1
|
Stopper D, de Carvalho LP, de Souza ML, Kponomaizoun CE, Winzeler EA, Held J, Hansen FK. Development of peptoid-based heteroaryl-decorated histone deacetylase (HDAC) inhibitors with dual-stage antiplasmodial activity. Eur J Med Chem 2024; 277:116782. [PMID: 39208744 DOI: 10.1016/j.ejmech.2024.116782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Dynamics of epigenetic modifications such as acetylation and deacetylation of histone proteins have been shown to be crucial for the life cycle development and survival of Plasmodium falciparum, the deadliest malaria parasite. In this study, we present a novel series of peptoid-based histone deacetylase (HDAC) inhibitors incorporating nitrogen-containing bicyclic heteroaryl residues as a new generation of antiplasmodial peptoid-based HDAC inhibitors. We synthesized the HDAC inhibitors by an efficient multicomponent protocol based on the Ugi four-component reaction. The subsequent screening of 16 compounds from our mini-library identified 6i as the most promising candidate, demonstrating potent activity against asexual blood-stage parasites (IC50Pf3D7 = 30 nM; IC50PfDd2 = 98 nM), low submicromolar activity against liver-stage parasites (IC50PbEEF = 0.25 μM), excellent microsomal stability (t1/2 > 60 min), and low cytotoxicity to HEK293 cells (IC50 = 136 μM).
Collapse
Affiliation(s)
- Daniel Stopper
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | | | - Mariana Laureano de Souza
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Cindy-Esther Kponomaizoun
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074, Tübingen, Germany; German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany.
| |
Collapse
|
2
|
Dawood WA, Fisher GM, Kinnen FJM, Anzenhofer C, Skinner-Adams T, Alves Avelar L, Asfaha Y, Kurz T, Andrews KT. Activity of alkoxyamide-based histone deacetylase inhibitors against Plasmodium falciparum malaria parasites. Exp Parasitol 2024; 258:108716. [PMID: 38340779 DOI: 10.1016/j.exppara.2024.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
There are more than 240 million cases of malaria and 600,000 associated deaths each year, most due to infection with Plasmodium falciparum parasites. While malaria treatment options exist, new drugs with novel modes of action are needed to address malaria parasite drug resistance. Protein lysine deacetylases (termed HDACs) are important epigenetic regulatory enzymes and prospective therapeutic targets for malaria. Here we report the antiplasmodial activity of a panel of 17 hydroxamate zinc binding group HDAC inhibitors with alkoxyamide linkers and different cap groups. The two most potent compounds (4a and 4b) were found to inhibit asexual P. falciparum growth with 50% inhibition concentrations (IC50's) of 0.07 μM and 0.09 μM, respectively, and demonstrated >200-fold more selectivity for P. falciparum parasites versus human neonatal foreskin fibroblasts (NFF). In situ hyperacetylation studies demonstrated that 4a, 4b and analogs caused P. falciparum histone H4 hyperacetylation, suggesting HDAC inhibition, with structure activity relationships providing information relevant to the design of new Plasmodium-specific aliphatic chain hydroxamate HDAC inhibitors.
Collapse
Affiliation(s)
- Wisam A Dawood
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Gillian M Fisher
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Franziska J M Kinnen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine Universität, Germany
| | - Christian Anzenhofer
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine Universität, Germany
| | - Tina Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Leandro Alves Avelar
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine Universität, Germany
| | - Yodita Asfaha
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine Universität, Germany
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine Universität, Germany.
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia.
| |
Collapse
|
3
|
Reyser T, Paloque L, Augereau JM, Di Stefano L, Benoit-Vical F. Epigenetic regulation as a therapeutic target in the malaria parasite Plasmodium falciparum. Malar J 2024; 23:44. [PMID: 38347549 PMCID: PMC10863139 DOI: 10.1186/s12936-024-04855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Over the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development and sexual commitment, but also in major biological processes like immune evasion, response to environmental changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes involved in these regulating pathways represent a reservoir of potential therapeutic targets. This review focuses on epigenetic regulatory processes and their effectors in the malaria parasite, as well as the inhibitors of epigenetic pathways and their potential as new anti-malarial drugs. Such types of drugs could be formidable tools that may contribute to malaria eradication in a context of widespread resistance to conventional anti-malarials.
Collapse
Affiliation(s)
- Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France.
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
4
|
Tavares MT, Krüger A, Yan SLR, Waitman KB, Gomes VM, de Oliveira DS, Paz F, Hilscher S, Schutkowski M, Sippl W, Ruiz C, Toledo MFZJ, Hassimotto NMA, Machado-Neto JA, Poso A, Cameron MD, Bannister TD, Palmisano G, Wrenger C, Kronenberger T, Parise-Filho R. 1,3-Diphenylureido hydroxamate as a promising scaffold for generation of potent antimalarial histone deacetylase inhibitors. Sci Rep 2023; 13:21006. [PMID: 38030668 PMCID: PMC10687260 DOI: 10.1038/s41598-023-47959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
We report a series of 1,3-diphenylureido hydroxamate HDAC inhibitors evaluated against sensitive and drug-resistant P. falciparum strains. Compounds 8a-d show potent antiplasmodial activity, indicating that a phenyl spacer allows improved potency relative to cinnamyl and di-hydrocinnamyl linkers. In vitro, mechanistic studies demonstrated target activity for PfHDAC1 on a recombinant level, which agreed with cell quantification of the acetylated histone levels. Compounds 6c, 7c, and 8c, identified as the most active in phenotypic assays and PfHDAC1 enzymatic inhibition. Compound 8c stands out as a remarkable inhibitor, displaying an impressive 85% inhibition of PfHDAC1, with an IC50 value of 0.74 µM in the phenotypic screening on Pf3D7 and 0.8 µM against multidrug-resistant PfDd2 parasites. Despite its potent inhibition of PfHDAC1, 8c remains the least active on human HDAC1, displaying remarkable selectivity. In silico studies suggest that the phenyl linker has an ideal length in the series for permitting effective interactions of the hydroxamate with PfHDAC1 and that this compound series could bind as well as in HsHDAC1. Taken together, these results highlight the potential of diphenylurea hydroxamates as a privileged scaffold for the generation of potent antimalarial HDAC inhibitors with improved selectivity over human HDACs.
Collapse
Affiliation(s)
- Maurício T Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Arne Krüger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Sun L Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Karoline B Waitman
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Vinícius M Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Daffiny Sumam de Oliveira
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Franciarli Paz
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - Sebastian Hilscher
- Faculty of Biosciences, Martin-Luther-University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Mike Schutkowski
- Faculty of Biosciences, Martin-Luther-University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Wolfgang Sippl
- Faculty of Biosciences, Martin-Luther-University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Claudia Ruiz
- Department of Molecular Medicine, The Herbert Wertheim Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Mônica F Z J Toledo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Neuza M A Hassimotto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João A Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antti Poso
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Michael D Cameron
- Department of Molecular Medicine, The Herbert Wertheim Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Thomas D Bannister
- Department of Molecular Medicine, The Herbert Wertheim Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil.
| | - Thales Kronenberger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany.
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil.
| |
Collapse
|
5
|
von Bredow L, Schäfer TM, Hogenkamp J, Tretbar M, Stopper D, Kraft FB, Schliehe-Diecks J, Schöler A, Borkhardt A, Bhatia S, Held J, Hansen FK. Synthesis, Antiplasmodial, and Antileukemia Activity of Dihydroartemisinin–HDAC Inhibitor Hybrids as Multitarget Drugs. Pharmaceuticals (Basel) 2022; 15:ph15030333. [PMID: 35337131 PMCID: PMC8952208 DOI: 10.3390/ph15030333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Artemisinin-based combination therapies (ACTs) are the gold standard for the treatment of malaria, but the efficacy is threatened by the development of parasite resistance. Histone deacetylase inhibitors (HDACis) are an emerging new class of potential antiplasmodial drugs. In this work, we present the design, synthesis, and biological evaluation of a mini library of dihydroartemisinin–HDACi hybrid molecules. The screening of the hybrid molecules for their activity against selected human HDAC isoforms, asexual blood stage P. falciparum parasites, and a panel of leukemia cell lines delivered important structure–activity relationships. All synthesized compounds demonstrated potent activity against the 3D7 and Dd2 line of P. falciparum with IC50 values in the single-digit nanomolar range. Furthermore, the hybrid (α)-7c displayed improved activity against artemisinin-resistant parasites compared to dihydroartemisinin. The screening of the compounds against five cell lines from different leukemia entities revealed that all hydroxamate-based hybrids (7a–e) and the ortho-aminoanilide 8 exceeded the antiproliferative activity of dihydroartemisinin in four out of five cell lines. Taken together, this series of hybrid molecules represents an excellent starting point toward the development of antimalarial and antileukemia drug leads.
Collapse
Affiliation(s)
- Lukas von Bredow
- Medical Faculty, Institute for Drug Discovery, Leipzig University, 04103 Leipzig, Germany; (L.v.B.); (M.T.); (A.S.)
| | - Thomas Martin Schäfer
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, 72074 Tübingen, Germany; (T.M.S.); (J.H.)
| | - Julian Hogenkamp
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (J.H.); (J.S.-D.); (A.B.); (S.B.)
| | - Maik Tretbar
- Medical Faculty, Institute for Drug Discovery, Leipzig University, 04103 Leipzig, Germany; (L.v.B.); (M.T.); (A.S.)
| | - Daniel Stopper
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (D.S.); (F.B.K.)
| | - Fabian B. Kraft
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (D.S.); (F.B.K.)
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (J.H.); (J.S.-D.); (A.B.); (S.B.)
| | - Andrea Schöler
- Medical Faculty, Institute for Drug Discovery, Leipzig University, 04103 Leipzig, Germany; (L.v.B.); (M.T.); (A.S.)
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (J.H.); (J.S.-D.); (A.B.); (S.B.)
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (J.H.); (J.S.-D.); (A.B.); (S.B.)
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, 72074 Tübingen, Germany; (T.M.S.); (J.H.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72074 Tübingen, Germany
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (D.S.); (F.B.K.)
- Correspondence:
| |
Collapse
|
6
|
Wang M, Tang T, Li R, Huang Z, Ling D, Zheng L, Ding Y, Liu T, Xu W, Zhu F, Min H, Boonhok R, Mao F, Zhu J, Li X, Jiang L, Li J. Drug Repurposing of Quisinostat to Discover Novel Plasmodium falciparum HDAC1 Inhibitors with Enhanced Triple-Stage Antimalarial Activity and Improved Safety. J Med Chem 2022; 65:4156-4181. [PMID: 35175762 DOI: 10.1021/acs.jmedchem.1c01993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our previous work found that the clinical histone deacetylase (HDAC) inhibitor quisinostat exhibited a significant antimalarial effect but with severe toxicity. In this work, 35 novel derivatives were designed and synthesized based on quisinostat as the lead compound, and their in vitro antimalarial activities and cytotoxicities were systematically evaluated. Among them, JX35 showed potent inhibition against both wild-type and multidrug-resistant parasite strains and displayed a significant in vivo killing effect against all life cycles of parasites, including the blood stage, liver stage, and gametocyte stage, indicating its potential for the simultaneous treatment, chemoprevention, and blockage of malaria transmission. Compared with quisinostat, JX35 exhibited stronger antimalarial efficacy, more adequate safety, and good pharmacokinetic properties. Additionally, mechanistic studies via molecular docking studies, induced PfHDAC1/2 knockdown assays, and PfHDAC1 enzyme inhibition assays jointly indicated that the antimalarial target of JX35 was PfHDAC1. In summary, we discovered the promising candidate PfHDAC1 inhibitor JX35, which showed stronger triple-stage antimalarial effects and lower toxicity than quisinostat.
Collapse
Affiliation(s)
- Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tongke Tang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Ruoxi Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dazheng Ling
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lulu Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Feng Zhu
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Hui Min
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Rachasak Boonhok
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.,College of Pharmacy and Chemistry, Dali University, 5 Xue Ren Road, Dali 671000, China.,Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
7
|
Hesping E, Chua MJ, Pflieger M, Qian Y, Dong L, Bachu P, Liu L, Kurz T, Fisher GM, Skinner-Adams TS, Reid RC, Fairlie DP, Andrews KT, Gorse ADJ. QSAR Classification Models for Prediction of Hydroxamate Histone Deacetylase Inhibitor Activity against Malaria Parasites. ACS Infect Dis 2022; 8:106-117. [PMID: 34985259 DOI: 10.1021/acsinfecdis.1c00355] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria, caused by Plasmodium parasites, results in >400,000 deaths annually. There is no effective vaccine, and new drugs with novel modes of action are needed because of increasing parasite resistance to current antimalarials. Histone deacetylases (HDACs) are epigenetic regulatory enzymes that catalyze post-translational protein deacetylation and are promising malaria drug targets. Here, we describe quantitative structure-activity relationship models to predict the antiplasmodial activity of hydroxamate-based HDAC inhibitors. The models incorporate P. falciparum in vitro activity data for 385 compounds containing a hydroxamic acid and were subject to internal and external validation. When used to screen 22 new hydroxamate-based HDAC inhibitors for antiplasmodial activity, model A7 (external accuracy 91%) identified three hits that were subsequently verified as having potent in vitro activity against P. falciparum parasites (IC50 = 6, 71, and 84 nM), with 8 to 51-fold selectivity for P. falciparum versus human cells.
Collapse
Affiliation(s)
- Eva Hesping
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Ming Jang Chua
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Marc Pflieger
- Institut für pharmazeutische und medizinische Chemie, Heinrich-Heine Universität, Dusseldorf 40225, Germany
| | - Yunan Qian
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Lilong Dong
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Prabhakar Bachu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Thomas Kurz
- Institut für pharmazeutische und medizinische Chemie, Heinrich-Heine Universität, Dusseldorf 40225, Germany
| | - Gillian M. Fisher
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Australia
| | | | - Robert C. Reid
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Katherine T. Andrews
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Alain-Dominique J.P. Gorse
- QCIF Bioinformatics, Institute for Molecular Bioscience, University of Queensland, Saint Lucia 4072, Australia
| |
Collapse
|
8
|
Ghazy E, Abdelsalam M, Robaa D, Pierce RJ, Sippl W. Histone Deacetylase (HDAC) Inhibitors for the Treatment of Schistosomiasis. Pharmaceuticals (Basel) 2022; 15:ph15010080. [PMID: 35056137 PMCID: PMC8779837 DOI: 10.3390/ph15010080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/18/2022] Open
Abstract
Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. Schistosomes display morphologically distinct stages during their life cycle and the transformations between stages are controlled by epigenetic mechanisms. The targeting of epigenetic actors might therefore represent the parasites’ Achilles’ heel. Specifically, histone deacetylases have been recently characterized as drug targets for the treatment of schistosomiasis. This review focuses on the recent development of inhibitors for schistosome histone deacetylases. In particular, advances in the development of inhibitors of Schistosoma mansoni histone deacetylase 8 have indicated that targeting this enzyme is a promising approach for the treatment of this infection.
Collapse
Affiliation(s)
- Ehab Ghazy
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Abdelsalam
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
| | - Raymond J. Pierce
- Centre d’Infection et d’Immunité de Lille, U1019—UMR9017—CIIL, Institute Pasteur de Lille, CNRS, Inserm, CHU Lille, Univ. Lille, F-59000 Lille, France;
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
- Correspondence:
| |
Collapse
|
9
|
Koumpoura CL, Robert A, Athanassopoulos CM, Baltas M. Antimalarial Inhibitors Targeting Epigenetics or Mitochondria in Plasmodium falciparum: Recent Survey upon Synthesis and Biological Evaluation of Potential Drugs against Malaria. Molecules 2021; 26:molecules26185711. [PMID: 34577183 PMCID: PMC8467436 DOI: 10.3390/molecules26185711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
Despite many efforts, malaria remains among the most problematic infectious diseases worldwide, mainly due to the development of drug resistance by P. falciparum. Over the past decade, new essential pathways have been emerged to fight against malaria. Among them, epigenetic processes and mitochondrial metabolism appear to be important targets. This review will focus on recent evolutions concerning worldwide efforts to conceive, synthesize and evaluate new drug candidates interfering selectively and efficiently with these two targets and pathways. The focus will be on compounds/scaffolds that possess biological/pharmacophoric properties on DNA methyltransferases and HDAC’s for epigenetics, and on cytochrome bc1 and dihydroorotate dehydrogenase for mitochondrion.
Collapse
Affiliation(s)
- Christina L. Koumpoura
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
| | - Anne Robert
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
| | | | - Michel Baltas
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
- Correspondence:
| |
Collapse
|
10
|
Chua MJ, Tng J, Hesping E, Fisher GM, Goodman CD, Skinner-Adams T, Do D, Lucke AJ, Reid RC, Fairlie DP, Andrews KT. Histone deacetylase inhibitor AR-42 and achiral analogues kill malaria parasites in vitro and in mice. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 17:118-127. [PMID: 34560571 PMCID: PMC8463797 DOI: 10.1016/j.ijpddr.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Malaria is caused by infection with Plasmodium parasites and results in significant health and economic impacts. Malaria eradication is hampered by parasite resistance to current drugs and the lack of a widely effective vaccine. Compounds that target epigenetic regulatory proteins, such as histone deacetylases (HDACs), may lead to new therapeutic agents with a different mechanism of action, thereby avoiding resistance mechanisms to current antimalarial drugs. The anticancer HDAC inhibitor AR-42, as its racemate (rac-AR-42), and 36 analogues were investigated for in vitro activity against P. falciparum. Rac-AR-42 and selected compounds were assessed for cytotoxicity against human cells, histone hyperacetylation, human HDAC1 inhibition and oral activity in a murine malaria model. Rac-AR-42 was tested for ex vivo asexual and in vitro exoerythrocytic stage activity against P. berghei murine malaria parasites. Rac-AR-42 and 13 achiral analogues were potent inhibitors of asexual intraerythrocytic stage P. falciparum 3D7 growth in vitro (IC50 5–50 nM), with four of these compounds having >50-fold selectivity for P. falciparum versus human cells (selectivity index 56–118). Rac-AR-42 induced in situ hyperacetylation of P. falciparum histone H4, consistent with PfHDAC(s) inhibition. Furthermore, rac-AR-42 potently inhibited P. berghei infected erythrocyte growth ex vivo (IC50 40 nM) and P. berghei exoerythrocytic forms in hepatocytes (IC50 1 nM). Oral administration of rac-AR-42 and two achiral analogues inhibited P. berghei growth in mice, with rac-AR-42 (50 mg/kg/day single dose for four days) curing all infections. These findings demonstrate curative properties for HDAC inhibitors in the oral treatment of experimental mouse malaria. HDAC inhibitors rac-AR-42 and 13 analogues inhibit P. falciparum growth in vitro. Rac-AR-42 inhibits P. berghei exoerythrocytic forms in hepatocytes (IC50 1 nM). Rac-AR-42 causes in situ hyperacetylation of P. falciparum histone H4. Rac-AR-42 cures P. berghei infected mice with oral dosing.
Collapse
Affiliation(s)
- Ming Jang Chua
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | - Jiahui Tng
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - Eva Hesping
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | - Gillian M Fisher
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | | | - Tina Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | - Darren Do
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - Andrew J Lucke
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - Robert C Reid
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia.
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia.
| |
Collapse
|
11
|
Li R, Ling D, Tang T, Huang Z, Wang M, Ding Y, Liu T, Wei H, Xu W, Mao F, Zhu J, Li X, Jiang L, Li J. Discovery of Novel Plasmodium falciparum HDAC1 Inhibitors with Dual-Stage Antimalarial Potency and Improved Safety Based on the Clinical Anticancer Drug Candidate Quisinostat. J Med Chem 2021; 64:2254-2271. [PMID: 33541085 DOI: 10.1021/acs.jmedchem.0c02104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previously, we identified the clinical anticancer drug candidate quisinostat as a novel and potent antimalarial lead compound. To further enhance the antimalarial effect and improve safety, 31 novel spirocyclic hydroxamic acid derivatives were synthesized based on the structure of quisinostat, and their antimalarial activities and cytotoxicity were evaluated. Among them, compound 11 displayed broad potency in vitro against several multiresistant malarial parasites, especially two artemisinin-resistant clinical isolates. Moreover, 11 could eliminate both liver and erythrocytic parasites in vivo, kill all morphological erythrocytic parasites with specific potency against schizonts, and show acceptable metabolic stability and pharmacokinetic properties. Western blot analysis, PfHDAC gene knockdown, and enzymatic inhibition experiments collectively confirmed that PfHDAC1 was the target of 11. In summary, 11 is a structurally novel PfHDAC1 inhibitor with the potential to prevent and cure malaria, overcome multidrug resistance, and provide a prospective prototype for antimalarial drug research.
Collapse
Affiliation(s)
- Ruoxi Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dazheng Ling
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tongke Tang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Hanwen Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.,College of Pharmacy and Chemistry, Dali University, 5 Xue Ren Road, Dali 671000, China.,Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
12
|
Mackwitz MKW, Hesping E, Eribez K, Schöler A, Antonova-Koch Y, Held J, Winzeler EA, Andrews KT, Hansen FK. Investigation of the in vitro and in vivo efficacy of peptoid-based HDAC inhibitors with dual-stage antiplasmodial activity. Eur J Med Chem 2020; 211:113065. [PMID: 33360801 DOI: 10.1016/j.ejmech.2020.113065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
Histone deacetylases (HDACs) have been identified as emerging antiplasmodial drug targets. In this work, we report on the synthesis, structure-activity relationships, metabolic stability and in vivo efficacy of new peptoid-based HDAC inhibitors with dual-stage antiplasmodial activity. A mini library of HDAC inhibitors was synthesized using a one-pot, multi-component protocol or submonomer pathways. The screening of the target compounds for their activity against asexual blood stage parasites, human cell cytotoxicity, liver stage parasites, and selected human HDAC isoforms provided important structure-activity relationship data. The most promising HDAC inhibitor from this series, compound 3n, demonstrated potent activity against drug-sensitive and drug-resistant asexual stage P. falciparum parasites and was selective for the parasite versus human cells (Pf3D7 IC50 0.016 μM; SIHepG2/Pf3D7 573; PfDd2 IC50 0.002 μM; SIHepG2/PfDd2 4580) combined with activity against P. berghei exoerythrocytic liver stages (PbEEF IC50 0.48 μM). While compound 3n displayed high stability in human (Clint 5 μL/min/mg) and mouse (Clint 6 μL/min/mg) liver microsomes, only modest oral in vivo efficacy was observed in P. berghei infected mice. Together these data provide a foundation for future work to improve the properties of these dual-stage inhibitors as drug leads for malaria.
Collapse
Affiliation(s)
- Marcel K W Mackwitz
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Eva Hesping
- Griffith Institute for Drug Discovery, 46 Don Young Road, Nathan Campus, Griffith University, QLD, 4111, Australia
| | - Korina Eribez
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, United States
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Yevgeniya Antonova-Koch
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, United States
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, United States
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, 46 Don Young Road, Nathan Campus, Griffith University, QLD, 4111, Australia.
| | - Finn K Hansen
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany; Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
13
|
An ELISA method to assess HDAC inhibitor-induced alterations to P. falciparum histone lysine acetylation. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:249-256. [PMID: 33279862 PMCID: PMC7724001 DOI: 10.1016/j.ijpddr.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
The prevention and treatment of malaria requires a multi-pronged approach, including the development of drugs that have novel modes of action. Histone deacetylases (HDACs), enzymes involved in post-translational protein modification, are potential new drug targets for malaria. However, the lack of recombinant P. falciparum HDACs and suitable activity assays, has made the investigation of compounds designed to target these enzymes challenging. Current approaches are indirect and include assessing total deacetylase activity and protein hyperacetylation via Western blot. These approaches either do not allow differential compound effects to be determined or suffer from low throughput. Here we investigated dot blot and ELISA methods as new, higher throughput assays to detect histone lysine acetylation changes in P. falciparum parasites. As the ELISA method was found to be superior to the dot blot assay using the control HDAC inhibitor vorinostat, it was used to evaluate the histone H3 and H4 lysine acetylation changes mediated by a panel of six HDAC inhibitors that were shown to inhibit P. falciparum deacetylase activity. Vorinostat, panobinostat, trichostatin A, romidepsin and entinostat all caused an ~3-fold increase in histone H4 acetylation using a tetra-acetyl lysine antibody. Tubastatin A, the only human HDAC6-specific inhibitor tested, also caused H4 hyperacetylation, but to a lesser extent than the other compounds. Further investigation revealed that all compounds, except tubastatin A, caused hyperacetylation of the individual N-terminal H4 lysines 5, 8, 12 and 16. These data indicate that tubastatin A impacts P. falciparum H4 acetylation differently to the other HDAC inhibitors tested. In contrast, all compounds caused hyperacetylation of histone H3. In summary, the ELISA developed in this study provides a higher throughput approach to assessing differential effects of antiplasmodial compounds on histone acetylation levels and is therefore a useful new tool in the investigation of HDAC inhibitors for malaria. P. falciparum histone lysine acetylation was compared using dot blot and ELISA. ELISA was more reproducible than dot blot in acetylation assays. ELISA was used to assess acetylation changes induced by anti-cancer HDAC inhibitors. Tubastatin A showed a different histone H4 acetylation profile to other compounds. This new method will facilitate the study of HDAC inhibitors for malaria.
Collapse
|
14
|
Potluri V, Shandil RK, Gavara R, Sambasivam G, Campo B, Wittlin S, Narayanan S. Discovery of FNDR-20123, a histone deacetylase inhibitor for the treatment of Plasmodium falciparum malaria. Malar J 2020; 19:365. [PMID: 33046062 PMCID: PMC7549214 DOI: 10.1186/s12936-020-03421-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background Emergence of anti-malarial drug resistance and perpetual increase in malaria incidence necessitates the development of novel anti-malarials. Histone deacetylases (HDAC) has been shown to be a promising target for malaria, despite this, there are no HDAC inhibitors in clinical trials for malaria treatment. This can be attributed to the poor pharmacokinetics, bioavailability and selectivity of the HDAC inhibitors. Methods A collection of HDAC inhibitors were screened for anti-malarial activity, and the best candidate was profiled in parasite-killing kinetics, growth inhibition of sensitive and multi-drug resistant (MDR) strains and against gametocytes. Absorption, distribution, metabolism and excretion pharmacokinetics (ADME-PK) parameters of FNDR-20123 were determined, and in vivo efficacy was studied in a mouse model for Plasmodium falciparum infection. Results A compound library of HDAC inhibitors (180 in number) was screened for anti-malarial activity, of which FNDR-20123 was the most potent candidate. The compound had been shown to inhibit Plasmodium HDAC with IC50 of 31 nM and human HDAC with IC50 of 3 nM. The IC50 obtained for P. falciparum in asexual blood-stage assay was 42 nM. When compared to atovaquone and pyrimethamine, the killing profiles of FNDR-20123 were better than atovaquone and comparable to pyrimethamine. The IC50 values for the growth inhibition of sensitive and MDR strains were similar, indicating that there is no cross-resistance and a low risk of resistance development. The selected compound was also active against gametocytes, indicating a potential for transmission control: IC50 values being 190 nM for male and > 5 µM for female gametocytes. FNDR-20123 is a stable candidate in human/mouse/rat liver microsomes (> 75% remaining post 2-h incubation), exhibits low plasma protein binding (57% in humans) with no human Ether-à-go–go-Related Gene (hERG) liability (> 100 µM), and does not inhibit any of the cytochrome P450 (CYP) isoforms tested (IC50 > 25 µM). It also shows negligible cytotoxicity to HepG-2 and THP-1 cell lines. The oral pharmacokinetics in rats at 100 mg/kg body weight shows good exposures (Cmax = 1.1 µM) and half-life (T1/2 = 5.5 h). Furthermore, a 14-day toxicokinetic study at 100 mg/kg daily dose did not show any abnormality in body weight or gross organ pathology. FNDR-20123 is also able to reduce parasitaemia significantly in a mouse model for P. falciparum infection when dosed orally and subcutaneously. Conclusion FNDR-20123 may be a suitable candidate for the treatment of malaria, which can be further developed.
Collapse
Affiliation(s)
- Vijay Potluri
- Foundation for Neglected Disease Research, Bengaluru, India
| | | | - R Gavara
- Anthem Biosciences Private Limited, Bengaluru, India
| | | | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | |
Collapse
|
15
|
Ponzi S, Bresciani A, Kaiser M, Nardi V, Nizi E, Ontoria JM, Pace P, Paonessa G, Summa V, Harper S. Discovery of 4-((1-(1H-imidazol-2-yl)alkoxy)methyl)pyridines as a new class of Trypanosoma cruzi growth inhibitors. Bioorg Med Chem Lett 2020; 30:127052. [PMID: 32113841 DOI: 10.1016/j.bmcl.2020.127052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/24/2022]
Abstract
The identification of a new series of growth inhibitors of Trypanosoma cruzi, the causative agent of Chagas' disease, is described. In vitro screening of a subset of compounds from our in-house compound collection against the parasite led to the identification of hit compound 1 with low micromolar inhibition of T. cruzi growth. SAR exploration on the hit compound led to the identification of compounds that show nanomolar parasite growth inhibition (T. cruzi EC50 ≤ 100 nM) and no cytotoxicity in human cells (HeLa CC50 > 50 μM). Further investigation identified CYP51 inhibition (compound 11 CYP51 IC50 52 nM) as a possible mechanism of action of this new class of anti-parasitic agents.
Collapse
Affiliation(s)
- Simona Ponzi
- Departments of Chemistry and Biology, IRBM Spa, Via Pontina km 30, 600, 00071 Pomezia, Rome, Italy.
| | - Alberto Bresciani
- Departments of Chemistry and Biology, IRBM Spa, Via Pontina km 30, 600, 00071 Pomezia, Rome, Italy
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Valentina Nardi
- Departments of Chemistry and Biology, IRBM Spa, Via Pontina km 30, 600, 00071 Pomezia, Rome, Italy
| | - Emanuela Nizi
- Departments of Chemistry and Biology, IRBM Spa, Via Pontina km 30, 600, 00071 Pomezia, Rome, Italy
| | - Jesus M Ontoria
- Departments of Chemistry and Biology, IRBM Spa, Via Pontina km 30, 600, 00071 Pomezia, Rome, Italy
| | - Paola Pace
- Departments of Chemistry and Biology, IRBM Spa, Via Pontina km 30, 600, 00071 Pomezia, Rome, Italy
| | - Giacomo Paonessa
- Departments of Chemistry and Biology, IRBM Spa, Via Pontina km 30, 600, 00071 Pomezia, Rome, Italy
| | - Vincenzo Summa
- Departments of Chemistry and Biology, IRBM Spa, Via Pontina km 30, 600, 00071 Pomezia, Rome, Italy
| | - Steven Harper
- Departments of Chemistry and Biology, IRBM Spa, Via Pontina km 30, 600, 00071 Pomezia, Rome, Italy
| |
Collapse
|
16
|
Coetzee N, von Grüning H, Opperman D, van der Watt M, Reader J, Birkholtz LM. Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Sci Rep 2020; 10:2355. [PMID: 32047203 PMCID: PMC7012883 DOI: 10.1038/s41598-020-59298-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
The epigenome of the malaria parasite, Plasmodium falciparum, is associated with regulation of various essential processes in the parasite including control of proliferation during asexual development as well as control of sexual differentiation. The unusual nature of the epigenome has prompted investigations into the potential to target epigenetic modulators with novel chemotypes. Here, we explored the diversity within a library of 95 compounds, active against various epigenetic modifiers in cancerous cells, for activity against multiple stages of P. falciparum development. We show that P. falciparum is differentially susceptible to epigenetic perturbation during both asexual and sexual development, with early stage gametocytes particularly sensitive to epi-drugs targeting both histone and non-histone epigenetic modifiers. Moreover, 5 compounds targeting histone acetylation and methylation show potent multistage activity against asexual parasites, early and late stage gametocytes, with transmission-blocking potential. Overall, these results warrant further examination of the potential antimalarial properties of these hit compounds.
Collapse
Affiliation(s)
- Nanika Coetzee
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Daniel Opperman
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Mariette van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
17
|
Bresciani A, Ontoria JM, Biancofiore I, Cellucci A, Ciammaichella A, Di Marco A, Ferrigno F, Francone A, Malancona S, Monteagudo E, Nizi E, Pace P, Ponzi S, Rossetti I, Veneziano M, Summa V, Harper S. Improved Selective Class I HDAC and Novel Selective HDAC3 Inhibitors: Beyond Hydroxamic Acids and Benzamides. ACS Med Chem Lett 2019; 10:481-486. [PMID: 30996783 DOI: 10.1021/acsmedchemlett.8b00517] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
The application of class I HDAC inhibitors as cancer therapies is well established, but more recently their development for nononcological indications has increased. We report here on the generation of improved class I selective human HDAC inhibitors based on an ethylketone zinc binding group (ZBG) in place of the hydroxamic acid that features the majority of HDAC inhibitors. We also describe a novel set of HDAC3 isoform selective inhibitors that show stronger potency and selectivity than the most commonly used HDAC3 selective tool compound RGFP966. These compounds are again based on an alternative ZBG with respect to the ortho-anilide that is featured in HDAC3 selective compounds reported to date.
Collapse
Affiliation(s)
- Alberto Bresciani
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Jesus M. Ontoria
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | | | | | | | - Annalise Di Marco
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Federica Ferrigno
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | | | - Savina Malancona
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Edith Monteagudo
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Emanuela Nizi
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Paola Pace
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Simona Ponzi
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Ilaria Rossetti
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Maria Veneziano
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Vincenzo Summa
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Steven Harper
- IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| |
Collapse
|
18
|
Montes-González I, Alsina-Sánchez AM, Aponte-Santini JC, Delgado-Rivera SM, Durán-Camacho GL. Perspectives of ferrocenyl chalcones: synthetic scaffolds toward biomedical and materials science applications. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Ferrocene and its derivatives constitute versatile and interesting scaffolds for the global chemical enterprise due to its multiple applications that range from biomedical to materials science. Ferrocenyl derivatives are the leading compounds in our research for the syntheses and characterization as well as their potential biological applications. Among them, our recent focus has been in ferrocenyl chalcones as a framework for further derivatization. The proposed modifications consist on the incorporation of heterocyclic moieties into the ferrocenyl chalcone core. This can be afforded either by introducing a heterocyclic aromatic moiety as a substituent or functionalizing the α-β unsaturated system. Another modification explored is the formation of ammonium or pyridinium salts to increase water solubility. Studied ferrocenyl chalcones exhibit remarkable stability, physical, and electrochemical properties. These factors have led the approaches for them to be precursors of biologically active compounds (cancer, bacteria, malaria, and neurobiological diseases). Moreover, other potential applications include molecular materials, redox-sensors, and polymers. Our goal in this mini review is to highlight the chemistry of ferrocene derivatives with particular prominence to those ferrocenyl chalcones studied in our laboratory and their applications. Moreover, we are providing a background on ferrocene, chalcones, and ferrocenyl chalcones, emphasizing the methodologies with preeminent yields.
Collapse
Affiliation(s)
- Ingrid Montes-González
- Department of Chemistry , University of Puerto Rico-Río Piedras Campus , San Juan , Puerto Rico
| | - Ambar M. Alsina-Sánchez
- Department of Chemistry , University of Puerto Rico-Río Piedras Campus , San Juan , Puerto Rico
| | - Juan C. Aponte-Santini
- Department of Chemistry , University of Puerto Rico-Río Piedras Campus , San Juan , Puerto Rico
| | - Sara M. Delgado-Rivera
- Department of Chemistry , University of Puerto Rico-Río Piedras Campus , San Juan , Puerto Rico
| | | |
Collapse
|
19
|
Guidi A, Saccoccia F, Gennari N, Gimmelli R, Nizi E, Lalli C, Paonessa G, Papoff G, Bresciani A, Ruberti G. Identification of novel multi-stage histone deacetylase (HDAC) inhibitors that impair Schistosoma mansoni viability and egg production. Parasit Vectors 2018; 11:668. [PMID: 30587243 PMCID: PMC6307185 DOI: 10.1186/s13071-018-3268-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Novel anti-schistosomal multi-stage drugs are needed because only a single drug, praziquantel, is available for the treatment of schistosomiasis and is poorly effective on larval and juvenile stages of the parasite. Schistosomes have a complex life-cycle and multiple developmental stages in the intermediate and definitive hosts. Acetylation and deacetylation of histones play pivotal roles in chromatin structure and in the regulation of transcription in eukaryotic cells. Histone deacetylase (HDAC) inhibitors modulate acetylation of several other proteins localized both in the nucleus and in the cytoplasm and therefore impact on many signaling networks and biological processes. Histone post-translational modifications may provide parasites with the ability to readily adapt to changes in gene expression required for their development and adaptation to the host environment. The aim of the present study was to screen a HDAC class I inhibitor library in order to identify and characterize novel multi-stage hit compounds. Methods We used a high-throughput assay based on the quantitation of ATP in the Schistosoma mansoni larval stage (schistosomula) and screened a library of 1500 class I HDAC inhibitors. Subsequently, a few hits were selected and further characterized by viability assays and phenotypic analyses on adult parasites by carmine red and confocal microscopy. Results Three compounds (SmI-124, SmI-148 and SmI-558) that had an effect on the viability of both the schistosomula larval stage and the adult worm were identified. Treatment with sub-lethal doses of SmI-148 and SmI-558 also decreased egg production. Moreover, treatment of adult parasites with SmI-148, and to a lesser extent Sm-124, was associated with histone hyperacetylation. Finally, SmI-148 and SmI-558 treatments of worm pairs caused a phenotype characterized by defects in the parasite reproductive system, with peculiar features in the ovary. In addition, SmI-558 induced oocyte- and vitelline cell-engulfment and signs of degeneration in the uterus and/or oviduct. Conclusions We report the screening of a small HDAC inhibitor library and the identification of three novel compounds which impair viability of the S. mansoni larval stage and adult pairs. These compounds are useful tools for studying deacetylase activity during parasite development and for interfering with egg production. Characterization of their specificity for selected S. mansoni versus human HDAC could provide insights that can be used in optimization and compound design.
Collapse
Affiliation(s)
- Alessandra Guidi
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Fulvio Saccoccia
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Nadia Gennari
- Biology Department, IRBM Science Park SpA, Pomezia, Italy
| | - Roberto Gimmelli
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | - Emanuela Nizi
- Chemistry Department, IRBM Science Park SpA, Pomezia, Italy
| | - Cristiana Lalli
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | | | - Giuliana Papoff
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy
| | | | - Giovina Ruberti
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso, Monterotondo (Roma), Italy.
| |
Collapse
|
20
|
Discovery of 2-(1H-imidazo-2-yl)piperazines as a new class of potent and non-cytotoxic inhibitors of Trypanosoma brucei growth in vitro. Bioorg Med Chem Lett 2018; 28:3689-3692. [PMID: 30482621 DOI: 10.1016/j.bmcl.2018.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
The identification of a new series of growth inhibitors of Trypanosoma brucei rhodesiense, causative agent of Human African Trypanosomiasis (HAT), is described. A selection of compounds from our in-house compound collection was screened in vitro against the parasite leading to the identification of compounds with nanomolar inhibition of T. brucei growth. Preliminary SAR on the hit compound led to the identification of compound 34 that shows low nanomolar parasite growth inhibition (T. brucei EC50 5 nM), is not cytotoxic (HeLa CC50 > 25,000 nM) and is selective over other parasites, such as Trypanosoma cruzi and Plasmodium falciparum (T. cruzi EC50 8120 nM, P. falciparum EC50 3624 nM).
Collapse
|
21
|
Stoddard SV, May XA, Rivas F, Dodson K, Vijayan S, Adhika S, Parker K, Watkins DL. Design of Potent Panobinostat Histone Deacetylase Inhibitor Derivatives: Molecular Considerations for Enhanced Isozyme Selectivity between HDAC2 and HDAC8. Mol Inform 2018; 38:e1800080. [PMID: 30369061 DOI: 10.1002/minf.201800080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/29/2018] [Indexed: 11/07/2022]
Abstract
Histone Deacetylases (HDACs) are an important family of 18 isozymes, which are being pursued as drug targets for many types of disorders. HDAC2 and HDAC8 are two of the isozymes, which have been identified as drug targets for the design of anti-cancer, neurodegenerative, immunological, and anti-parasitic agents. Design of potent HDAC2 and HDAC8 inhibitors will be useful for the therapeutic advances in many disorders. This work was undertaken to develop potent HDAC2 and HDAC8 inhibitors. A docking study was performed comparing panobinostat derivatives in both HDAC2 and HDAC8. Six of our derivatives showed stronger binding to HDAC2 than panobinostat, and two of our derivatives showed stronger binding to HDAC8 than panobinostat. We evaluated the molecular features, which improved potency of our inhibitors over panobinostat and also identified another molecular consideration, which could be used to enhance histone deacetylase inhibitor (HDACi) selectivity towards either the HDAC2 or HDAC8 isozymes. The results of this work can be used to assist future design of more potent and selective HDACi for HDAC2 and HDAC8.
Collapse
Affiliation(s)
- Shana V Stoddard
- Rhodes College, Department of Chemistry, 2000 North Parkway, Memphis, TN, 38112, USA
| | - Xavier A May
- Rhodes College, Department of Chemistry, 2000 North Parkway, Memphis, TN, 38112, USA
| | - Fatima Rivas
- St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Kyra Dodson
- University of Mississippi, Department of Chemistry and Biochemistry P.O. Box 1848, Oxford, MS, 38677, USA
| | - Sajith Vijayan
- University of Mississippi, Department of Chemistry and Biochemistry P.O. Box 1848, Oxford, MS, 38677, USA
| | - Swetha Adhika
- University of Mississippi, Department of Chemistry and Biochemistry P.O. Box 1848, Oxford, MS, 38677, USA
| | - Kordarius Parker
- University of Mississippi, Department of Chemistry and Biochemistry P.O. Box 1848, Oxford, MS, 38677, USA
| | - Davita L Watkins
- University of Mississippi, Department of Chemistry and Biochemistry P.O. Box 1848, Oxford, MS, 38677, USA
| |
Collapse
|
22
|
Diedrich D, Stenzel K, Hesping E, Antonova-Koch Y, Gebru T, Duffy S, Fisher G, Schöler A, Meister S, Kurz T, Avery VM, Winzeler EA, Held J, Andrews KT, Hansen FK. One-pot, multi-component synthesis and structure-activity relationships of peptoid-based histone deacetylase (HDAC) inhibitors targeting malaria parasites. Eur J Med Chem 2018; 158:801-813. [PMID: 30245402 PMCID: PMC6195125 DOI: 10.1016/j.ejmech.2018.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022]
Abstract
Malaria drug discovery has shifted from a focus on targeting asexual blood stage parasites, to the development of drugs that can also target exo-erythrocytic forms and/or gametocytes in order to prevent malaria and/or parasite transmission. In this work, we aimed to develop parasite-selective histone deacetylase inhibitors (HDACi) with activity against the disease-causing asexual blood stages of Plasmodium malaria parasites as well as with causal prophylactic and/or transmission blocking properties. An optimized one-pot, multi-component protocol via a sequential Ugi four-component reaction and hydroxylaminolysis was used for the preparation of a panel of peptoid-based HDACi. Several compounds displayed potent activity against drug-sensitive and drug-resistant P. falciparum asexual blood stages, high parasite-selectivity and submicromolar activity against exo-erythrocytic forms of P. berghei. Our optimization study resulted in the discovery of the hit compound 1u which combines high activity against asexual blood stage parasites (Pf 3D7 IC50: 4 nM; Pf Dd2 IC50: 1 nM) and P. berghei exo-erythrocytic forms (Pb EEF IC50: 25 nM) with promising parasite-specific activity (SIPf3D7/HepG2: 2496, SIPfDd2/HepG2: 9990, and SIPbEEF/HepG2: 400).
Collapse
Affiliation(s)
- Daniela Diedrich
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Katharina Stenzel
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany; Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Eva Hesping
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Yevgeniya Antonova-Koch
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Tamirat Gebru
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Sandra Duffy
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Gillian Fisher
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Andrea Schöler
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Stephan Meister
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Vicky M Avery
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia.
| | - Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany; Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Medical Faculty, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany.
| |
Collapse
|
23
|
Kumar A, Dhar SK, Subbarao N. In silico identification of inhibitors against Plasmodium falciparum histone deacetylase 1 (PfHDAC-1). J Mol Model 2018; 24:232. [PMID: 30109440 DOI: 10.1007/s00894-018-3761-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
In erythrocytes, actively multiplying Plasmodium falciparum parasites exhibit a unique signature of virulence associated histone modifications, thereby epigenetically regulating the expression of the majority of genes. Histone acetylation is one such modification, effectuated and maintained by the dynamic interplay of two functionally antagonist enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). Their inhibition leads to hypo/hyperacetylation and is known to be deleterious for P. falciparum, and hence they have become attractive molecular targets to design novel antimalarials. Many compounds, including four Food and Drug Administration (FDA) approved drugs, have been developed so far to inhibit HDAC activity but are not suitable to treat malaria as they lack selectivity and cause cytotoxicity in mammalian cells. In this study, we used comparative modeling and molecular docking to establish different binding modes of nonselective and selective compounds in the PfHDAC-1 (a class I HDAC protein in P. falciparum) active site and identified the involvement of active site nonidentical residues in binding of selective compounds. Further, we have applied virtual screening with precise selection criteria and molecular dynamics simulation to identify novel potential inhibitors against PfHDAC-1. We report 20 compounds (10 from ChEMBL and 10 from analogues compound library) bearing seven scaffolds having better affinity toward PfHDAC-1. Sixteen of these compounds are known antimalarials with 14 having activity in the nanomolar range against various drug resistant and sensitive strains of P. falciparum. The cytotoxicity of these compounds against various human cell lines are reported at relatively higher concentration and hence can be used as potential PfHDAC-1 inhibitors in P. falciparum. These findings indeed show great potential for using the above molecules as prospective antimalarials.
Collapse
Affiliation(s)
- Amarjeet Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
24
|
Mohammadi A, Sharifi A, Pourpaknia R, Mohammadian S, Sahebkar A. Manipulating macrophage polarization and function using classical HDAC inhibitors: Implications for autoimmunity and inflammation. Crit Rev Oncol Hematol 2018; 128:1-18. [DOI: 10.1016/j.critrevonc.2018.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
|
25
|
Nizi E, Sferrazza A, Fabbrini D, Nardi V, Andreini M, Graziani R, Gennari N, Bresciani A, Paonessa G, Harper S. Peptidomimetic nitrile inhibitors of malarial protease falcipain-2 with high selectivity against human cathepsins. Bioorg Med Chem Lett 2018; 28:1540-1544. [PMID: 29615344 DOI: 10.1016/j.bmcl.2018.03.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
Falcipain-2 (FP2) is an essential enzyme in the lifecycle of malaria parasites such as Plasmodium falciparum, and its inhibition is viewed as an attractive mechanism of action for new anti-malarial agents. Selective inhibition of FP2 with respect to a family of human cysteine proteases (that include cathepsins B, K, L and S) is likely to be required for the development of agents targeting FP2. Here we describe a series of P2-modified aminonitrile based inhibitors of FP2 that provide a clear strategy toward addressing selectivity for the P. falciparum and show that it can provide potent FP2 inhibitors with strong selectivity against all four of these human cathepsin isoforms.
Collapse
Affiliation(s)
- Emanuela Nizi
- Department of Chemistry, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy.
| | - Alessio Sferrazza
- Department of Chemistry, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Danilo Fabbrini
- Department of Chemistry, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Valentina Nardi
- Department of Chemistry, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Matteo Andreini
- Department of Chemistry, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Rita Graziani
- Department of Biology, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Nadia Gennari
- Department of Biology, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Alberto Bresciani
- Department of Biology, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Giacomo Paonessa
- Department of Biology, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| | - Steven Harper
- Department of Chemistry, IRBM Science Park, Via Pontina km 30, 600, Pomezia 00071, Rome, Italy
| |
Collapse
|
26
|
Stenzel K, Chua MJ, Duffy S, Antonova-Koch Y, Meister S, Hamacher A, Kassack MU, Winzeler E, Avery VM, Kurz T, Andrews KT, Hansen FK. Design and Synthesis of Terephthalic Acid-Based Histone Deacetylase Inhibitors with Dual-Stage Anti-Plasmodium Activity. ChemMedChem 2017; 12:1627-1636. [PMID: 28812327 DOI: 10.1002/cmdc.201700360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/13/2017] [Indexed: 11/11/2022]
Abstract
In this work we aimed to develop parasite-selective histone deacetylase inhibitors (HDAC) inhibitors with activity against the disease-causing asexual blood stages of Plasmodium as well as causal prophylactic and/or transmission blocking properties. We report the design, synthesis, and biological testing of a series of 13 terephthalic acid-based HDAC inhibitors. All compounds showed low cytotoxicity against human embryonic kidney (HEK293) cells (IC50 : 8->51 μm), with 11 also having sub-micromolar in vitro activity against drug-sensitive (3D7) and multidrug-resistant (Dd2) asexual blood-stage P. falciparum parasites (IC50 ≈0.1-0.5 μm). A subset of compounds were examined for activity against early- and late-stage P. falciparum gametocytes and P. berghei exo-erythrocytic-stage parasites. While only moderate activity was observed against gametocytes (IC50 >2 μm), the most active compound (N1 -((3,5-dimethylbenzyl)oxy)-N4 -hydroxyterephthalamide, 1 f) showed sub-micromolar activity against P. berghei exo-erythrocytic stages (IC50 0.18 μm) and >270-fold better activity for exo-erythrocytic forms than for HepG2 cells. This, together with asexual-stage in vitro potency (IC50 ≈0.1 μm) and selectivity of this compound versus human cells (SI>450), suggests that 1 f may be a valuable starting point for the development of novel antimalarial drug leads with low host cell toxicity and multi-stage anti-plasmodial activity.
Collapse
Affiliation(s)
- Katharina Stenzel
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Ming Jang Chua
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Sandra Duffy
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Yevgeniya Antonova-Koch
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, USA
| | - Stephan Meister
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, USA
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Elizabeth Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA, 92093, USA
| | - Vicky M Avery
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, QLD, 4111, Australia
| | - Finn K Hansen
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| |
Collapse
|
27
|
Lu D, Yan J, Wang L, Liu H, Zeng L, Zhang M, Duan W, Ji Y, Cao J, Geng M, Shen A, Hu Y. Design, Synthesis, and Biological Evaluation of the First c-Met/HDAC Inhibitors Based on Pyridazinone Derivatives. ACS Med Chem Lett 2017; 8:830-834. [PMID: 28835797 DOI: 10.1021/acsmedchemlett.7b00172] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/18/2017] [Indexed: 12/29/2022] Open
Abstract
Simultaneous blockade of more than one pathway is considered to be a promising approach to overcome the low efficacy and acquired resistance of cancer therapies. Thus, a novel series of c-Met/HDAC bifunctional inhibitors was designed and synthesized by merging pharmacophores of c-Met and HDAC inhibitors. The most potent compound, 2m, inhibited c-Met kinase and HDAC1, with IC50 values of 0.71 and 38 nM, respectively, and showed efficient antiproliferative activities against both EBC-1 and HCT-116 cells with greater potency than the reference drug Chidamide. Western blot analysis revealed that compound 2m inhibited phosphorylation of c-Met and c-Met downstream signaling proteins and increased expression of Ac-H3 and p21 in EBC-1 cells in a dose-dependent manner. Our study presents novel compounds for the further exploration of dual c-Met/HDAC pathway inhibition achieved with a single molecule.
Collapse
Affiliation(s)
- Dong Lu
- State Key Laboratory
of Drug Research, Department of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Juan Yan
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lang Wang
- State Key Laboratory
of Drug Research, Department of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hongchun Liu
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Limin Zeng
- State Key Laboratory
of Drug Research, Department of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Minmin Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wenwen Duan
- State Key Laboratory
of Drug Research, Department of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yinchun Ji
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jingchen Cao
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Aijun Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory
of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Youhong Hu
- State Key Laboratory
of Drug Research, Department of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
28
|
Alves Avelar LA, Held J, Engel JA, Sureechatchaiyan P, Hansen FK, Hamacher A, Kassack MU, Mordmüller B, Andrews KT, Kurz T. Design and Synthesis of Novel Anti-Plasmodial Histone Deacetylase Inhibitors Containing an Alkoxyamide Connecting Unit. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201600347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Leandro A. Alves Avelar
- Institut für Pharmazeutische und Medizinische Chemie; Heinrich-Heine-Universität Düsseldorf; Düsseldorf Germany
| | - Jana Held
- Institut für Tropenmedizin; Eberhard Karls Universität Tübingen; Tübingen Germany
| | - Jessica A. Engel
- Griffith Institute for Drug Discovery; Griffith University; Nathan Queensland Australia
| | - Parichat Sureechatchaiyan
- Institut für Pharmazeutische und Medizinische Chemie; Heinrich-Heine-Universität Düsseldorf; Düsseldorf Germany
| | - Finn K. Hansen
- Institut für Pharmazeutische und Medizinische Chemie; Heinrich-Heine-Universität Düsseldorf; Düsseldorf Germany
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy; Leipzig University; Leipzig Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie; Heinrich-Heine-Universität Düsseldorf; Düsseldorf Germany
| | - Matthias U. Kassack
- Institut für Pharmazeutische und Medizinische Chemie; Heinrich-Heine-Universität Düsseldorf; Düsseldorf Germany
| | - Benjamin Mordmüller
- Institut für Tropenmedizin; Eberhard Karls Universität Tübingen; Tübingen Germany
| | - Katherine T. Andrews
- Griffith Institute for Drug Discovery; Griffith University; Nathan Queensland Australia
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie; Heinrich-Heine-Universität Düsseldorf; Düsseldorf Germany
| |
Collapse
|
29
|
Hailu GS, Robaa D, Forgione M, Sippl W, Rotili D, Mai A. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives. J Med Chem 2017; 60:4780-4804. [DOI: 10.1021/acs.jmedchem.6b01595] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gebremedhin S. Hailu
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Mariantonietta Forgione
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Center
for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Dante Rotili
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
| | - Antonello Mai
- Dipartimento
di Chimica e Tecnologie del Farmaco “Sapienza” Università di Roma, 00185 Rome, Italy
- Istituto
Pasteur, Fondazione Cenci-Bolognetti, “Sapienza” Università di Roma, 00185 Rome, Italy
| |
Collapse
|
30
|
Abstract
Aim: The recurring resistance of the malaria parasite to many drugs compels the design of innovative chemical entities in antimalarial research. Pan-histone deacetylase inhibitors (pan-HDACis) have recently been presented in the literature as powerful novel antimalarials, although their application is hampered due to toxic side effects. This drawback might be neutralized by the deployment of isoform-selective HDACis. Results: In this study, 42 thiaheterocyclic benzohydroxamic acids, 17 of them being potent and selective hHDAC6 inhibitors, were tested to investigate a possible correlation between hHDAC6 inhibition and antiplasmodial activity. Conclusion: Four hHDAC6 inhibitors showed submicromolar potency against both a chloroquine-sensitive and a chloroquine-resistant strain of Plasmodium falciparum with high selectivity indices, pointing to the relevance of exploring hHDAC6 inhibitors as potential new antiplasmodial agents.
Collapse
|