiKawasakiKanagawa210-9501Japan
| | - Mikihiko Naito
- Laboratory of Targeted Protein DegradationGraduate School of Pharmaceutical SciencesThe University of TokyoTokyo113-0033Japan
| | - Yosuke Demizu
- National Institute of Health Sciences3-25-26 TonomachiKawasakiKanagawa210-9501Japan
- Graduate School of Medical Life ScienceYokohama City University 1-7-29YokohamaKanagawa230-0045Japan
| |
Collapse
|
15
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
16
|
Wang C, Zhang Y, Shi L, Yang S, Chang J, Zhong Y, Li Q, Xing D. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J Enzyme Inhib Med Chem 2022; 37:1437-1453. [PMID: 35589670 PMCID: PMC9122363 DOI: 10.1080/14756366.2022.2074414] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteolytic targeting chimaeras (PROTACs) have been developed as an effective technology for targeted protein degradation. PROTACs are heterobifunctional molecules that can trigger the polyubiquitination of proteins of interest (POIs) by recruiting the ubiquitin-proteasome system, thereby inhibiting the intracellular level of POIs. To date, a variety of small-molecule PROTACs (CRBN, VHL, IAP, and MDM2-based PROTACs) have been developed. IAP-based PROTACs, also known as specific and nongenetic IAP-dependent protein erasers (SNIPERs), are used to degrade the target proteins closely related to diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand, and the linker between them. So far, many SNIPERs have been extensively studied worldwide and have performed well in multiple diseases, especially cancer. In this review, we will present the most relevant advances in the field of SNIPERs and provide our perspective on the opportunities and challenges for SNIPERs to become therapeutic agents.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qian Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Wang C, Zhang Y, Wu Y, Xing D. Developments of CRBN-based PROTACs as potential therapeutic agents. Eur J Med Chem 2021; 225:113749. [PMID: 34411892 DOI: 10.1016/j.ejmech.2021.113749] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022]
Abstract
Protease-targeted chimeras (PROTACs) are a new technology that is receiving much attention in the treatment of diseases. The mechanism is to inhibit protein function by hijacking the ubiquitin E3 ligase for protein degradation. Heterogeneous bifunctional PROTACs contain a ligand for recruiting E3 ligase, a linker, and another ligand to bind to the target protein for degradation. A variety of small-molecule PROTACs (CRBN, VHL, IAPs, MDM2, DCAF15, DCAF16, and RNF114-based PROTACs) have been identified so far. In particular, CRBN-based PROTACs (e.g., ARV-110 and ARV-471) have received more attention for their promising therapeutic intervention. To date, CRBN-based PRTOACs have been extensively explored worldwide and have excelled not only in cancer diseases but also in cardiovascular diseases, immune diseases, neurodegenerative diseases, and viral infections. In this review, we will provide a comprehensive update on the latest research progress in CRBN-based PRTOACs area. Following the criteria, such as disease area and drug target class, we will present the degradants in alphabetical order by target. We also provide our own perspective on the future prospects and potential challenges facing PROTACs.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Yokoo H, Shibata N, Endo A, Ito T, Yanase Y, Murakami Y, Fujii K, Hamamura K, Saeki Y, Naito M, Aritake K, Demizu Y. Discovery of a Highly Potent and Selective Degrader Targeting Hematopoietic Prostaglandin D Synthase via In Silico Design. J Med Chem 2021; 64:15868-15882. [PMID: 34652145 DOI: 10.1021/acs.jmedchem.1c01206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Targeted protein degradation by proteolysis-targeting chimera (PROTAC) is one of the exciting modalities for drug discovery and biological discovery. It is important to select an appropriate linker, an E3 ligase ligand, and a target protein ligand in the development; however, it is necessary to synthesize a large number of PROTACs through trial and error. Herein, using a docking simulation of the ternary complex of a hematopoietic prostaglandin D synthase (H-PGDS) degrader, H-PGDS, and cereblon, we have succeeded in developing PROTAC(H-PGDS)-7 (6), which showed potent and selective degradation activity (DC50 = 17.3 pM) and potent suppression of prostaglandin D2 production in KU812 cells. Additionally, in a Duchenne muscular dystrophy model using mdx mice with cardiac hypertrophy, compound 6 showed better inhibition of inflammatory cytokines than a potent H-PGDS inhibitor TFC-007. Thus, our results demonstrated that in silico simulation would be useful for the rational development of PROTACs.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Akinori Endo
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takahito Ito
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Yuta Yanase
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Yuki Murakami
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Kiyonaga Fujii
- Laboratory of Analytical Chemistry, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka-shi, Fukuoka 815-8511, Japan
| | - Kengo Hamamura
- Laboratory of Chemical Pharmacology, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka-shi, Fukuoka 815-8511, Japan
| | - Yasushi Saeki
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Mikihiko Naito
- Laboratory of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kosuke Aritake
- Laboratory of Chemical Pharmacology, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka-shi, Fukuoka 815-8511, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| |
Collapse
|
19
|
Wang C, Zhang Y, Xing D, Zhang R. PROTACs technology for targeting non-oncoproteins: Advances and perspectives. Bioorg Chem 2021; 114:105109. [PMID: 34175722 DOI: 10.1016/j.bioorg.2021.105109] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Proteolysis targeting chimeras (PROTACs) have been developed to be an effective technology for targeted protein degradation. Each PROTAC contains three key components: a protein-of-interest (POI) ligand, an E3 ligase ligand, and a linker. These bifunctional molecules can hijack the intracellular inherent ubiquitin-proteasome system to degrade different POIs. With several advantages over other therapeutic strategies, PROTACs have set off a new upsurge of drug discovery in recent years. PRTOACs have been extensively explored worldwide and have excelled not only in cancer diseases but also in cardiovascular diseases, fatty liver disease, immune diseases, neurodegenerative diseases, and viral infections. In this review, we aim to summarize the rapid progress from 2010 to 2021 in PROTACs targeting various non-oncoproteins and elucidate the advantages of PROTACs technology. Finally, the potential challenges of this dynamic field are also discussed.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Cancer Institute, Qingdao 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Cancer Institute, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Cancer Institute, Qingdao 266071, Shandong, China.
| |
Collapse
|