1
|
Naskar A, Roy RK, Srivastava D, Patra N. Decoding Inhibitor Egression from Wild-Type and G2019S Mutant LRRK2 Kinase: Insights into Unbinding Mechanisms for Precision Drug Design in Parkinson's Disease. J Phys Chem B 2024; 128:6657-6669. [PMID: 38822803 DOI: 10.1021/acs.jpcb.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) remains a viable target for drug development since the discovery of the association of its mutations with Parkinson's disease (PD). G2019S (in the kinase domain) is the most common mutation for LRRK2-based PD. Though various types of inhibitors have been developed for the kinase domain to reduce the effect of the mutation, understanding the working of these inhibitors at the molecular level is still ongoing. This study focused on the exploration of the dissociation mechanism (pathways) of inhibitors from (WT and G2019S) LRRK2 kinase (using homology model CHK1 kinase), which is one of the crucial aspects in drug discovery. Here, two ATP-competitive type I inhibitors, PF-06447475 and MLi-2 (Comp1 and Comp2 ), and one non-ATP-competitive type II inhibitor, rebastinib (Comp3), were considered for this investigation. To study the unbinding process, random accelerated molecular dynamics simulations were performed. The binding free energies of the three inhibitors for different egression paths were determined using umbrella sampling. This work found four major egression pathways that were adopted by the inhibitors Comp1 (path1, path2, and path3), Comp2 (path1, path2 and path3), and Comp3 (path3 and path4). Also, the mechanism of unbinding for each path and key residues involved in unbinding were explored. Mutation was not observed to impact the preference of the particular egression pathways for both LRRK2-Comp1 and -Comp2 systems. However, the findings suggested that the size of the inhibitor molecules might have an effect on the preference of the egression pathways. The binding energy and residence time of the inhibitors followed a similar trend to experimental observations. The findings of this work might provide insight into designing more potent inhibitors for the G2019S LRRK2 kinase.
Collapse
Affiliation(s)
- Avigyan Naskar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Rakesh K Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
2
|
Wang Q, Gu X, Yang L, Jiang Y, Zhang J, He J. Emerging perspectives on precision therapy for Parkinson's disease: multidimensional evidence leading to a new breakthrough in personalized medicine. Front Aging Neurosci 2024; 16:1417515. [PMID: 39026991 PMCID: PMC11254646 DOI: 10.3389/fnagi.2024.1417515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
PD is a prevalent and progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Genes play a significant role in the onset and progression of the disease. While the complexity and pleiotropy of gene expression networks have posed challenges for gene-targeted therapies, numerous pathways of gene variant expression show promise as therapeutic targets in preclinical studies, with some already in clinical trials. With the recognition of the numerous genes and complex pathways that can influence PD, it may be possible to take a novel approach to choose a treatment for the condition. This approach would be based on the symptoms, genomics, and underlying mechanisms of the disease. We discuss the utilization of emerging genetic and pathological knowledge of PD patients to categorize the disease into subgroups. Our long-term objective is to generate new insights for the therapeutic approach to the disease, aiming to delay and treat it more effectively, and ultimately reduce the burden on individuals and society.
Collapse
Affiliation(s)
- Qiaoli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuan Gu
- Department of Trauma center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People’s Hospital of Jilin Province, Changchun, China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiao Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Benítez‐Fernández R, Josa‐Prado F, Sánchez E, Lao Y, García‐Rubia A, Cumella J, Martínez A, Palomo V, de Castro F. Efficacy of a benzothiazole-based LRRK2 inhibitor in oligodendrocyte precursor cells and in a murine model of multiple sclerosis. CNS Neurosci Ther 2024; 30:e14552. [PMID: 38287523 PMCID: PMC10808848 DOI: 10.1111/cns.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 01/31/2024] Open
Abstract
AIMS Multiple sclerosis (MS) is a chronic neurological disease that currently lacks effective curative treatments. There is a need to find effective therapies, especially to reverse the progressive demyelination and neuronal damage. Oligodendrocytes form the myelin sheath around axons in the central nervous system (CNS) and oligodendrocyte precursor cells (OPCs) undergo mechanisms that enable spontaneously the partial repair of damaged lesions. The aim of this study was to discover small molecules with potential effects in demyelinating diseases, including (re)myelinating properties. METHODS Recently, it has been shown how LRRK2 inhibition promotes oligodendrogliogenesis and therefore an efficient repair or myelin damaged lesions. Here we explored small molecules inhibiting LRRK2 as potential enhancers of primary OPCs proliferation and differentiation, and their potential impact on the clinical score of experimental autoimmune encephalomyelitys (EAE) mice, a validated model of the most frequent clinical form of MS, relapsing-remitting MS. RESULTS One of the LRRK2 inhibitors presented in this study promoted the proliferation and differentiation of OPC primary cultures. When tested in the EAE murine model of MS, it exerted a statistically significant reduction of the clinical burden of the animals, and histological evidence revealed how the treated animals presented a reduced lesion area in the spinal cord. CONCLUSIONS For the first time, a small molecule with LRRK2 inhibition properties presented (re)myelinating properties in primary OPCs cultures and potentially in the in vivo murine model. This study provides an in vivo proof of concept for a LRRK2 inhibitor, confirming its potential for the treatment of MS.
Collapse
Affiliation(s)
- Rocío Benítez‐Fernández
- Centro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
- Instituto Cajal‐CSICMadridSpain
| | | | | | | | | | - José Cumella
- Instituto de Química Médica, IQM‐CSICMadridSpain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
- Centro de Investigaciones Biomédicas en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
| | - Valle Palomo
- Centro de Investigaciones Biomédicas en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
- Instituto Madrileño de Estudios AvanzadosIMDEA NanocienciaMadridSpain
- Unidad de Nanobiotecnología Asociada al Centro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| | | |
Collapse
|
4
|
Cao R, Chen C, Wen J, Zhao W, Zhang C, Sun L, Yuan L, Wu C, Shan L, Xi M, Sun H. Recent advances in targeting leucine-rich repeat kinase 2 as a potential strategy for the treatment of Parkinson's disease. Bioorg Chem 2023; 141:106906. [PMID: 37837728 DOI: 10.1016/j.bioorg.2023.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Several single gene mutations involved in PD have been identified such as leucine-rich repeat kinase 2 (LRRK2), the most common cause of sporadic and familial PD. Its mutations have attracted much attention to therapeutically targeting this kinase. To date, many compounds including small chemical molecules with diverse scaffolds and RNA agents have been developed with significant amelioration in preclinical PD models. Currently, five candidates, DNL201, DNL151, WXWH0226, NEU-723 and BIIB094, have advanced to clinical trials for PD treatment. In this review, we describe the structure, pathogenic mutations and the mechanism of LRRK2, and summarize the development of LRRK2 inhibitors in preclinical and clinical studies, trying to provide an insight into targeting LRRK2 for PD intervention in future.
Collapse
Affiliation(s)
- Ruiwei Cao
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Caiping Chen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Jing Wen
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Weihe Zhao
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | | | - Longhui Sun
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Liyan Yuan
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Lei Shan
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Naskar A, Bhanja KK, Roy RK, Patra N. Structural insight into G2019S mutated LRRK2 kinase and brain-penetrant type I inhibitor complex: a molecular dynamics approach. J Biomol Struct Dyn 2023; 42:10129-10149. [PMID: 37702159 DOI: 10.1080/07391102.2023.2255675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
More than 40 mutations in the multidomain leucine-rich repeat kinase 2 (LRRK2) are found and mutation G2019S in the kinase domain is the most concerned with Parkinson's disease (PD). The discovery of the various types of inhibitors has largely emerged recently. However, the comparative study on molecular insight in WT and G2019S LRRK2 kinase domain upon binding of the inhibitors has not yet been explored in detail. This work considered five ATP-competitive Type I inhibitors complexed with WT and mutated LRRK2 kinase. Three reported potent and brain-penetrant inhibitors, GNE-7915, PF-06447475 and MLi-2 (comp1, comp2 and comp3 respectively) and also, another two inhibitors, Pyrrolo[2,3-b] pyridine derivative (comp4) and Pyrrolo[2,3-d] pyrimidine derivative (comp5), were used. In this work, classical and accelerated molecular dynamics (cMD and aMD) simulations were performed for a total of 12 systems (apo and holo). This study found structural and thermodynamic stability for all the inhibitors. Comparatively larger molecules (size 15.3 - 15.4 Å), comp1, comp3 and comp5, showed more selectivity towards mutated LRRK2 kinase in terms of flexibility of residues, compactness and dynamics of kinase, the stability inside the binding-pocket. Also, inhibitors comp3 and comp5 showed higher binding affinity towards G2019S LRRK2 among the five. Residues, E1948 and A1950 (in hinge region) were observed mainly to form hydrogen bonds with inhibitors. Finally, MLi-2 showed a conformational rearrangement by dihedral flipping in both WT and mutated systems but got stability in G2019S LRRK2. This work could potentially help design more improved and effective Type I inhibitors for G2019S LRRK2 kinase.
Collapse
Affiliation(s)
- Avigyan Naskar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| | - Kousik K Bhanja
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| | - Rakesh K Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| |
Collapse
|
6
|
Hu J, Zhang D, Tian K, Ren C, Li H, Lin C, Huang X, Liu J, Mao W, Zhang J. Small-molecule LRRK2 inhibitors for PD therapy: Current achievements and future perspectives. Eur J Med Chem 2023; 256:115475. [PMID: 37201428 DOI: 10.1016/j.ejmech.2023.115475] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that orchestrates a diverse array of cellular processes, including vesicle transport, autophagy, lysosome degradation, neurotransmission, and mitochondrial activity. Hyperactivation of LRRK2 triggers vesicle transport dysfunction, neuroinflammation, accumulation of α-synuclein, mitochondrial dysfunction, and the loss of cilia, ultimately leading to Parkinson's disease (PD). Therefore, targeting LRRK2 protein is a promising therapeutic strategy for PD. The clinical translation of LRRK2 inhibitors was historically impeded by issues surrounding tissue specificity. Recent studies have identified LRRK2 inhibitors that have no effect on peripheral tissues. Currently, there are four small-molecule LRRK2 inhibitors undergoing clinical trials. This review provides a summary of the structure and biological functions of LRRK2, along with an overview of the binding modes and structure-activity relationships (SARs) of small-molecule inhibitors targeting LRRK2. It offers valuable references for developing novel drugs targeting LRRK2.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changyu Ren
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Heng Li
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoli Huang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wuyu Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Wu F, Li H, An Q, Sun Y, Yu J, Cao W, Sun P, Diao X, Meng L, Xu S. Discovery of 7H-Pyrrolo[2,3-d]pyrimidine Derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2023; 254:115355. [PMID: 37062169 DOI: 10.1016/j.ejmech.2023.115355] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in hematopoietic cells and is a negative regulator of T cell receptor (TCR) signaling. Recent studies have demonstrated that HPK1 is a promising therapeutic target for cancer immunotherapy. However, despite significant progress in the development of HPK1 inhibitors, none of them has been approved for cancer therapy. Development of HPK1 inhibitors with a structurally distinct scaffold is still needed. Herein, we describe the design and synthesis of a series of HPK1 inhibitors with a 7H-pyrrolo[2,3-d]pyrimidine scaffold, exemplified by 31. Compound 31 showed potent inhibitory activity against HPK1 with an IC50 value of 3.5 nM and favorable selectivity within a panel of kinases. It also potently inhibited the phosphorylation level of SLP76, a substrate of HPK1, and enhanced the IL-2 secretion in Jurkat cells (human T cell leukemia). Our findings provide new clues for further optimization and development to generate HPK1 inhibitors for cancer immunotherapy.
Collapse
Affiliation(s)
- Feifei Wu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
| | - Huiyu Li
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
| | - Qi An
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Jinghua Yu
- Shanghai Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Wenting Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Pu Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingxing Diao
- Shanghai Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China.
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
8
|
Hua QQ, Lin XJ, Xiang SP, Jiang LY, Cai JH, Sun JM, Tan F, Mou YN. Two small-molecule inhibitors of Toxoplasma gondii proliferation in vitro. Front Cell Infect Microbiol 2023; 13:1145824. [PMID: 37077525 PMCID: PMC10106592 DOI: 10.3389/fcimb.2023.1145824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Background Toxoplasmosis caused by Toxoplasma gondii is a globally distributed zoonosis. Most infections appear asymptomatic in immunocompetent individuals, but toxoplasmosis can be fatal in fetuses and immunocompromised adults. There is an urgent need to research and develop effective and low-toxicity anti-T. gondii drugs because of some defects in current clinical anti-T. gondii drugs, such as limited efficacy, serious side effects and drug resistance. Methods In this study, 152 autophagy related compounds were evaluated as anti-T. gondii drugs. The activity of β-galactosidase assay based on luminescence was used to determine the inhibitory effect on parasite growth. At the same time, MTS assay was used to further detect the effects of compounds with over 60% inhibition rate on host cell viability. The invasion, intracellular proliferation, egress and gliding abilities of T. gondii were tested to assess the inhibitory effect of the chosen drugs on the distinct steps of the T. gondii lysis cycle. Results The results showed that a total of 38 compounds inhibited parasite growth by more than 60%. After excluding the compounds affecting host cell activity, CGI-1746 and JH-II-127 were considered for drug reuse and further characterized. Both CGI-1746 and JH-II-127 inhibited tachyzoite growth by 60%, with IC50 values of 14.58 ± 1.52 and 5.88 ± 0.23 μM, respectively. TD50 values were 154.20 ± 20.15 and 76.39 ± 14.32 μM, respectively. Further research found that these two compounds significantly inhibited the intracellular proliferation of tachyzoites. Summarize the results, we demonstrated that CGI-1746 inhibited the invasion, egress and especially the gliding abilities of parasites, which is essential for the successful invasion of host cells, while JH-II-127 did not affect the invasion and gliding ability, but seriously damaged the morphology of mitochondria which may be related to the damage of mitochondrial electron transport chain. Discussion Taken together, these findings suggest that both CGI-1746 and JH-II-127 could be potentially repurposed as anti-T. gondii drugs, lays the groundwork for future therapeutic strategies.
Collapse
Affiliation(s)
- Qian-qian Hua
- Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Xue-jing Lin
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shi-peng Xiang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-ya Jiang
- Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jin-hao Cai
- Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jian-min Sun
- Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Feng Tan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya-ni Mou
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Thakur G, Kumar V, Lee KW, Won C. Structural Insights and Development of LRRK2 Inhibitors for Parkinson's Disease in the Last Decade. Genes (Basel) 2022; 13:1426. [PMID: 36011337 PMCID: PMC9408223 DOI: 10.3390/genes13081426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by the specific loss of dopaminergic neurons in the midbrain. The pathophysiology of PD is likely caused by a variety of environmental and hereditary factors. Many single-gene mutations have been linked to this disease, but a significant number of studies indicate that mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a potential therapeutic target for both sporadic and familial forms of PD. Consequently, the identification of potential LRRK2 inhibitors has been the focus of drug discovery. Various investigations have been conducted in academic and industrial organizations to investigate the mechanism of LRRK2 in PD and further develop its inhibitors. This review summarizes the role of LRRK2 in PD and its structural details, especially the kinase domain. Furthermore, we reviewed in vitro and in vivo findings of selected inhibitors reported to date against wild-type and mutant versions of the LRRK2 kinase domain as well as the current trends researchers are employing in the development of LRRK2 inhibitors.
Collapse
Affiliation(s)
- Gunjan Thakur
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Keun Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Chungkil Won
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
10
|
Zhong Z, He X, Ge J, Zhu J, Yao C, Cai H, Ye XY, Xie T, Bai R. Discovery of small-molecule compounds and natural products against Parkinson's disease: Pathological mechanism and structural modification. Eur J Med Chem 2022; 237:114378. [DOI: 10.1016/j.ejmech.2022.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 04/09/2022] [Indexed: 11/24/2022]
|
11
|
Patel A, Patel S, Mehta M, Patel Y, Langaliya D, Bhalodiya S, Bambharoliya T. Recent Update on the Development of Leucine- Rich Repeat Kinase 2 (LRRK2) Inhibitors: A Promising Target for the Treatment of Parkinson's Disease. Med Chem 2022; 18:757-771. [PMID: 35168510 DOI: 10.2174/1573406418666220215122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease is a relatively common neurological disorder with incidence increasing with age. Since current medications only relieve the symptoms and do not change the course of the disease, therefore, finding disease-modifying therapies is a critical unmet medical need. However, significant progress in understanding how genetics underpins Parkinson's disease (PD) has opened up new opportunities for understanding disease pathogenesis and identifying possible therapeutic targets. One such target is leucine-rich repeat kinase 2 (LRRK2), an elusive enzyme implicated in both familial and idiopathic PD risk. As a result, both academia and industry have promoted the development of potent and selective inhibitors of LRRK2. In this review, we have summarized recent progress on the discovery and development of LRKK2 inhibitors as well as the bioactivity of several small-molecule LRRK2 inhibitors that have been used to inhibit LRRK2 kinase activity in vitro or in vivo.
Collapse
Affiliation(s)
- Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Stuti Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Meshwa Mehta
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Yug Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Dhruv Langaliya
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Shyam Bhalodiya
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | | |
Collapse
|
12
|
Brown DG, Wobst HJ. A survey of the clinical pipeline in neuroscience. Bioorg Med Chem Lett 2022; 56:128482. [PMID: 34864194 DOI: 10.1016/j.bmcl.2021.128482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022]
Abstract
Many new first-in-class drugs for neuroscience indications have been introduced in the past decade including new treatments for migraine, amyotrophic lateral sclerosis, depression, and multiple sclerosis. However, significant unmet patient needs remain in areas such as chronic pain, neurodegeneration, psychiatric diseases, and epilepsy. This review summarizes some of the advanced clinical compounds for these indications. Additionally, current opportunities and challenges that remain with respect to genetic validation, biomarkers, and translational models are discussed.
Collapse
Affiliation(s)
- Dean G Brown
- Jnana Therapeutics, 6 Tide St, MA 02210, United States.
| | - Heike J Wobst
- Jnana Therapeutics, 6 Tide St, MA 02210, United States
| |
Collapse
|
13
|
Grosso Jasutkar H, Oh SE, Mouradian MM. Therapeutics in the Pipeline Targeting α-Synuclein for Parkinson's Disease. Pharmacol Rev 2022; 74:207-237. [PMID: 35017177 PMCID: PMC11034868 DOI: 10.1124/pharmrev.120.000133] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and the fastest growing neurologic disease in the world, yet no disease-modifying therapy is available for this disabling condition. Multiple lines of evidence implicate the protein α-synuclein (α-Syn) in the pathogenesis of PD, and as such, there is intense interest in targeting α-Syn for potential disease modification. α-Syn is also a key pathogenic protein in other synucleionpathies, most commonly dementia with Lewy bodies. Thus, therapeutics targeting this protein will have utility in these disorders as well. Here we discuss the various approaches that are being investigated to prevent and mitigate α-Syn toxicity in PD, including clearing its pathologic aggregates from the brain using immunization strategies, inhibiting its misfolding and aggregation, reducing its expression level, enhancing cellular clearance mechanisms, preventing its cell-to-cell transmission within the brain and perhaps from the periphery, and targeting other proteins associated with or implicated in PD that contribute to α-Syn toxicity. We also discuss the therapeutics in the pipeline that harness these strategies. Finally, we discuss the challenges and opportunities for the field in the discovery and development of therapeutics for disease modification in PD. SIGNIFICANCE STATEMENT: PD is the second most common neurodegenerative disorder, for which disease-modifying therapies remain a major unmet need. A large body of evidence points to α-synuclein as a key pathogenic protein in this disease as well as in dementia with Lewy bodies, making it of leading therapeutic interest. This review discusses the various approaches being investigated and progress made to date toward discovering and developing therapeutics that would slow and stop progression of these disabling diseases.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Stephanie E Oh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
14
|
Tan H, Liu Y, Gong C, Zhang J, Huang J, Zhang Q. Synthesis and evaluation of FAK inhibitors with a 5-fluoro-7H-pyrrolo[2,3-d]pyrimidine scaffold as anti-hepatocellular carcinoma agents. Eur J Med Chem 2021; 223:113670. [PMID: 34214842 DOI: 10.1016/j.ejmech.2021.113670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/01/2022]
Abstract
Focal adhesion kinase (FAK) is a ubiquitous intracellular non-receptor tyrosine kinase, which is involved in multiple cellular functions, including cell adhesion, migration, invasion, survival, and angiogenesis. In this study, a series of 7H-pyrrolo[2,3-d]pyrimidines were designed and synthesized according to the E-pharmacophores generated by docking a library of 667 fragments into the ATP pocket of the co-crystal complex of FAK and PF-562271 (PDB ID: 3BZ3). The 5-fluoro-7H-pyrrolo[2,3-d]pyrimidine derivatives demonstrated excellent activity against FAK and the cell lines SMMC7721 and YY8103. 2-((2-((3-(Acetamidomethyl)phenyl)amino)-5-fluoro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-methylbenzamide (16c) was selected for further bioactivity evaluations in vivo, including preliminary pharmacokinetic profiling in rats and toxicity assays in mice, and tumor growth inhibition studies in a xenograft tumor model. The results showed that 16c did not affect the body weight gain of the animals up to a dose of 200 mg/kg, and significantly inhibited tumor growth with a tumor growth inhibition rate of 78.6% compared with the negative control group. Furthermore, phosphoantibody array analyses of a sample of the tumor suggested that 16c inhibited the malignant proliferation of hepatocellular carcinoma (HCC) cells through decreasing the phosphorylation in the FAK cascade.
Collapse
Affiliation(s)
- Hanyi Tan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yue Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chaochao Gong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiawei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
15
|
Gulati A, Yeung CS, Lapointe B, Kattar SD, Gunaydin H, Scott JD, Childers KK, Methot JL, Simov V, Kurukulasuriya R, Pio B, Morriello GJ, Liu P, Tang H, Neelamkavil S, Wood HB, Rada VL, Ardolino MJ, Yan XC, Palte R, Otte K, Faltus R, Woodhouse J, Hegde LG, Ciaccio P, Minnihan EC, DiMauro EF, Fell MJ, Fuller PH, Ellis JM. Optimization of brain-penetrant picolinamide derived leucine-rich repeat kinase 2 (LRRK2) inhibitors. RSC Med Chem 2021; 12:1164-1173. [PMID: 34355182 DOI: 10.1039/d1md00097g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
The discovery of potent, kinome selective, brain penetrant LRRK2 inhibitors is the focus of extensive research seeking new, disease-modifying treatments for Parkinson's disease (PD). Herein, we describe the discovery and evolution of a picolinamide-derived lead series. Our initial optimization efforts aimed at improving the potency and CLK2 off-target selectivity of compound 1 by modifying the heteroaryl C-H hinge and linker regions. This resulted in compound 12 which advanced deep into our research operating plan (ROP) before heteroaryl aniline metabolite 14 was characterized as Ames mutagenic, halting its progression. Strategic modifications to our ROP were made to enable early de-risking of putative aniline metabolites or hydrolysis products for mutagenicity in Ames. This led to the discovery of 3,5-diaminopyridine 15 and 4,6-diaminopyrimidine 16 as low risk for mutagenicity (defined by a 3-strain Ames negative result). Analysis of key matched molecular pairs 17 and 18 led to the prioritization of the 3,5-diaminopyridine sub-series for further optimization due to enhanced rodent brain penetration. These efforts culminated in the discovery of ethyl trifluoromethyl pyrazole 23 with excellent LRRK2 potency and expanded selectivity versus off-target CLK2.
Collapse
Affiliation(s)
- Anmol Gulati
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Charles S Yeung
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Blair Lapointe
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Solomon D Kattar
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Hakan Gunaydin
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Jack D Scott
- Merck & Co., Inc. 2015 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | - Kaleen K Childers
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Joey L Methot
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Vladimir Simov
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Ravi Kurukulasuriya
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Barbara Pio
- Merck & Co., Inc. 2015 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | - Greg J Morriello
- Merck & Co., Inc. 2015 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | - Ping Liu
- Merck & Co., Inc. 2015 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | - Haiqun Tang
- Merck & Co., Inc. 2015 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | | | - Harold B Wood
- Merck & Co., Inc. 2015 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | - Vanessa L Rada
- Merck & Co., Inc. 770 Sumneytown Pike West Point Pennsylvania 19486 USA
| | - Michael J Ardolino
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Xin Cindy Yan
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Rachel Palte
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Karin Otte
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Robert Faltus
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Janice Woodhouse
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Laxminarayan G Hegde
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Paul Ciaccio
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Ellen C Minnihan
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Erin F DiMauro
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Matthew J Fell
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Peter H Fuller
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - J Michael Ellis
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| |
Collapse
|
16
|
Lakkaniga NR, Gunaganti N, Zhang L, Belachew B, Frett B, Leung YK, Li HY. Pyrrolo[2,3-d]pyrimidine derivatives as inhibitors of RET: Design, synthesis and biological evaluation. Eur J Med Chem 2020; 206:112691. [PMID: 32823007 PMCID: PMC10536156 DOI: 10.1016/j.ejmech.2020.112691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
Gene fusions and point mutations of RET kinase are crucial for driving thoracic cancers, including thyroid cancer and non-small cell lung cancer. Various scaffolds based on different heterocycles have been synthesized and evaluated as RET inhibitors. In this work, we investigate pyrrolo[2,3-d]pyrimidine derivatives for inhibition of RET-wt, drug resistant mutant RET V804M and RET gene fusion driven cell lines. Several compounds were synthesized and the structure activity relationship was extensively studied to optimize the scaffold. Thieno[2,3-d]pyrimidine, a bioisostere of pyrrolo[2,3-d]pyrimidine, was also explored for the effect on RET inhibition. We identified a lead compound, 59, which shows low nanomolar potency against RET-wt and RET V804M. Further 59 shows growth inhibition of LC-2/ad cells which RET-CCDC6 driven. We also determined that 59 is a type 2 inhibitor of RET and demonstrated its ability to inhibit migration of tumor cells. Based on computational studies, we proposed a binding pose of 59 in RET pocket and have quantified the contributions of individual residues for its binding. Together, 59 is an important lead compound which needs further evaluation in biological studies.
Collapse
Affiliation(s)
- Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lingtian Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Binyam Belachew
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yuet-Kin Leung
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
17
|
Divergent Effects of G2019S and R1441C LRRK2 Mutations on LRRK2 and Rab10 Phosphorylations in Mouse Tissues. Cells 2020; 9:cells9112344. [PMID: 33105882 PMCID: PMC7690595 DOI: 10.3390/cells9112344] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in LRRK2 cause familial Parkinson’s disease and common variants increase disease risk. LRRK2 kinase activity and cellular localization are tightly regulated by phosphorylation of key residues, primarily Ser1292 and Ser935, which impacts downstream phosphorylation of its substrates, among which Rab10. A comprehensive characterization of LRRK2 activity and phosphorylation in brain as a function of age and mutations is missing. Here, we monitored Ser935 and Ser1292 phosphorylation in midbrain, striatum, and cortex of 1, 6, and 12 months-old mice carrying G2019S and R1441C mutations or murine bacterial artificial chromosome (BAC)-Lrrk2-G2019S. We observed that G2019S and, at a greater extent, R1441C brains display decreased phospho-Ser935, while Ser1292 autophosphorylation increased in G2019S but not in R1441C brain, lung, and kidney compared to wild-type. Further, Rab10 phosphorylation, is elevated in R1441C carrying mice, indicating that the effect of LRRK2 mutations on substrate phosphorylation is not generalizable. In BAC-Lrrk2-G2019S striatum and midbrain, Rab10 phosphorylation, but not Ser1292 autophosphorylation, decreases at 12-months, pointing to autophosphorylation and substrate phosphorylation as uncoupled events. Taken together, our study provides novel evidence that LRRK2 phosphorylation in mouse brain is differentially impacted by mutations, brain area, and age, with important implications as diagnostic markers of disease progression and stratification.
Collapse
|
18
|
Toffoli M, Vieira SRL, Schapira AHV. Genetic causes of PD: A pathway to disease modification. Neuropharmacology 2020; 170:108022. [PMID: 32119885 DOI: 10.1016/j.neuropharm.2020.108022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
The underline neuropathology of Parkinson disease is pleiomorphic and its genetic background diverse. Possibly because of this heterogeneity, no effective disease modifying therapy is available. In this paper we give an overview of the genetics of Parkinson disease and explain how this is relevant for the development of new therapies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- M Toffoli
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - S R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - A H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
19
|
Abstract
Introduction: Disease-modifying treatment for Parkinson's disease (PD) to halt or revert the disease progression remains an unmet medical need. LRRK2 kinase activity is abnormally elevated in PD patients carrying LRRK2 mutations, with G2019S as the most frequent one. Small molecules to inhibit LRRK2 kinase activity might provide a potential disease-modifying strategy for PD.Areas covered: This review provides an update of small molecule LRRK2 inhibitors in patents published from January 2014 to October 2019. The molecules are classified by their structural scaffolds.Expert opinion: Despite the tremendous efforts to push small molecule LRRK2 inhibitors toward clinical trials, the overall progress is somewhat disappointing due to the challenges in compound optimization and the putative concern of target-related adverse effects. It is challenging to optimize multiple parameters including kinase selectivity, CNS penetration, and unbound fraction in brain simultaneously. In addition, the on-target effect of morphologic changes observed in lung/kidney in pre-clinical studies for several frontrunner ATP-competitive inhibitors prevented their further development. With this regard, non-ATP-competitive inhibitors may provide a different safety profile for development. DNL201 and DNL151 have entered early clinical trials to evaluate tolerability and target engagement biomarkers. This will pave the way for the development for future LRRK2 inhibitors.
Collapse
Affiliation(s)
- Xiao Ding
- Department of Chemistry and Biology, Shanghai Medicilon Inc., Shanghai, China
| | - Feng Ren
- Department of Chemistry and Biology, Shanghai Medicilon Inc., Shanghai, China
| |
Collapse
|
20
|
Abstract
Kinase activating missense mutations in leucine-rich repeat kinase 2 (LRRK2) are pathogenically linked to neurodegenerative Parkinson's disease (PD). Over the past decade, substantial effort has been devoted to the development of potent and selective small molecule inhibitors of LRRK2, as well as their preclinical testing across different Parkinson's disease models. This review outlines the genetic and biochemical evidence that pathogenic missense mutations increase LRRK2 kinase activity, which in turn provides the rationale for the development of small molecule inhibitors as potential PD therapeutics. An overview of progress in the development of LRRK2 inhibitors is provided, which in particular indicates that highly selective and potent compounds capable of clinical utility have been developed. We outline evidence from rodent- and human-induced pluripotent stem cell models that support a pathogenic role for LRRK2 kinase activity, and review the substantial experiments aimed at evaluating the safety of LRRK2 inhibitors. We address challenges still to overcome in the translational therapeutic pipeline, including biomarker development and clinical trial strategies, and finally outline the potential utility of LRRK2 inhibitors for other genetic forms of PD and ultimately sporadic PD. Collective evidence supports the ongoing clinical translation of LRRK2 inhibitors as a therapeutic intervention for PD is greatly needed.
Collapse
|
21
|
Targeting leucine-rich repeat kinase 2 (LRRK2) for the treatment of Parkinson's disease. Future Med Chem 2019; 11:1953-1977. [DOI: 10.4155/fmc-2018-0484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a serine-threonine kinase involved in multiple cellular processes and signaling pathways. LRRK2 mutations are associated with autosomal-inherited Parkinson's disease (PD), and evidence suggests that LRRK2 pathogenic variants generally increase kinase activity. Therefore, inhibition of LRRK2 kinase function is a promising therapeutic strategy for PD treatment. The search for drug-like molecules capable of reducing LRRK2 kinase activity in PD led to the design of selective LRRK2 inhibitors predicted to be within the CNS drug-like space. This review highlights the journey that translates chemical tools for interrogating the role of LRRK2 in PD into promising drug candidates, addressing the challenges in discovering selective and brain-penetrant LRRK2 modulators and exploring the structure–activity relationship of distinct LRRK2 inhibitors.
Collapse
|
22
|
Discovery of potent and selective 5-azaindazole inhibitors of leucine-rich repeat kinase 2 (LRRK2) - Part 1. Bioorg Med Chem Lett 2018; 29:668-673. [PMID: 30554956 DOI: 10.1016/j.bmcl.2018.11.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a relatively common neurological disorder with incidence increasing with age. Present treatments merely alleviate the symptoms and do not alter the course of the disease, thus identification of disease modifying therapies represents a significant unmet medical need. Mutations in the LRRK2 gene are risk-factors for developing PD and it has been hypothesized that the increased kinase activity of certain LRRK2 mutants are responsible for the damage of the dopaminergic neurons, thus LRRK2 inhibitors offer the potential to target an underlying cause of the disease. In this communication, we describe hit-to-lead medicinal chemistry program on a novel series of 5-azaindazoles. Compound 1, obtained from high-throughput screening was optimized to a highly potent, selective series of molecules with promising DMPK properties. Introduction of heterocycles at the 3-position were found to significantly increase the potency and kinase selectivity, whilst changes to the 4-chlorobenzyl group improved the physicochemical properties. Our series was licensed to a major pharmaceutical company for further development.
Collapse
|
23
|
Shi Y, Mader M. Brain penetrant kinase inhibitors: Learning from kinase neuroscience discovery. Bioorg Med Chem Lett 2018; 28:1981-1991. [PMID: 29752185 DOI: 10.1016/j.bmcl.2018.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023]
Abstract
A recent review of kinase inhibitors in clinical trials for brain cancer noted differences in the properties of these compounds relative to the mean property parameters associated with drugs marketed for CNS-associated conditions. However, many of these kinase drugs arose from opportunistic observations of brain activity, rather than design or flow schemes focused on optimizing CNS penetration. Thus, this digest examines kinase inhibitors that have been developed specifically for neurodegenerative indications such as Alzheimer's or Parkinson's disease, and considers design, flow scheme, and the physicochemical properties associated with compounds that have demonstrated brain penetrance.
Collapse
Affiliation(s)
- Yuan Shi
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Mary Mader
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
24
|
Ding X, Stasi LP, Ho MH, Zhao B, Wang H, Long K, Xu Q, Sang Y, Sun C, Hu H, Yu H, Wan Z, Wang L, Edge C, Liu Q, Li Y, Dong K, Guan X, Tattersall FD, Reith AD, Ren F. Discovery of 4-ethoxy-7H-pyrrolo[2,3-d]pyrimidin-2-amines as potent, selective and orally bioavailable LRRK2 inhibitors. Bioorg Med Chem Lett 2018; 28:1615-1620. [DOI: 10.1016/j.bmcl.2018.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 11/29/2022]
|
25
|
Chen J, Chen Y, Pu J. Leucine-Rich Repeat Kinase 2 in Parkinson's Disease: Updated from Pathogenesis to Potential Therapeutic Target. Eur Neurol 2018; 79:256-265. [PMID: 29705795 DOI: 10.1159/000488938] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/29/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the midbrain. The pathogenesis of PD is not fully understood but is likely caused by a combination of genetic and environmental factors. Several genes are associated with the onset and progression of familial PD. There is increasing evidence that leucine-rich repeat kinase 2 (LRRK2) plays a significant role in PD pathophysiology. SUMMARY Many studies have been conducted to elucidate the functions of LRRK2 and identify effective LRRK2 inhibitors for PD treatment. In this review, we discuss the role of LRRK2 in PD and recent progress in the use of LRRK2 inhibitors as therapeutic agents. Key Messages: LRRK2 plays a significant role in the pathophysiology of PD, and pharmacological inhibition of LRRK2 has become one of the most promising potential therapies for PD. Further research is warranted to determine the functions of LRRK2 and expand the applications of LRRK2 inhibitors in PD treatment.
Collapse
|
26
|
Williamson DS, Smith GP, Acheson-Dossang P, Bedford ST, Chell V, Chen IJ, Daechsel JCA, Daniels Z, David L, Dokurno P, Hentzer M, Herzig MC, Hubbard RE, Moore JD, Murray JB, Newland S, Ray SC, Shaw T, Surgenor AE, Terry L, Thirstrup K, Wang Y, Christensen KV. Design of Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitors Using a Crystallographic Surrogate Derived from Checkpoint Kinase 1 (CHK1). J Med Chem 2017; 60:8945-8962. [PMID: 29023112 DOI: 10.1021/acs.jmedchem.7b01186] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2), such as G2019S, are associated with an increased risk of developing Parkinson's disease. Surrogates for the LRRK2 kinase domain based on checkpoint kinase 1 (CHK1) mutants were designed, expressed in insect cells infected with baculovirus, purified, and crystallized. X-ray structures of the surrogates complexed with known LRRK2 inhibitors rationalized compound potency and selectivity. The CHK1 10-point mutant was preferred, following assessment of surrogate binding affinity with LRRK2 inhibitors. Fragment hit-derived arylpyrrolo[2,3-b]pyridine LRRK2 inhibitors underwent structure-guided optimization using this crystallographic surrogate. LRRK2-pSer935 HEK293 IC50 data for 22 were consistent with binding to Ala2016 in LRRK2 (equivalent to Ala147 in CHK1 10-point mutant structure). Compound 22 was shown to be potent, moderately selective, orally available, and brain-penetrant in wild-type mice, and confirmation of target engagement was demonstrated, with LRRK2-pSer935 IC50 values for 22 in mouse brain and kidney being 1.3 and 5 nM, respectively.
Collapse
Affiliation(s)
- Douglas S Williamson
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | | | | | - Simon T Bedford
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Victoria Chell
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - I-Jen Chen
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | | | - Zoe Daniels
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | | | - Pawel Dokurno
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | | | | | - Roderick E Hubbard
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Jonathan D Moore
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - James B Murray
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Samantha Newland
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Stuart C Ray
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Terry Shaw
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Allan E Surgenor
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Lindsey Terry
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Kenneth Thirstrup
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Yikang Wang
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | | |
Collapse
|
27
|
Selective LRRK2 kinase inhibition reduces phosphorylation of endogenous Rab10 and Rab12 in human peripheral mononuclear blood cells. Sci Rep 2017; 7:10300. [PMID: 28860483 PMCID: PMC5578959 DOI: 10.1038/s41598-017-10501-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/10/2017] [Indexed: 01/09/2023] Open
Abstract
Genetic variation in the leucine-rich repeat kinase 2 (LRRK2) gene is associated with risk of familial and sporadic Parkinson’s disease (PD). To support clinical development of LRRK2 inhibitors as disease-modifying treatment in PD biomarkers for kinase activity, target engagement and kinase inhibition are prerequisite tools. In a combined proteomics and phosphoproteomics study on human peripheral mononuclear blood cells (PBMCs) treated with the LRRK2 inhibitor Lu AF58786 a number of putative biomarkers were identified. Among the phospho-site hits were known LRRK2 sites as well as two phospho-sites on human Rab10 and Rab12. LRRK2 dependent phosphorylation of human Rab10 and human Rab12 at positions Thr73 and Ser106, respectively, was confirmed in HEK293 and, more importantly, Rab10-pThr73 inhibition was validated in immune stimulated human PBMCs using two distinct LRRK2 inhibitors. In addition, in non-stimulated human PBMCs acute inhibition of LRRK2 with two distinct LRRK2 inhibitor compounds reduced Rab10-Thr73 phosphorylation in a concentration-dependent manner with apparent IC50’s equivalent to IC50’s on LRRK2-pSer935. The identification of Rab10 phosphorylated at Thr73 as a LRRK2 inhibition marker in human PBMCs strongly support inclusion of assays quantifying Rab10-pThr73 levels in upcoming clinical trials evaluating LRRK2 kinase inhibition as a disease-modifying treatment principle in PD.
Collapse
|
28
|
Mishra R, Panday AK, Choudhury LH, Pal J, Subramanian R, Verma A. Multicomponent Reactions of Arylglyoxal, 4-Hydroxycoumarin, and Cyclic 1,3-C,N-Binucleophiles: Binucleophile-Directed Synthesis of Fused Five- and Six-Membered N-Heterocycles. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Richa Mishra
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar Patna India
| | - Anoop Kumar Panday
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar Patna India
| | - Lokman H. Choudhury
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar Patna India
| | - Jagannath Pal
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar Patna India
| | - Ranga Subramanian
- Department of Chemistry; Indian Institute of Technology Patna; Bihta 801103 Bihar Patna India
| | - Ajay Verma
- Department of Chemistry; IISER Bhopal; Indore By-pass Road, Bhauri 462066 Bhopal Madhya Pradesh, Bhopal India
| |
Collapse
|
29
|
Chan SL, Tan EK. Targeting LRRK2 in Parkinson's disease: an update on recent developments. Expert Opin Ther Targets 2017; 21:601-610. [PMID: 28443359 DOI: 10.1080/14728222.2017.1323881] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION LRRK2 research has progressed significantly in recent years with more reports of LRRK2 interactors and the development of more specific and sophisticated LRRK2 kinase inhibitors. Identification of bone fide LRRK2 substrates will provide new therapeutic targets in LRRK2-linked Parkinson's disease (PD). Areas covered: This review aims to put current LRRK2 research into perspective. Beginning with recent LRRK2 mammalian models employed for in vivo validation of LRRK2 substrates, followed by updates on reported LRRK2 interactors and their inferred mechanisms. Finally an overview of commonly used LRRK2 kinase inhibitors will be depicted. Expert opinion: Identification of LRRK2 non-kinase functions suggests the possibility of alternative LRRK2 drug target sites and these should be further explored. Studies on the effects of LRRK2 kinase inhibition on its non-kinase function and its self-regulatory role will provide further insights on its pathophysiologic mechanisms. Development of robust measurements of LRRK2 inhibitor efficacy will be required. These would include identification of specific imaging ligands or direct biochemical assays that can accurately capture its intrinsic activity. Testing of new therapeutic drug targets in both LRRK2 carriers and non LRRK2-linked patients will be important since their phenotype is similar.
Collapse
Affiliation(s)
- Sharon L Chan
- a Department of Neurology , National Neuroscience institute, Duke NUS Medical School , Singapore
| | - Eng-King Tan
- a Department of Neurology , National Neuroscience institute, Duke NUS Medical School , Singapore
| |
Collapse
|
30
|
Scott JD, DeMong DE, Greshock TJ, Basu K, Dai X, Harris J, Hruza A, Li SW, Lin SI, Liu H, Macala MK, Hu Z, Mei H, Zhang H, Walsh P, Poirier M, Shi ZC, Xiao L, Agnihotri G, Baptista MAS, Columbus J, Fell MJ, Hyde LA, Kuvelkar R, Lin Y, Mirescu C, Morrow JA, Yin Z, Zhang X, Zhou X, Chang RK, Embrey MW, Sanders JM, Tiscia HE, Drolet RE, Kern JT, Sur SM, Renger JJ, Bilodeau MT, Kennedy ME, Parker EM, Stamford AW, Nargund R, McCauley JA, Miller MW. Discovery of a 3-(4-Pyrimidinyl) Indazole (MLi-2), an Orally Available and Selective Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitor that Reduces Brain Kinase Activity. J Med Chem 2017; 60:2983-2992. [PMID: 28245354 DOI: 10.1021/acs.jmedchem.7b00045] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein which contains a kinase domain and GTPase domain among other regions. Individuals possessing gain of function mutations in the kinase domain such as the most prevalent G2019S mutation have been associated with an increased risk for the development of Parkinson's disease (PD). Given this genetic validation for inhibition of LRRK2 kinase activity as a potential means of affecting disease progression, our team set out to develop LRRK2 inhibitors to test this hypothesis. A high throughput screen of our compound collection afforded a number of promising indazole leads which were truncated in order to identify a minimum pharmacophore. Further optimization of these indazoles led to the development of MLi-2 (1): a potent, highly selective, orally available, brain-penetrant inhibitor of LRRK2.
Collapse
Affiliation(s)
- Jack D Scott
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Duane E DeMong
- Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Thomas J Greshock
- Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Kallol Basu
- Merck & Co., Inc. , 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Xing Dai
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Joel Harris
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Alan Hruza
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Sarah W Li
- Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Sue-Ing Lin
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Hong Liu
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Megan K Macala
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Zhiyong Hu
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Hong Mei
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Honglu Zhang
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Paul Walsh
- Merck & Co., Inc. , 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Marc Poirier
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Zhi-Cai Shi
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Li Xiao
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Gautam Agnihotri
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Marco A S Baptista
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - John Columbus
- Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew J Fell
- Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Lynn A Hyde
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Reshma Kuvelkar
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Yinghui Lin
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Christian Mirescu
- Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - John A Morrow
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Zhizhang Yin
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaoping Zhang
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaoping Zhou
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ronald K Chang
- Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Mark W Embrey
- Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - John M Sanders
- Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Heather E Tiscia
- Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Robert E Drolet
- Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Jonathan T Kern
- Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Sylvie M Sur
- Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - John J Renger
- Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Mark T Bilodeau
- Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Matthew E Kennedy
- Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Eric M Parker
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Andrew W Stamford
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ravi Nargund
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - John A McCauley
- Merck & Co., Inc. , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Michael W Miller
- Merck & Co., Inc. , 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
31
|
Wang M, Gao M, Xu Z, Zheng QH. Synthesis of [11C]HG-10-102-01 as a new potential PET agent for imaging of LRRK2 enzyme in Parkinson’s disease. Bioorg Med Chem Lett 2017; 27:1351-1355. [DOI: 10.1016/j.bmcl.2017.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/17/2022]
|
32
|
Christensen KV, Smith GP, Williamson DS. Development of LRRK2 Inhibitors for the Treatment of Parkinson's Disease. PROGRESS IN MEDICINAL CHEMISTRY 2017; 56:37-80. [PMID: 28314412 DOI: 10.1016/bs.pmch.2016.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Linkage and genome-wide association studies have identified a genetic risk locus for late-onset Parkinson's disease in chromosome 12, originally identified as PARK6. The causative gene was identified to code for a large multifunctional protein, LRRK2 (leucine-rich repeat kinase 2). The combined genetic and biochemical evidence supports a hypothesis in which the LRRK2 kinase function is causally involved in the pathogenesis of sporadic and familial forms of PD, and therefore that LRRK2 kinase inhibitors could be useful for treatment. Although LRRK2 has so far not been crystallised, the use of homology modelling and crystallographic surrogates has allowed the optimisation of chemical structures such that compounds of high selectivity with good brain penetration and appropriate pharmacokinetic properties are now available for understanding the biology of LRRK2 in vitro and in vivo. This chapter reviews LRRK2 biology, the structural biology of LRRK2 and gives an overview of inhibitors of LRRK2.
Collapse
Affiliation(s)
- K V Christensen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark
| | - G P Smith
- Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark
| | | |
Collapse
|
33
|
Hatcher JM, Choi HG, Alessi DR, Gray NS. Small-Molecule Inhibitors of LRRK2. ADVANCES IN NEUROBIOLOGY 2017; 14:241-264. [PMID: 28353288 DOI: 10.1007/978-3-319-49969-7_13] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) protein have been genetically and functionally linked to Parkinson's disease (PD). The kinase activity of LRRK2 is increased by pathogenic mutations; therefore, modulation of LRRK2 kinase activity by a selective small-molecule inhibitor has been proposed as a potentially viable treatment for Parkinson's disease. This chapter presents a historical overview of the development and bioactivity of several small-molecule LRRK2 inhibitors that have been used to inhibit LRRK2 kinase activity in vitro or in vivo. These compounds are important tools for understanding the cellular biology of LRRK2 and for evaluating the potential of LRRK2 inhibitors as disease-modifying PD therapies.
Collapse
Affiliation(s)
- John M Hatcher
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Hwan Geun Choi
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu, 41061, South Korea
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - Nathanael S Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
34
|
Musumeci F, Fallacara AL, Brullo C, Grossi G, Botta L, Calandro P, Chiariello M, Kissova M, Crespan E, Maga G, Schenone S. Identification of new pyrrolo[2,3-d]pyrimidines as Src tyrosine kinase inhibitors in vitro active against Glioblastoma. Eur J Med Chem 2016; 127:369-378. [PMID: 28076826 DOI: 10.1016/j.ejmech.2016.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 01/01/2023]
Abstract
In the last few years, several pyrrolo-pyrimidine derivatives have been either approved by the US FDA and in other countries for the treatment of different diseases or are currently in phase I/II clinical trials. Herein we present the synthesis and the characterization of a novel series of pyrrolo[2,3-d]pyrimidines, compounds 8a-j, and their activity against Glioblastoma multiforme (GBM). Docking studies and MM-GBSA analysis revealed the ability of such compounds to efficiently interact with the ATP binding site of Src. Enzymatic assays against a mini-panel of kinases (Src, Fyn, EGFR, Kit, Flt3, Abl, AblT315I) have been performed, showing an unexpected selectivity of our pyrrolo[2,3-d]pyrimidines for Src. Finally, the derivatives were tested for their antiproliferative potency on U87 GBM cell line. Compound 8h showed a considerable cytotoxicity effect against U87 cell line with an IC50 value of 7.1 μM.
Collapse
Affiliation(s)
- Francesca Musumeci
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Anna Lucia Fallacara
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Chiara Brullo
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Giancarlo Grossi
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Lorenzo Botta
- Dipartimento di Farmacia, Università"Federico II" di Napoli, Via D. Montesano 49, 80131 Napoli, Italy
| | - Pierpaolo Calandro
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Mario Chiariello
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori, Core Research Laboratory, Via Fiorentina 1, 53100 Siena, Italy
| | - Miroslava Kissova
- Consiglio Nazionale delle Ricerche, Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Emmanuele Crespan
- Consiglio Nazionale delle Ricerche, Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giovanni Maga
- Consiglio Nazionale delle Ricerche, Istituto di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.
| |
Collapse
|
35
|
Screening for chemical modulators for LRRK2. Biochem Soc Trans 2016; 44:1617-1623. [PMID: 27913670 DOI: 10.1042/bst20160242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 08/25/2016] [Accepted: 09/29/2016] [Indexed: 11/17/2022]
Abstract
After the discovery of leucine-rich repeat kinase 2 (LRRK2) as a risk factor for sporadic Parkinson's disease (PD) and mutations in LRRK2 as a cause of some forms of familial PD, there has been substantial interest in finding chemical modulators of LRRK2 function. Most of the pathogenic mutations in LRRK2 are within the enzymatic cores of the protein; therefore, many screens have focused on finding chemical modulators of this enzymatic activity. There are alternative screening approaches that could be taken to investigate compounds that modulate LRRK2 cellular functions. These screens are more often phenotypic screens. The preparation for a screen has to be rigorous and enable high-throughput accurate assessment of a compound's activity. The pipeline to beginning a drug screen and some LRRK2 inhibitor and phenotypic screens will be discussed.
Collapse
|
36
|
Atashrazm F, Dzamko N. LRRK2 inhibitors and their potential in the treatment of Parkinson's disease: current perspectives. Clin Pharmacol 2016; 8:177-189. [PMID: 27799832 PMCID: PMC5076802 DOI: 10.2147/cpaa.s102191] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Major advances in understanding how genetics underlies Parkinson's disease (PD) have provided new opportunities for understanding disease pathogenesis and potential new targets for therapeutic intervention. One such target is leucine-rich repeat kinase 2 (LRRK2), an enigmatic enzyme implicated in both familial and idiopathic PD risk. Both academia and industry have promoted the development of potent and selective inhibitors of LRRK2, and these are currently being employed to assess the safety and efficacy of such compounds in preclinical models of PD. This review examines the evidence that LRRK2 kinase activity contributes to the pathogenesis of PD and outlines recent progress on inhibitor development and early results from preclinical safety and efficacy testing. This review also looks at some of the challenges remaining for translation of LRRK2 inhibitors to the clinic, if indeed this is ultimately warranted. As a disease with no current cure that is increasing in prevalence in line with an aging population, there is much need for developing new treatments for PD, and targeting LRRK2 is currently a promising option.
Collapse
Affiliation(s)
| | - Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
37
|
Lee J. Mitochondrial drug targets in neurodegenerative diseases. Bioorg Med Chem Lett 2016; 26:714-720. [PMID: 26806044 DOI: 10.1016/j.bmcl.2015.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/14/2022]
Abstract
Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.
Collapse
Affiliation(s)
- Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 142-732, Republic of Korea.
| |
Collapse
|
38
|
Greshock TJ, Sanders JM, Drolet RE, Rajapakse HA, Chang RK, Kim B, Rada VL, Tiscia HE, Su H, Lai MT, Sur SM, Sanchez RI, Bilodeau MT, Renger JJ, Kern JT, McCauley JA. Potent, selective and orally bioavailable leucine-rich repeat kinase 2 (LRRK2) inhibitors. Bioorg Med Chem Lett 2016; 26:2631-5. [DOI: 10.1016/j.bmcl.2016.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/14/2023]
|
39
|
Taymans JM, Greggio E. LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson's Disease, Where Do We Stand? Curr Neuropharmacol 2016; 14:214-25. [PMID: 26517051 PMCID: PMC4857626 DOI: 10.2174/1570159x13666151030102847] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
One of the most promising therapeutic targets for potential disease-modifying treatment of Parkinson's disease (PD) is leucine-rich repeat kinase 2 (LRRK2). Specifically, targeting LRRK2's kinase function has generated a lot of interest from both industry and academia. This work has yielded several published studies showing the feasibility of developing potent, selective and brain permeable LRRK2 kinase inhibitors. The availability of these experimental drugs is contributing to filling in the gaps in our knowledge on the safety and efficacy of LRRK2 kinase inhibition. Recent studies of LRRK2 kinase inhibition in preclinical models point to potential undesired effects in peripheral tissues such as lung and kidney. Also, while strategies are now emerging to measure target engagement of LRRK2 inhibitors, there remains an important need to expand efficacy studies in preclinical models of progressive PD. Future work in the LRRK2 inhibition field must therefore be directed towards developing molecules and treatment regimens which demonstrate efficacy in mammalian models of disease in conditions where safety liabilities are reduced to a minimum.
Collapse
Affiliation(s)
- Jean-Marc Taymans
- Jean-Pierre Aubert Research Center, UMR-S1172,rue Polonovski - 1 place de Verdun, 59045 Lille, France.
| | - Elisa Greggio
- Department of Biology, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
40
|
Russo I, Berti G, Plotegher N, Bernardo G, Filograna R, Bubacco L, Greggio E. Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells. J Neuroinflammation 2015; 12:230. [PMID: 26646749 PMCID: PMC4673731 DOI: 10.1186/s12974-015-0449-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023] Open
Abstract
Background Over-activated microglia and chronic neuroinflammation contribute to dopaminergic neuron degeneration and progression of Parkinson’s disease (PD). Leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in autosomal dominantly inherited and sporadic PD cases, is highly expressed in immune cells, in which it regulates inflammation through a yet unclear mechanism. Methods Here, using pharmacological inhibition and cultured Lrrk2−/− primary microglia cells, we validated LRRK2 as a positive modulator of inflammation and we investigated its specific function in microglia cells. Results Inhibition or genetic deletion of LRRK2 causes reduction of interleukin-1β and cyclooxygenase-2 expression upon lipopolysaccharide-mediated inflammation. LRRK2 also takes part of the signaling trigged by α-synuclein fibrils, which culminates in induction of inflammatory mediators. At the molecular level, loss of LRRK2 or inhibition of its kinase activity results in increased phosphorylation of nuclear factor kappa-B (NF-κB) inhibitory subunit p50 at S337, a protein kinase A (PKA)-specific phosphorylation site, with consequent accumulation of p50 in the nucleus. Conclusions Taken together, these findings point to a role of LRRK2 in microglia activation and sustainment of neuroinflammation and in controlling of NF-κB p50 inhibitory signaling. Understanding the molecular pathways coordinated by LRRK2 in activated microglia cells after pathological stimuli such us fibrillar α-synuclein holds the potential to provide novel targets for PD therapeutics.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Giulia Berti
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.,Current address: Department of Cell and Developmental Biology, University College London, London, UK
| | - Greta Bernardo
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Roberta Filograna
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.,Current address: Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Luigi Bubacco
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|