1
|
Tvilum A, Johansen MI, Glud LN, Ivarsen DM, Khamas AB, Carmali S, Mhatre SS, Søgaard AB, Faddy E, de Vor L, Rooijakkers SHM, Østergaard L, Jørgensen NP, Meyer RL, Zelikin AN. Antibody-Drug Conjugates to Treat Bacterial Biofilms via Targeting and Extracellular Drug Release. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301340. [PMID: 37290045 PMCID: PMC10427384 DOI: 10.1002/advs.202301340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/22/2023] [Indexed: 06/10/2023]
Abstract
The treatment of implant-associated bacterial infections and biofilms is an urgent medical need and a grand challenge because biofilms protect bacteria from the immune system and harbor antibiotic-tolerant persister cells. This need is addressed herein through an engineering of antibody-drug conjugates (ADCs) that contain an anti-neoplastic drug mitomycin C, which is also a potent antimicrobial against biofilms. The ADCs designed herein release the conjugated drug without cell entry, via a novel mechanism of drug release which likely involves an interaction of ADC with the thiols on the bacterial cell surface. ADCs targeted toward bacteria are superior by the afforded antimicrobial effects compared to the non-specific counterpart, in suspension and within biofilms, in vitro, and in an implant-associated murine osteomyelitis model in vivo. The results are important in developing ADC for a new area of application with a significant translational potential, and in addressing an urgent medical need of designing a treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Anne Tvilum
- Department of Chemistry, Aarhus University, Aarhus C, 8000, Denmark
| | - Mikkel I Johansen
- Department of Clinical Medicine, Aarhus University, Aarhus N, 8200, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Laerke N Glud
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Diana M Ivarsen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Amanda B Khamas
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Sheiliza Carmali
- Department of Chemistry, Aarhus University, Aarhus C, 8000, Denmark
| | - Snehit Satish Mhatre
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Ane B Søgaard
- Department of Chemistry, Aarhus University, Aarhus C, 8000, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Emma Faddy
- Department of Clinical Medicine, Aarhus University, Aarhus N, 8200, Denmark
| | - Lisanne de Vor
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus N, 8200, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Nis P Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, 8000, Denmark
- Department of Biology, Aarhus University, Aarhus C, 8000, Denmark
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus C, 8000, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
2
|
Blume L, Long TE, Turos E. Applications and Opportunities in Using Disulfides, Thiosulfinates, and Thiosulfonates as Antibacterials. Int J Mol Sci 2023; 24:8659. [PMID: 37240003 PMCID: PMC10218091 DOI: 10.3390/ijms24108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Sulfur-containing molecules have a long history of bioactivity, especially as antibacterial agents in the fight against infectious pathogens. Organosulfur compounds from natural products have been used to treat infections throughout history. Many commercially available antibiotics also have sulfur-based moieties in their structural backbones. In the following review, we summarize sulfur-containing antibacterial compounds, focusing on disulfides, thiosulfinates, and thiosulfonates, and opportunities for future developments in the field.
Collapse
Affiliation(s)
- Lindsay Blume
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
| | - Timothy E. Long
- Department of Pharmaceutical Sciences, Marshall University, Huntington, WV 25755, USA;
| | - Edward Turos
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
| |
Collapse
|
3
|
Jiang F, Cai C, Gao L, Su X, Han S. Peptidoglycan-Directed Chemical Ligation for Selective Inhibition on Gram-Positive Bacteria. ACS OMEGA 2023; 8:2485-2490. [PMID: 36687063 PMCID: PMC9850734 DOI: 10.1021/acsomega.2c06964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Microbicides with distinct antibacterial mechanisms show potential to combat multi-drug resistance bacteria. We herein report peptidoglycan-directed chemical ligation (PGCL) between alkyne-bearing vancomycin and an azide-tagged cationic polymer. The former binds peptidoglycan and inhibits peptidoglycan crosslinking, while the latter interferes the integrity of the bacterial membrane. PGCL results in enhanced bactericidal activity against Gram-positive Staphylococcus aureus (S. aureus) over Gram-negative Escherichia coli (E. coli). These data indicate the potential of PGCL to selectively and synergistically inhibit Gram-positive pathogens via dual modality antibacterial mechanisms of peptidoglycan-inhibiting antibiotics and bacterial membrane-disrupting polycations.
Collapse
Affiliation(s)
- Feng Jiang
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, State
Key Laboratory of Cellular Stress Biology, the Key Laboratory for
Chemical Biology of Fujian Province, and the MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Chengteng Cai
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, State
Key Laboratory of Cellular Stress Biology, the Key Laboratory for
Chemical Biology of Fujian Province, and the MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Lei Gao
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, State
Key Laboratory of Cellular Stress Biology, the Key Laboratory for
Chemical Biology of Fujian Province, and the MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Xinhui Su
- PET
center, Department of Nuclear Medicine, The First Affiliated Hospital,
College of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Shoufa Han
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, State
Key Laboratory of Cellular Stress Biology, the Key Laboratory for
Chemical Biology of Fujian Province, and the MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Shybeka I, Maynard JRJ, Saidjalolov S, Moreau D, Sakai N, Matile S. Dynamic Covalent Michael Acceptors to Penetrate Cells: Thiol-Mediated Uptake with Tetrel-Centered Exchange Cascades, Assisted by Halogen-Bonding Switches. Angew Chem Int Ed Engl 2022; 61:e202213433. [PMID: 36272154 PMCID: PMC10098706 DOI: 10.1002/anie.202213433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Chalcogen-centered cascade exchange chemistry is increasingly understood to account for thiol-mediated uptake, that is, the ability of reversibly thiol-reactive agents to penetrate cells. Here, reversible Michael acceptors are shown to enable and inhibit thiol-mediated uptake, including the cytosolic delivery of proteins. Dynamic cyano-cinnamate dimers rival the best chalcogen-centered inhibitors. Patterns generated in inhibition heatmaps reveal contributions from halogen-bonding switches that occur independent from the thyroid transporter MCT8. The uniqueness of these patterns supports that the entry of tetrel-centered exchangers into cells differs from chalcogen-centered systems. These results expand the chemical space of thiol-mediated uptake and support the existence of a universal exchange network to bring matter into cells, abiding to be decoded for drug delivery and drug discovery in the broadest sense.
Collapse
Affiliation(s)
- Inga Shybeka
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - John R. J. Maynard
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Saidbakhrom Saidjalolov
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Dimitri Moreau
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
5
|
Shchelik IS, Gademann K. Synthesis and Antimicrobial Evaluation of New Cephalosporin Derivatives Containing Cyclic Disulfide Moieties. ACS Infect Dis 2022; 8:2327-2338. [PMID: 36251034 DOI: 10.1021/acsinfecdis.2c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Due to a steady increase in microbial resistance, there is a need to increase the effectiveness of antibiotic performance by involving additional mechanisms of their penetration or retention for their better action. Cephalosporins are a successful group of antibiotics to combat pathogenic microorganisms, including drug-resistant strains. In this study, we investigated the effect of newly synthesized cephalosporin derivatives with cyclic disulfide modifications against several Gram-positive and Gram-negative strains as well as against biofilm formation. The incorporation of asparagusic acid was found to be effective in improving the activity of the drug against Gram-negative strains compared to the all carbon-control compounds. Furthermore, we could demonstrate the successful reduction of biofilm formation for Staphylococcus aureus and Pseudomonas aeruginosa at similar concentrations as obtained against planktonic cells. We propose that the incorporation of cyclic disulfides is one additional strategy to improve antibiotic activity and to combat bacterial infections.
Collapse
Affiliation(s)
- Inga S Shchelik
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
6
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
7
|
Kato T, Lim B, Cheng Y, Pham AT, Maynard J, Moreau D, Poblador-Bahamonde AI, Sakai N, Matile S. Cyclic Thiosulfonates for Thiol-Mediated Uptake: Cascade Exchangers, Transporters, Inhibitors. JACS AU 2022; 2:839-852. [PMID: 35557769 PMCID: PMC9088311 DOI: 10.1021/jacsau.1c00573] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 05/16/2023]
Abstract
Thiol-mediated uptake is emerging as a powerful method to penetrate cells. Cyclic oligochalcogenides (COCs) have been identified as privileged scaffolds to enable and inhibit thiol-mediated uptake because they can act as dynamic covalent cascade exchangers, i.e., every exchange produces a new, covalently tethered exchanger. In this study, our focus is on the essentially unexplored COCs of higher oxidation levels. Quantitative characterization of the underlying dynamic covalent exchange cascades reveals that the initial ring opening of cyclic thiosulfonates (CTOs) proceeds at a high speed even at a low pH. The released sulfinates exchange with disulfides in aprotic but much less in protic environments. Hydrophobic domains were thus introduced to direct CTOs into hydrophobic pockets to enhance their reactivity. Equipped with such directing groups, fluorescently labeled CTOs entered the cytosol of living cells more efficiently than the popular asparagusic acid. Added as competitive agents, CTOs inhibit the uptake of various COC transporters and SARS-CoV-2 lentivectors. Orthogonal trends found with different transporters support the existence of multiple cellular partners to account for the diverse expressions of thiol-mediated uptake. Dominant self-inhibition and high activity of dimers imply selective and synergistic exchange in hydrophobic pockets as distinguishing characteristics of thiol-mediated uptake with CTOs. The best CTO dimers with hydrophobic directing groups inhibit the cellular entry of SARS-CoV-2 lentivectors with an IC50 significantly lower than the previous best CTO, below the 10 μM threshold and better than ebselen. Taken together, these results identify CTOs as an intriguing motif for use in cytosolic delivery, as inhibitors of lentivector entry, and for the evolution of dynamic covalent networks in the broadest sense, with reactivity-based selectivity of cascade exchange emerging as a distinguishing characteristic that deserves further attention.
Collapse
|