1
|
Alexander PJ, Oyama LB, Olleik H, Godoy Santos F, O'Brien S, Cookson A, Cochrane SA, Gilmore BF, Maresca M, Huws SA. Microbiome-derived antimicrobial peptides show therapeutic activity against the critically important priority pathogen, Acinetobacter baumannii. NPJ Biofilms Microbiomes 2024; 10:92. [PMID: 39349945 PMCID: PMC11443000 DOI: 10.1038/s41522-024-00560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Acinetobacter baumannii is designated by the World Health Organisation as a critical priority pathogen. Previously we discovered antimicrobial peptides (AMPs), namely Lynronne-1, -2 and -3, with efficacy against bacterial pathogens, such as Staphylococcus aureus and Pseudomonas aeruginosa. Here we assessed Lynronne-1, -2 and -3 structure by circular dichroism and efficacy against clinical strains of A. baumannii. All Lynronne AMPs demonstrated alpha-helical secondary structures and had antimicrobial activity towards all tested strains of A. baumannii (Minimum Inhibitory Concentrations 2-128 μg/ml), whilst also having anti-biofilm activity. Lynronne-2 and -3 demonstrated additive effects with amoxicillin and erythromycin, and synergy with gentamicin. The AMPs demonstrated little toxicity towards mammalian cell lines or Galleria mellonella. Fluorescence-based assay data demonstrated that Lynronne-1 and -3 had higher membrane-destabilising action against A. baumannii in comparison with Lynronne-2, which was corroborated by transcriptomic analysis. For the first time, we demonstrate the therapeutic activity of Lynronne AMPs against A. baumannii.
Collapse
Affiliation(s)
- P J Alexander
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - L B Oyama
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - H Olleik
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - F Godoy Santos
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - S O'Brien
- School of Pharmacy, QUB, Medical Biology Centre, Belfast, UK
| | - A Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - S A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - B F Gilmore
- School of Pharmacy, QUB, Medical Biology Centre, Belfast, UK
| | - M Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - S A Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
2
|
Lotfi Shahpar E, Mahdavi A, Mohamadnia Z. Inhibitory Effects, Fluorescence Studies, and Molecular Docking Analysis of Some Novel Pyridine-Based Compounds on Mushroom Tyrosinase. Biochemistry 2024; 63:2063-2074. [PMID: 39110954 DOI: 10.1021/acs.biochem.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Melanin biosynthesis in different organisms is performed by a tyrosinase action. Excessive enzyme activity and pigment accumulation result in different diseases and disorders including skin cancers, blemishes, and darkening. In fruits and vegetables, it causes unwanted browning of these products and reduces their appearance quality and economic value. Inhibiting enzyme activity and finding novel powerful and safe inhibitors are highly important in agriculture, food, medical, and pharmaceutical industries. In this regard, in the present study, some novel synthetic pyridine-based compounds including 2,6-bis (tosyloxymethyl) pyridine (compound 3), 2,6-bis (butylthiomethyl) pyridine (compound 4), and 2,6-bis (phenylthiomethyl) pyridine (compound 5) were synthesized for the first time, and their inhibitory potencies were assessed on mushroom tyrosinase diphenolase activity. The results showed that while all tested compounds significantly decreased the enzyme activity, compounds 4 and 5 had the highest inhibitory effects (respectively, 80 and 89% inhibition with the IC50 values of 17.0 and 9.0 μmol L-1), and the inhibition mechanism was mixed-type for both compounds. Ligand-binding studies were carried out by fluorescence quenching and molecular docking methods to investigate the enzyme-compound interactions. Fluorescence quenching results revealed that the compounds can form nonfluorescent complexes with the enzyme and result in quenching of its intrinsic emission by the static process. Molecular docking analyses predicted the binding positions and the amino acid residues involved in the interactions. These compounds appear to be suitable candidates for more studies on tyrosinase inhibition.
Collapse
Affiliation(s)
- Elahe Lotfi Shahpar
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, Zanjan 45195-1159, Iran
| | - Atiyeh Mahdavi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, Zanjan 45195-1159, Iran
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, Zanjan 45195-1159, Iran
| |
Collapse
|
3
|
Irfan A, Bin Jardan YA, Rubab L, Hameed H, Zahoor AF, Supuran CT. Bacterial tyrosinases and their inhibitors. Enzymes 2024; 56:231-260. [PMID: 39304288 DOI: 10.1016/bs.enz.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bacterial tyrosinase is a copper-containing metalloenzyme with diverse physio-chemical properties, that have been identified in various bacterial strains, including actinobacteria and proteobacteria. Tyrosinases are responsible for the rate-limiting catalytic steps in melanin biosynthesis and enzymatic browning. The physiological role of bacterial tyrosinases in melanin biosynthesis has been harnessed for the production of coloring and dyeing agents. Additionally, bacterial tyrosinases have the capability of cross-linking activity, demonstrated material functionalization applications, and applications in food processing with varying substrate specificities and stability features. These characteristics make bacterial tyrosinases a valuable alternative to well-studied mushroom tyrosinases. The key feature of substrate specificity of bacterial tyrosinase has been exploited to engineer biosensors that have the ability to detect the minimal amount of different phenolic compounds. Today, the world is facing the challenge of multi-drugs resistance in various diseases, especially antibiotic resistance, skin cancer, enzymatic browning of fruits and vegetables, and melanogenesis. To address these challenges, medicinal scientists are developing novel chemotherapeutic agents by inhibiting bacterial tyrosinases. To serve this purpose, heterocyclic compounds are of particular interest due to their vast spectrum of biological activities and their potential as effective tyrosinase inhibitors. In this chapter, a plethora of research explores applications of bacterial tyrosinases in different fields, such as the production of dyes and pigments, catalytic applications in organic synthesis, bioremediation, food and feed applications, biosensors, wool fiber coating and the rationalized synthesis, and structure-activity relationship of bacterial tyrosinase inhibitors.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Laila Rubab
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Claudiu T Supuran
- Department of NEUROFARBA-Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
4
|
Lim PC, Yap BK, Tay YJ, Hanapi NA, Yusof SR, Lee CY. Discovery of aurones bearing two amine functionalities as SHIP2 inhibitors with insulin-sensitizing effect in rat myotubes. RSC Med Chem 2024; 15:2179-2195. [PMID: 38911152 PMCID: PMC11187551 DOI: 10.1039/d3md00360d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/25/2023] [Indexed: 06/25/2024] Open
Abstract
Pharmacological inhibition of the SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) by small-molecule compounds presents an attractive approach to modulate insulin sensitivity. Few drug-like SHIP2 inhibitors have been discovered to date. A series of aurones incorporating key motifs from known SHIP2 inhibitors were synthesized and evaluated for SHIP2-inhibiting activity against a recombinant SHIP2 protein in vitro. Three aurones that inhibited SHIP2 at 15-50 μM were identified. These aurone inhibitors required two amine functionalities, one at ring A and a second at ring B for good inhibitory activity as exemplified by 12a. Mechanistically, molecular dynamics simulations revealed 12a to preferably bind to an allosteric site, restricting the motion of the flexible L4 loop required for SHIP2 phosphatase activity. Additionally, a basic piperidine moiety of 12a interacted with an aspartate residue proximal to the site. At 20-40 μM, 12a significantly enhanced glucose uptake in rat myotubes via increased Akt phosphorylation. 12a showed good permeability across the Caco-2 cell monolayer supporting the aurone chemotype as a new lead to develop drug-like, oral insulin sensitizers.
Collapse
Affiliation(s)
- Phei Ching Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia Minden 11800 Penang Malaysia +604 653 4086
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia Minden 11800 Penang Malaysia +604 653 4086
| | - Yi Juin Tay
- School of Pharmaceutical Sciences, Universiti Sains Malaysia Minden 11800 Penang Malaysia +604 653 4086
| | - Nur Aziah Hanapi
- Centre for Drug Research, Universiti Sains Malaysia Minden 11800 Penang Malaysia
| | - Siti Rafidah Yusof
- Centre for Drug Research, Universiti Sains Malaysia Minden 11800 Penang Malaysia
| | - Chong-Yew Lee
- School of Pharmaceutical Sciences, Universiti Sains Malaysia Minden 11800 Penang Malaysia +604 653 4086
| |
Collapse
|
5
|
Li M, Xu S, Chen DP, Gao F, Li SX, Zhu SX, Qiu YF, Quan ZJ, Wang XC, Liang YM. Palladium-Catalyzed Three-Component Cascade Carbonylation Reaction to Construct Benzofuran Derivatives. J Org Chem 2024. [PMID: 38741558 DOI: 10.1021/acs.joc.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A novel three-component cyclization carbonylation reaction of iodoarene-tethered propargyl ethers with amine and CO is reported. This palladium-catalyzed cascade reaction undergoes a sequence of oxidative addition, unsaturated bond migration, carbonyl insertion, and nucleophilic attack to deliver the benzofuran skeleton. Both aromatic amines and aliphatic amines could proceed smoothly in this transformation under one atm of CO.
Collapse
Affiliation(s)
- Ming Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shanmei Xu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Dong-Ping Chen
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Fan Gao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shun-Xi Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Shuang-Xi Zhu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yi-Feng Qiu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
6
|
Lazinski LM, Beaumet M, Roulier B, Gay R, Royal G, Maresca M, Haudecoeur R. Design and synthesis of 4-amino-2',4'-dihydroxyindanone derivatives as potent inhibitors of tyrosinase and melanin biosynthesis in human melanoma cells. Eur J Med Chem 2024; 266:116165. [PMID: 38262119 DOI: 10.1016/j.ejmech.2024.116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Melanogenesis inhibition constitutes a privileged therapeutic solution to treat skin hyperpigmentation, a major dermatological concern associated with the overproduction of melanin by human tyrosinase (hsTYR). Despite the existence of many well-known TYR (tyrosinase) inhibitors commercialized in skin formulations, their hsTYR-inhibition efficacy remains poor since most of them were investigated over mushroom tyrosinase (abTYR), a model with low homology relative to hsTYR. Considering the need for new potent hsTYR inhibitors, we designed and synthesized a series of indanones starting from 4-hydroxy compound 1a, one of the two most active derivatives reported to date against the human enzyme, together with marketed thiamidol. We observed that analogues featuring 4-amino and 4-amido-2',4'-dihydroxyindanone motifs showed two-to ten-fold increase in activity over human melanoma MNT-1 cell lysates, and a ten-fold improvement in a 4-days whole-cell experiment, compared to parent analogue 1a. Molecular docking investigation was performed for the most promising 4-amido derivatives and suggested a plausible interaction pattern with the second coordination sphere of hsTYR, notably through hydrogen bonding with Glu203, confirming their impact in the binding mode with hsTYR active site.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France; Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Morane Beaumet
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | - Brayan Roulier
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | - Rémy Gay
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | - Guy Royal
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | | |
Collapse
|
7
|
Casanova M, Maresca M, Poncin I, Point V, Olleik H, Boidin-Wichlacz C, Tasiemski A, Mabrouk K, Cavalier JF, Canaan S. Promising antibacterial efficacy of arenicin peptides against the emerging opportunistic pathogen Mycobacterium abscessus. J Biomed Sci 2024; 31:18. [PMID: 38287360 PMCID: PMC10823733 DOI: 10.1186/s12929-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Mycobacterium abscessus, a fast-growing non-tuberculous mycobacterium, is an emerging opportunistic pathogen responsible for chronic bronchopulmonary infections in people with respiratory diseases such as cystic fibrosis (CF). Due to its intrinsic polyresistance to a wide range of antibiotics, most treatments for M. abscessus pulmonary infections are poorly effective. In this context, antimicrobial peptides (AMPs) active against bacterial strains and less prompt to cause resistance, represent a good alternative to conventional antibiotics. Herein, we evaluated the effect of three arenicin isoforms, possessing two or four Cysteines involved in one (Ar-1, Ar-2) or two disulfide bonds (Ar-3), on the in vitro growth of M. abscessus. METHODS The respective disulfide-free AMPs, were built by replacing the Cysteines with alpha-amino-n-butyric acid (Abu) residue. We evaluated the efficiency of the eight arenicin derivatives through their antimicrobial activity against M. abscessus strains, their cytotoxicity towards human cell lines, and their hemolytic activity on human erythrocytes. The mechanism of action of the Ar-1 peptide was further investigated through membrane permeabilization assay, electron microscopy, lipid insertion assay via surface pressure measurement, and the induction of resistance assay. RESULTS Our results demonstrated that Ar-1 was the safest peptide with no toxicity towards human cells and no hemolytic activity, and the most active against M. abscessus growth. Ar-1 acts by insertion into mycobacterial lipids, resulting in a rapid membranolytic effect that kills M. abscessus without induction of resistance. CONCLUSION Overall, the present study emphasized Ar-1 as a potential new alternative to conventional antibiotics in the treatment of CF-associated bacterial infection related to M. abscessus.
Collapse
Affiliation(s)
- Magali Casanova
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France.
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - Isabelle Poncin
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France
| | - Vanessa Point
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France
| | - Hamza Olleik
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Kamel Mabrouk
- Aix-Marseille Univ, CNRS, UMR7273, ICR, 13013, Marseille, France
| | | | - Stéphane Canaan
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France
| |
Collapse
|
8
|
Beaumet M, Lazinski LM, Maresca M, Haudecoeur R. Catechol-mimicking transition-state analogues as non-oxidizable inhibitors of tyrosinases. Eur J Med Chem 2023; 259:115672. [PMID: 37487307 DOI: 10.1016/j.ejmech.2023.115672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Tyrosinases are copper-containing metalloenzymes involved in several processes in both mammals, insects, bacteria, fungi and plants. Their phenol oxidation properties are especially responsible for human melanogenesis, potentially leading to abnormal pigmentation, and for postharvest vegetable tissue browning. Thus, targeting tyrosinases attracts interest for applications both in dermocosmetic and agrofood fields. However, a large part of the literature about tyrosinase inhibitors is dedicated to the report of copper-interacting phenolic compounds, that are more likely alternative substrates leading to undesirable toxic quinones production. To circumvent this issue, the use of catechol-mimicking copper-chelating groups that are analogues of the tyrosinase oxidation transition state appears as a valuable strategy. Relying on several non-oxidizable pyridinone, pyrone or tropolone moieties, innovative inhibitors were developed, especially within the past decade, and the best reported analogues reached IC50 values in the nanomolar range. Herein, we review the design, the activity against several tyrosinases, and the proposed binding modes of reported catechol-mimicking, non-oxidizable molecules, in light of recent structural data.
Collapse
Affiliation(s)
- Morane Beaumet
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | | | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | | |
Collapse
|
9
|
Arora S, Gupta P. Counter-Anions Rendered Weak-Interactions Perturb the Stability of Tyrosinase-Mimicked Peroxo-Dicopper(II) Active Site: Unraveling Computational Indicators. Chem Asian J 2023; 18:e202300688. [PMID: 37679940 DOI: 10.1002/asia.202300688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
It has been observed in literature that the stability of tyrosinase-mimicked μ-η2 :η2 -peroxo-dicopper(II) (P) can be perturbed in presence of counter-anions (CAs) such as PhCO2 - , CF3 SO3 - , TsO- and SbF6 - . In this work, we unravel computational indicators using density functional theory to screen and study the stability of P in experimentally-reported cases. These indicators are Gibbs energies, geometrical parameters such as distances and angles, independent gradient model based on Hirshfeld partition (IGMH) generated data, orbitals' overlap, and distortion-interaction (DI) energies. Our DFT computed Gibbs energies indicate that P is stable in case of PhCO2 - and TsO- . CF3 SO3 - allows P and its isoelectronic species bis-μ-oxo-dicopper (O) to coexist. SbF6 - shows that O is in excess. Our indicators reveal that the stability of P in case of PhCO2 - and TsO- is due to the better placing of P and its CA, thus leading to better interactions and overlap of orbitals. Other indicator displays that the plane of Cu2 O2 core in P is more bend in PhCO2 - and TsO- cases as compared to the plane in the other two cases. In addition, the IGMH-based indicator displays higher values in the case of PhCO2 - and TsO- than the other CAs.
Collapse
Affiliation(s)
- Sumangla Arora
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
10
|
Alshaye NA, Mughal EU, Elkaeed EB, Ashraf Z, Kehili S, Nazir Y, Naeem N, Abdul Majeed N, Sadiq A. Synthesis and biological evaluation of substituted aurone derivatives as potential tyrosinase inhibitors: in vitro, kinetic, QSAR, docking and drug-likeness studies. J Biomol Struct Dyn 2023; 41:8307-8322. [PMID: 36255179 DOI: 10.1080/07391102.2022.2132296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/28/2022] [Indexed: 10/24/2022]
Abstract
Tyrosinase enzyme plays an essential role in melanin biosynthesis and enzymatic browning of fruits and vegetables. To discover potent tyrosinase inhibitors, the present studies were undertaken. In this context, synthetic aurone derivatives 26-50 were designed, synthesized, and structurally elucidated by various spectroscopic techniques including IR, UV, 1H- & 13C-NMR and mass spectrometry. The target compounds 26-50 were screened for their anti-tyrosinase inhibitory potential, and thus kinetic mechanism was analyzed by Lineweaver-Burk plots. All target compounds exhibited good to excellent IC50 values in the range of 7.12 ± 0.32 μM to 66.82 ± 2.44 μM. These synthesized aurone derivatives were found as potent tyrosinase inhibitors relative to the standard kojic acid (IC50 = 16.69 ± 2.81 μM) and the compound 39 inhibited tyrosinase non-competitively (Ki = 11.8 μM) by forming an enzyme-inhibitor complex. The binding modes of these molecules were ascribed through molecular docking studies against tyrosinase protein (PDB ID: 2Y9X). The quantitative structure-activity relationship studies displayed a good correlation between 26-50 structures and their anti-tyrosinase activity (IC50) with a correlation coefficient (R2) of 0.9926. The computational studies were coherent with experimental results and these ligands exhibited good binding values against tyrosinase and interacted with core residues of target protein. Moreover, the drug-likeness analysis also showed that some compounds have a linear correlation with Lipinski's rule of five, indicating good drug-likeness and bioactivity scores for pharmacological targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Najla A Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Sana Kehili
- Adham University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yasir Nazir
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
- Department of Chemistry, University of Sialkot, Sialkot, Pakistan
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | | | - Amina Sadiq
- Department of Chemistry, Govt. College Women University, Sialkot, Pakistan
| |
Collapse
|
11
|
Baber MA, Crist CM, Devolve NL, Patrone JD. Tyrosinase Inhibitors: A Perspective. Molecules 2023; 28:5762. [PMID: 37570734 PMCID: PMC10420840 DOI: 10.3390/molecules28155762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Due to its integral role in the biosynthesis of melanin in all kingdoms of life, tyrosinase has become an extremely important target for inhibition in several sectors of research including agricultural and cosmetic research. Inhibitors of tyrosinase have made it to the market in the cosmetics industry, but their use has been limited due to conflicting efficacy and potential toxicity, which has led to several small molecules being removed from the market. Undaunted, researchers have continued to pursue tyrosinase inhibitors with varying degrees of success. These pursuits have built an impressive and rich library of research. This review is intended to provide a perspective of the past twenty years (2003-2023) of research on tyrosinase inhibitors by highlighting exemplar molecules and developments.
Collapse
Affiliation(s)
- Mason A. Baber
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48209, USA;
| | - Cole M. Crist
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
| | - Noah L. Devolve
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| | - James D. Patrone
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| |
Collapse
|
12
|
Shahid NH, Rashid H, Kumar S, Archoo S, Umar SA, Nazir LA, Parvinder SP, Tasduq SA. Inhibition of melanogenesis by 3-(1'-methyltetrahydropyridinyl)-2,4-6-trihydroxy acetophenone via suppressing the activity of cAMP response element-binding protein (CREB) and nuclear exclusion of CREB-regulated transcription coactivator 1 (CRTC1). Eur J Pharmacol 2023:175734. [PMID: 37080332 DOI: 10.1016/j.ejphar.2023.175734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Exposure to Ultraviolet radiation or α-melanocyte-stimulating hormone (α-MSH) stimulates the Cyclic Adenosine Monophosphate/Protein Kinase A signalling pathway, which leads to the synthesis and deposition of melanin granules in the epidermis. Skin pigmentation is the major physiological defence against inimical effects of sunlight. However, excessive melanin production and accumulation can cause various skin hyperpigmentation disorders. The present study involved the identification of 3-(1'-methyltetrahydropyridinyl)-2,4-6-trihydroxy acetophenone (IIIM-8) as an inhibitor of melanogenesis, IIIM-8 significantly inhibited pigment production both invitro and invivowithout incurring any cytotoxicity in Human Adult Epidermal Melanocytes (HAEM). IIIM-8 repressed melanin synthesis and secretion both at basal levels and in α-MSH stimulated cultured HAEM cells by decreasing the levels of Cyclic Adenosine Monophosphate (cAMP) and inhibiting the phosphorylation of cAMP response element-binding (CREB) protein, coupled with restoring the phosphorylation of CREB-regulated transcription coactivator 1 (CRTC1) and its nuclear exclusion in HAEM cells. This impeding effect correlates with diminished expression of master melanogenic proteins including microphthalmia-associated transcription factor (MITF), Tyrosinase (TYR), Tyrosinase related protein 1 (TRP1), and Tyrosinase related protein 2 (TRP2). Additionally, topical application of IIIM-8 induced tail depigmentation in C57BL/6 J mice. Furthermore, IIIM-8 efficiently mitigated the effect of ultraviolet-B radiation on melanin synthesis in the auricles of C57BL/6 J mice. This study demonstrates that IIIM-8 is an active anti-melanogenic agent against ultraviolet radiation-induced melanogenesis and other hyperpigmentation disorders.
Collapse
Affiliation(s)
- Naikoo H Shahid
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Haroon Rashid
- Sher-e-KashmirInstitute of Medical Sciences, Soura, Srinagar, 190011, Jammu and Kashmir, India
| | - Sanjay Kumar
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India
| | - Sajida Archoo
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh A Umar
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lone A Nazir
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Singh P Parvinder
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh A Tasduq
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Lone MS, Nabi SA, Wani FR, Garg M, Amin S, Samim M, Shafi S, Khan F, Javed K. Design, synthesis and evaluation of 5-chloro-6-methylaurone derivatives as potential anti-cancer agents. J Biomol Struct Dyn 2023; 41:13466-13487. [PMID: 36856061 DOI: 10.1080/07391102.2023.2183716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/24/2023] [Indexed: 03/02/2023]
Abstract
A series of novel 5-chloro-6-methylaurone derivatives (6a-p) were synthesized and characterized by various spectroscopic techniques. The synthesized compounds were tested for anticancer activity against 60-human cancer cell line panel derived from nine cancer types at NCI, Bethesda, USA. Among the synthesized compounds, six compounds (6e, 6f, 6h, 6i, 6k and 6 m) exhibited growth inhibition and cytotoxic activity against various human cancer cell lines in one-dose data. The most potent compound among the series, 6i was active against 55 out of 60 human cancer cell lines. Compound 6i showed remarkable % growth inhibition and cytotoxicity against various cancer cell lines exhibiting % GI in the range 36.05-199.03. The compound 6i was further evaluated for five dose assay and exhibited GI50 1.90 µM and 2.70 µM against melanoma and breast cancer cell lines respectively. Further evaluation of 6i for five-dose assay exhibited a diverse spectrum of anti-cancer activity towards all the 60 human cancer cell line panel with the selectivity index ratio ranging 0.854-1.42 and 0.66-1.35 for GI50 and TGI respectively. Based on one-dose and five-dose data compound 6i was further evaluated for cell apoptosis against MDA-MB-468 breast cancer cell line and was found to induce early apoptosis in cells explaining its mode of action. The in-silico studies for the synthesized compounds as LSD1 inhibitors (2H94) have shown better docking score and binding energy comparable to vafidemstat. All the compounds followed Lipinski rule of five. These findings concluded that the compound 6i could lead to the development of a promising therapeutic anticancer agent.
Collapse
Affiliation(s)
- Mehak Saba Lone
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Syed Ayaz Nabi
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Farhat Ramzan Wani
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Shaista Amin
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| | - Kalim Javed
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India
| |
Collapse
|
14
|
Buitrago E, Faure C, Carotti M, Bergantino E, Hardré R, Maresca M, Philouze C, Vanthuyne N, Boumendjel A, Bubacco L, du Moulinet d'Hardemare A, Jamet H, Réglier M, Belle C. Exploiting HOPNO-dicopper center interaction to development of inhibitors for human tyrosinase. Eur J Med Chem 2023; 248:115090. [PMID: 36634457 DOI: 10.1016/j.ejmech.2023.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
In human, Tyrosinase enzyme (TyH) is involved in the key steps of protective pigments biosynthesis (in skin, eyes and hair). The use of molecules targeting its binuclear copper active site represents a relevant strategy to regulate TyH activities. In this work, we targeted 2-Hydroxypyridine-N-oxide analogs (HOPNO, an established chelating group for the tyrosinase dicopper active site) with the aim to combine effects induced by combination with a reference inhibitor (kojic acid) or natural substrate (tyrosine). The HOPNO-MeOH (3) and the racemic amino acid HOPNO-AA compounds (11) were tested on purified tyrosinases from different sources (fungal, bacterial and human) for comparison purposes. Both compounds have more potent inhibitory activities than the parent HOPNO moiety and display strictly competitive inhibition constant, in particular with human tyrosinase. Furthermore, 11 appears to be the most active on the B16-F1 mammal melanoma cells. The investigations were completed by stereospecificity analysis. Racemic mixture of the fully protected amino acid 10 was separated by chiral HPLC into the corresponding enantiomers. Assignment of the absolute configuration of the deprotected compounds was completed, based on X-ray crystallography. The inhibition activities on melanin production were tested on lysates and whole human melanoma MNT-1 cells. Results showed significant enhancement of the inhibitory effects for the (S) enantiomer compared to the (R) enantiomer. Computational studies led to an explanation of this difference of activity based for both enantiomers on the respective position of the amino acid group versus the HOPNO plane.
Collapse
Affiliation(s)
- Elina Buitrago
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France; University of Grenoble Alpes, CNRS-UGA UMR 5063, DPM CS 40700, 38058, Grenoble, Cedex 9, France
| | - Clarisse Faure
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Marcello Carotti
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | - Elisabetta Bergantino
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | - Renaud Hardré
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Marc Maresca
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Christian Philouze
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Ahcène Boumendjel
- University of Grenoble Alpes, CNRS-UGA UMR 5063, DPM CS 40700, 38058, Grenoble, Cedex 9, France
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | | | - Hélène Jamet
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Marius Réglier
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Catherine Belle
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France.
| |
Collapse
|
15
|
Roulier B, Rush I, Lazinski LM, Pérès B, Olleik H, Royal G, Fishman A, Maresca M, Haudecoeur R. Resorcinol-based hemiindigoid derivatives as human tyrosinase inhibitors and melanogenesis suppressors in human melanoma cells. Eur J Med Chem 2023; 246:114972. [PMID: 36462443 DOI: 10.1016/j.ejmech.2022.114972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Human tyrosinase (hsTYR) catalyzes the key steps of melanogenesis, making it a privileged target for reducing melanin production in vivo. However, very few hsTYR inhibitors have been reported so far in the literature, whereas thousands of mushroom tyrosinase (abTYR) inhibitors are known. Yet, as these enzymes are actually very different, including at their active sites, there is an urgent need for new true hsTYR inhibitors in order to enable human-directed pharmacological and dermocosmetic applications without encountering the inefficiency and toxicity issues currently triggered by kojic acid or hydroquinone. Starting from the two most active compounds reported to date, i.e. a 2-hydroxypyridine-embedded aurone and thiamidol, we combined herein key structural elements and developed new nanomolar hsTYR inhibitors with cell-based activity. From a complete series of thirty-eight synthesized derivatives, excellent inhibition values were obtained for two compounds in both human melanoma cell lysates and purified hsTYR assays, and a promising improvement was observed in whole cell experiments.
Collapse
Affiliation(s)
- Brayan Roulier
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | - Inbal Rush
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Leticia M Lazinski
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France; Univ. Grenoble Alpes, CNRS 5250, DCM, 38000, Grenoble, France
| | - Basile Pérès
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | - Hamza Olleik
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| | - Guy Royal
- Univ. Grenoble Alpes, CNRS 5250, DCM, 38000, Grenoble, France
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| | | |
Collapse
|
16
|
Lazinski LM, Royal G, Robin M, Maresca M, Haudecoeur R. Bioactive Aurones, Indanones, and Other Hemiindigoid Scaffolds: Medicinal Chemistry and Photopharmacology Perspectives. J Med Chem 2022; 65:12594-12625. [PMID: 36126323 DOI: 10.1021/acs.jmedchem.2c01150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemiindigoids comprise a range of natural and synthetic scaffolds that share the same aromatic hydrocarbon backbone as well as promising biological and optical properties. The encouraging therapeutic potential of these scaffolds has been unraveled by many studies over the past years and uncovered representants with inspiring pharmacophoric features such as the acetylcholinesterase inhibitor donezepil and the tubulin polymerization inhibitor indanocine. In this review, we summarize the last advances in the medicinal potential of hemiindigoids, with a special attention to molecular design, structure-activity relationship, ligand-target interactions, and mechanistic explanations covering their effects. As their strong fluorogenic potential and photoswitch behavior recently started to be highlighted and explored in biology, giving rise to the development of novel fluorescent probes and photopharmacological agents, we also discuss these properties in a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Université Grenoble Alpes, CNRS 5063, DPM, 38000 Grenoble, France.,Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Guy Royal
- Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | |
Collapse
|
17
|
Rai RK, Karri R, Dubey KD, Roy G. Regulation of Tyrosinase Enzyme Activity by Glutathione Peroxidase Mimics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9730-9747. [PMID: 35861245 DOI: 10.1021/acs.jafc.2c02359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide plays a crucial role in the melanogenesis process by regulating the activity of the key melanin-forming enzyme tyrosinase, responsible for the browning of fruits, vegetables, and seafood. Therefore, a molecule with dual activities, both efficient tyrosinase inhibition and strong hydrogen peroxide degrading ability, may act as a promising antibrowning agent. Herein, we report highly efficient selone-based mushroom tyrosinase inhibitors 2 and 3 with remarkable glutathione peroxidase (GPx) enzyme-like activity. The presence of benzimidazole moiety enhances the tyrosinase inhibition efficiency of selone 2 (IC50 = 0.4 μM) by almost 600 times higher than imidazole-based selone 1 (IC50 = 238 μM). Interestingly, the addition of another aromatic ring to the benzimidazole moiety has led to the development of an efficient lipid-soluble tyrosinase inhibitor 3 (IC50 = 2.4 μM). The selenium center and the -NH group of 2 and 3 are extremely crucial to exhibit high GPx-like activity and tyrosinase inhibition potency. The hydrophobic moiety of the inhibitors (2 and 3) further assists them in tightly binding at the active site of the enzyme and facilitates the C═Se group to strongly coordinate with the copper ions. Inhibitor 2 exhibited excellent antibrowning and polyphenol oxidase inhibition properties in banana and apple juice extracts.
Collapse
Affiliation(s)
- Rakesh Kumar Rai
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| | - Ramesh Karri
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Gouriprasanna Roy
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| |
Collapse
|
18
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
19
|
Khan AI, Nazir S, Ullah A, Haque MNU, Maharjan R, Simjee SU, Olleik H, Courvoisier-Dezord E, Maresca M, Shaheen F. Design, Synthesis and Characterization of [G10a]-Temporin SHa Dendrimers as Dual Inhibitors of Cancer and Pathogenic Microbes. Biomolecules 2022; 12:biom12060770. [PMID: 35740895 PMCID: PMC9221442 DOI: 10.3390/biom12060770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023] Open
Abstract
As the technologies for peptide synthesis and development continue to mature, antimicrobial peptides (AMPs) are being widely studied as significant contributors in medicinal chemistry research. Furthermore, the advancement in the synthesis of dendrimers’ design makes dendrimers wonderful nanostructures with distinguishing properties. This study foregrounds a temporin SHa analog, [G10a]-SHa, and its dendrimers as globular macromolecules possessing anticancer and antibacterial activities. These architectures of temporin SHa, named as [G10a]-SHa, its dendrimeric analogs [G10a]2-SHa and [G10a]3-SHa, and [G10a]2-SHa conjugated with a polymer molecule, i.e., Jeff-[G10a]2-SHa, were synthesized, purified on RP-HPLC and UPLC and fully characterized by mass, NMR spectroscopic techniques, circular dichroism, ultraviolet, infrared, dynamic light scattering, and atomic force microscopic studies. In pH- and temperature-dependent studies, all of the peptide dendrimers were found to be stable in the temperature range up to 40–60 °C and pH values in the range of 6–12. Biological-activity studies showed these peptide dendrimers possessed improved antibacterial activity against different strains of both Gram-positive and Gram-negative strains. Together, these dendrimers also possessed potent selective antiproliferative activity against human cancer cells originating from different organs (breast, lung, prostate, pancreas, and liver). The high hemolytic activity of [G10a]2-SHa and [G10a]3-SHa dendrimers, however, limits their use for topical treatment, such as in the case of skin infection. On the contrary, the antibacterial and anticancer activities of Jeff-[G10a]2-SHa, associated with its low hemolytic action, make it potentially suitable for systemic treatment.
Collapse
Affiliation(s)
- Arif Iftikhar Khan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.I.K.); (S.N.); (A.U.); (M.N.u.H.)
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
| | - Shahzad Nazir
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.I.K.); (S.N.); (A.U.); (M.N.u.H.)
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
| | - Aaqib Ullah
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.I.K.); (S.N.); (A.U.); (M.N.u.H.)
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
| | - Muhammad Nadeem ul Haque
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.I.K.); (S.N.); (A.U.); (M.N.u.H.)
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
| | - Rukesh Maharjan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
| | - Shabana U. Simjee
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hamza Olleik
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013 Marseille, France; (H.O.); (E.C.-D.)
| | | | - Marc Maresca
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013 Marseille, France; (H.O.); (E.C.-D.)
- Correspondence: (M.M.); (F.S.); Tel.: +33-0413945609 (M.M.); +92-3313859073 (F.S.)
| | - Farzana Shaheen
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.I.K.); (S.N.); (A.U.); (M.N.u.H.)
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
- Correspondence: (M.M.); (F.S.); Tel.: +33-0413945609 (M.M.); +92-3313859073 (F.S.)
| |
Collapse
|
20
|
Kumari A, kumar R, Sulabh G, Singh P, Kumar J, Singh VK, Ojha KK. In silico ADMET, molecular docking and molecular simulation-based study of glabridin’s natural and semisynthetic derivatives as potential tyrosinase inhibitors. ADVANCES IN TRADITIONAL MEDICINE 2022. [PMCID: PMC9000003 DOI: 10.1007/s13596-022-00640-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hyper-pigmentation conditions may develop due to erroneous melanogenesis cascade which leads to excess melanin production. Recently, inhibition of tyrosinase is the main focus of investigation as it majorly contributes to melanin production. This inhibition property can be exploited in medicine, agriculture, and in cosmetics. Present study aims to find a natural and safe alternative molecule as tyrosinase inhibitor. In this study, human tyrosinase enzyme was modelled due to unavailability of its crystal structure to look into the degree of efficacy of glabridin and its 15 derivatives as tyrosinase inhibitor. Docking was performed by Autodock Vina at the catalytic core enzyme. Glabridin effects on melanoma cell lines was also elucidated by analysing cytotoxicity and effect on melanin production. Computational ADME analysis was done by SwissADME. Molecular dynamic simulation was also performed to further evaluate the interaction profile of these molecules and kojic acid (positive inhibitor) with respect to apo protein. Notably, four derivatives 5′-formylglabridin, glabridin dimer, 5′-prenyl glabridin and R-glabridin exhibited better binding affinity than glabridin. Glabridin effectively inhibited melanin production in a dose dependent manner. Among these, 5′-formylglabridin displayed highest binding affinity with docking score − 9.2 kcal/mol. Molecular properties and bioactivity analysis by Molinspiration web server and by SwissADME also presented these molecules as potential drug candidates. The study explores the understanding for the development of suitable tyrosinase inhibitor/s for the prevention of hyperpigmentation. However, a detailed in vivo study is required for glabridin derivatives to suggest these molecules as anti-melanogenic compound.
Collapse
|
21
|
Choi J, Neupane T, Baral R, Jee JG. Hydroxamic Acid as a Potent Metal-Binding Group for Inhibiting Tyrosinase. Antioxidants (Basel) 2022; 11:antiox11020280. [PMID: 35204163 PMCID: PMC8868331 DOI: 10.3390/antiox11020280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
Tyrosinase, a metalloenzyme containing a dicopper cofactor, plays a central role in synthesizing melanin from tyrosine. Many studies have aimed to identify small-molecule inhibitors of tyrosinase for pharmaceutical, cosmetic, and agricultural purposes. In this study, we report that hydroxamic acid is a potent metal-binding group for interacting with dicopper atoms, thereby inhibiting tyrosinase. Hydroxamate-containing molecules, including anticancer drugs targeting histone deacetylase, vorinostat and panobinostat, significantly inhibited mushroom tyrosinase, with inhibitory constants in the submicromolar range. Of the tested molecules, benzohydroxamic acid was the most potent. Its inhibitory constant of 7 nM indicates that benzohydroxamic acid is one of the most potent tyrosinase inhibitors. Results from differential scanning fluorimetry revealed that direct binding mediates inhibition. The enzyme kinetics were studied to assess the inhibitory mechanism of the hydroxamate-containing molecules. Experiments with B16F10 cell lysates confirmed that the new inhibitors are inhibitory against mammalian tyrosinase. Docking simulation data revealed intermolecular contacts between hydroxamate-containing molecules and tyrosinase.
Collapse
|
22
|
Cinnamic acid derivatives linked to arylpiperazines as novel potent inhibitors of tyrosinase activity and melanin synthesis. Eur J Med Chem 2022; 231:114147. [DOI: 10.1016/j.ejmech.2022.114147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
|
23
|
Design, synthesis and biological evaluation of tyrosinase-targeting PROTACs. Eur J Med Chem 2021; 226:113850. [PMID: 34628235 DOI: 10.1016/j.ejmech.2021.113850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023]
Abstract
The human tyrosinase is the most prominent therapeutic target for pigmentary skin disorders. However, the overwhelming majority efforts have been devoted to search mushroom tyrosinase inhibitors, which show poor inhibitory activity on human tyrosinase and certain side effects that cause skin damage in practical application. Herein, a series of degraders that directly targeted human tyrosinase was firstly designed and synthesized based on newly developed PROTAC technology. The best PROTAC TD9 induced human tyrosinase degradation obviously in dose and time-dependent manner, and its mechanism of inducing tyrosinase degradation has also been clearly demonstrated. Besides, encouraging results that low-toxicity PROTAC TD9 was applied to reduce zebrafish melanin synthesis have been obtained, highlighting the potential to treatment of tyrosinase-related disorders. Moreover, this work has innovatively expanded the application scope of PROTAC technology and laid a solid foundation for further development of novel drugs treating pigmentary skin disorders.
Collapse
|
24
|
A novel multi-target strategy to attenuate the progression of Parkinson's disease by diamine hybrid AGE/ALE inhibitor. Future Med Chem 2021; 13:2185-2200. [PMID: 34634921 DOI: 10.4155/fmc-2021-0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Instead of a conventional 'one-drug-one-target approach', this article presents a novel multi-target approach with a concept of trapping simultaneously as many detrimental factors as possible involved in the progression of Parkinson's disease. These factors include reactive carbonyl species, reactive oxygen species, Fe3+/Cu2+ and ortho-quinones (o-quinone), in particular. Different from the known multi-target strategies for Parkinson's disease, it is a sort of 'vacuum cleaning' strategy. The new agent consists of reactive carbonyl species scavenging moiety and reactive oxygen species scavenging and metal chelating moiety linked by a spacer. Provided that the capacity of scavenging o-quinones is demonstrated, this type of agent can further broaden its potential therapeutic profile. In order to support this new hypothetical approach, a number of simple in vitro experiments are proposed.
Collapse
|
25
|
Obaid RJ, Mughal EU, Naeem N, Sadiq A, Alsantali RI, Jassas RS, Moussa Z, Ahmed SA. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: a systematic review. RSC Adv 2021; 11:22159-22198. [PMID: 35480807 PMCID: PMC9034236 DOI: 10.1039/d1ra03196a] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Tyrosinase is a multifunctional glycosylated and copper-containing oxidase that is highly prevalent in plants and animals and plays a pivotal role in catalyzing the two key steps of melanogenesis: tyrosine's hydroxylation to dihydroxyphenylalanine (DOPA), and oxidation of the latter species to dopaquinone. Melanin guards against the destructive effects of ultraviolet radiation which is known to produce considerable pathological disorders such as skin cancer, among others. Moreover, the overproduction of melanin can create aesthetic problems along with serious disorders linked to hyperpigmented spots or patches on skin. Several skin-whitening products which reduce melanogenesis activity and alleviate hyperpigmentation are commercially available. A few of them, particularly those obtained from natural sources and that incorporate a phenolic scaffold, have been exploited in the cosmetic industry. In this context, synthetic tyrosinase inhibitors (TIs) with elevated efficacy and fewer side effects are direly needed in the pharmaceutical and cosmetic industries owing to their protective effect against pigmentation and dermatological disorders. Furthermore, the biological significance of the chromone skeleton and its associated medicinal and bioactive properties has drawn immense interest and inspired many researchers to design and develop novel anti-tyrosinase agents based on the flavonoid core (2-arylchromone). This review article is oriented to provide an insight and a deeper understanding of the tyrosinase inhibitory activity of an array of natural and bioinspired phenolic compounds with special emphasis on flavonoids to demonstrate how the position of ring substituents and their interaction with tyrosinase could be correlated with their effectiveness or lack thereof against inhibiting the enzyme.
Collapse
Affiliation(s)
- Rami J Obaid
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | | | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, Pharmacy College, Taif University 888-Taif Saudi Arabia
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P. O. Box 15551, Al Ain Abu Dhabi United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
26
|
Buitrago E, Faure C, Challali L, Bergantino E, Boumendjel A, Bubacco L, Carotti M, Hardré R, Maresca M, Philouze C, Jamet H, Réglier M, Belle C. Ditopic Chelators of Dicopper Centers for Enhanced Tyrosinases Inhibition. Chemistry 2021; 27:4384-4393. [PMID: 33284485 DOI: 10.1002/chem.202004695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 11/08/2022]
Abstract
Tyrosinase enzymes (Tys) are involved in the key steps of melanin (protective pigments) biosynthesis and molecules targeting the binuclear copper active site on tyrosinases represent a relevant strategy to regulate enzyme activities. In this work, the possible synergic effect generated by a combination of known inhibitors is studied. For this, derivatives containing kojic acid (KA) and 2-hydroxypyridine-N-oxide (HOPNO) combined with a thiosemicarbazone (TSC) moiety were synthetized. Their inhibition activities were evaluated on purified tyrosinases from different sources (mushroom, bacterial, and human) as well as on melanin production by lysates from the human melanoma MNT-1 cell line. Results showed significant enhancement of the inhibitory effects compared with the parent compounds, in particular for HOPNO-TSC. To elucidate the interaction mode with the dicopper(II) active site, binding studies with a tyrosinase bio-inspired model of the dicopper(II) center were investigated. The structure of the isolated adduct between one ditopic inhibitor (KA-TSC) and the model complex reveals that the binding to a dicopper center can occur with both chelating sites. Computational studies on model complexes and docking studies on enzymes led to the identification of KA and HOPNO moieties as interacting groups with the dicopper active site.
Collapse
Affiliation(s)
- Elina Buitrago
- CNRS, DCM, Université Grenoble Alpes, 38000, Grenoble, France.,CNRS, DPM, Université Grenoble Alpes, 38000, Grenoble, France
| | - Clarisse Faure
- CNRS, DCM, Université Grenoble Alpes, 38000, Grenoble, France
| | - Lylia Challali
- CNRS, DCM, Université Grenoble Alpes, 38000, Grenoble, France
| | - Elisabetta Bergantino
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35131, Padova, Italy
| | | | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35131, Padova, Italy
| | - Marcello Carotti
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35131, Padova, Italy
| | - Renaud Hardré
- Centrale Marseille, iSm2, Aix Marseille Université, CNRS, Marseille, France
| | - Marc Maresca
- Centrale Marseille, iSm2, Aix Marseille Université, CNRS, Marseille, France
| | | | - Hélène Jamet
- CNRS, DCM, Université Grenoble Alpes, 38000, Grenoble, France
| | - Marius Réglier
- Centrale Marseille, iSm2, Aix Marseille Université, CNRS, Marseille, France
| | - Catherine Belle
- CNRS, DCM, Université Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
27
|
Roulier B, Pérès B, Haudecoeur R. Advances in the Design of Genuine Human Tyrosinase Inhibitors for Targeting Melanogenesis and Related Pigmentations. J Med Chem 2020; 63:13428-13443. [PMID: 32787103 DOI: 10.1021/acs.jmedchem.0c00994] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human tyrosinase (hsTYR) is the key enzyme ensuring the conversion of l-tyrosine to dopaquinone, thereby initiating melanin synthesis, i.e., melanogenesis. Although the protein has long been familiar, knowledge about its three-dimensional structure and efficient overexpression protocols emerged only recently. Consequently, for decades medicinal chemistry studies aiming at developing skin depigmenting agents relied almost exclusively on biological assays performed using mushroom tyrosinase (abTYR), producing a plethoric literature, often of little useful purpose. Indeed, several recent reports have pointed out spectacular differences in terms of interaction patterns and inhibition values between hsTYR and abTYR, including for widely used standard tyrosinase inhibitors. In this review, we summarize the last developments regarding the potential role of hsTYR in human pathologies, the advances in recombinant expression systems and structural data retrieving, and the pioneer generation of true hsTYR inhibitors. Finally, we present suggestions for the design of future inhibitors of this highly attractive target in pharmacology and dermocosmetics.
Collapse
Affiliation(s)
- Brayan Roulier
- Département de Pharmacochimie Moléculaire (DPM), UMR 5063, Université Grenoble Alpes, 38041 Grenoble, France
| | - Basile Pérès
- Département de Pharmacochimie Moléculaire (DPM), UMR 5063, Université Grenoble Alpes, 38041 Grenoble, France
| | - Romain Haudecoeur
- Département de Pharmacochimie Moléculaire (DPM), UMR 5063, Université Grenoble Alpes, 38041 Grenoble, France
| |
Collapse
|
28
|
Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. COSMETICS 2019. [DOI: 10.3390/cosmetics6040057] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the most common approaches for control of skin pigmentation involves the inhibition of tyrosinase, a copper-containing enzyme which catalyzes the key steps of melanogenesis. This review focuses on the tyrosinase inhibition properties of a series of natural and synthetic, bioinspired phenolic compounds that have appeared in the literature in the last five years. Both mushroom and human tyrosinase inhibitors have been considered. Among the first class, flavonoids, in particular chalcones, occupy a prominent role as natural inhibitors, followed by hydroxystilbenes (mainly resveratrol derivatives). A series of more complex phenolic compounds from a variety of sources, first of all belonging to the Moraceae family, have also been described as potent tyrosinase inhibitors. As to the synthetic compounds, hydroxycinnamic acids and chalcones again appear as the most exploited scaffolds. Several inhibition mechanisms have been reported for the described inhibitors, pointing to copper chelating and/or hydrophobic moieties as key structural requirements to achieve good inhibition properties. Emerging trends in the search for novel skin depigmenting agents, including the development of assays that could distinguish between inhibitors and potentially toxic substrates of the enzyme as well as of formulations aimed at improving the bioavailability and hence the effectiveness of well-known inhibitors, have also been addressed.
Collapse
|
29
|
Campaniço A, Carrasco MP, Njoroge M, Seldon R, Chibale K, Perdigão J, Portugal I, Warner DF, Moreira R, Lopes F. Azaaurones as Potent Antimycobacterial Agents Active against MDR- and XDR-TB. ChemMedChem 2019; 14:1537-1546. [PMID: 31294529 DOI: 10.1002/cmdc.201900289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/19/2019] [Indexed: 12/31/2022]
Abstract
Herein we report the screening of a small library of aurones and their isosteric counterparts, azaaurones and N-acetylazaaurones, against Mycobacterium tuberculosis. Aurones were found to be inactive at 20 μm, whereas azaaurones and N-acetylazaaurones emerged as the most potent compounds, with nine derivatives displaying MIC99 values ranging from 0.4 to 2.0 μm. In addition, several N-acetylazaaurones were found to be active against multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical M. tuberculosis isolates. The antimycobacterial mechanism of action of these compounds remains to be determined; however, a preliminary mechanistic study confirmed that they do not inhibit the mycobacterial cytochrome bc1 complex. Additionally, microsomal metabolic stability and metabolite identification studies revealed that N-acetylazaaurones are deacetylated to their azaaurone counterparts. Overall, these results demonstrate that azaaurones and their N-acetyl counterparts represent a new entry in the toolbox of chemotypes capable of inhibiting M. tuberculosis growth.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Marta P Carrasco
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Mathew Njoroge
- Division of Clinical Pharmacology, Department of Medicine, Drug Discovery and Development Centre (H3D), University of Cape Town, Observatory, 7925, South Africa
| | - Ronnett Seldon
- Department of Chemistry, South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa.,Department of Chemistry, South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| | - João Perdigão
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Isabel Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Digby F Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa.,Department of Pathology, SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, University of Cape Town, Rondebosch, 7701, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch, 7701, South Africa
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
30
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
31
|
N. Masum M, Yamauchi K, Mitsunaga T. Tyrosinase Inhibitors from Natural and Synthetic Sources as Skin-lightening Agents. ACTA ACUST UNITED AC 2019. [DOI: 10.7831/ras.7.41] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Kosei Yamauchi
- The united graduate school of agricultural science, Gifu University
| | - Tohru Mitsunaga
- The united graduate school of agricultural science, Gifu University
| |
Collapse
|
32
|
Pillaiyar T, Namasivayam V, Manickam M, Jung SH. Inhibitors of Melanogenesis: An Updated Review. J Med Chem 2018; 61:7395-7418. [PMID: 29763564 DOI: 10.1021/acs.jmedchem.7b00967] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Melanins are pigment molecules that determine the skin, eye, and hair color of the human subject to its amount, quality, and distribution. Melanocytes synthesize melanin and provide epidermal protection from various stimuli, such as harmful ultraviolet radiation, through the complex process called melanogenesis. However, serious dermatological problems occur when there is excessive production of melanin in different parts of the human body. These include freckles, melasma, senile lentigo, pigmented acne scars, and cancer. Therefore, controlling the production of melanin is an important approach for the treatment of pigmentation related disorderes. In this Perspective, we focus on the inhibitors of melanogenesis that directly/indirectly target a key enzyme tyrosinase as well as its associated signaling pathways.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon 34134 , Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon 34134 , Korea
| |
Collapse
|
33
|
Zhang M, Li T, Qian M, Li K, Qin Y, Zhao T, Yang LQ. Synthesis and Biological Activities of 1-Azaaurone Derivatives. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Min Zhang
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| | - Ting Li
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| | - Min Qian
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| | - Kailu Li
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| | - Yukun Qin
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| | - Liu-Qing Yang
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| |
Collapse
|
34
|
Ferro S, Deri B, Germanò MP, Gitto R, Ielo L, Buemi MR, Certo G, Vittorio S, Rapisarda A, Pazy Y, Fishman A, De Luca L. Targeting Tyrosinase: Development and Structural Insights of Novel Inhibitors Bearing Arylpiperidine and Arylpiperazine Fragments. J Med Chem 2018; 61:3908-3917. [DOI: 10.1021/acs.jmedchem.7b01745] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Stefania Ferro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Batel Deri
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maria Paola Germanò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Rosaria Gitto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Laura Ielo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Maria Rosa Buemi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Giovanna Certo
- Fondazione Prof. Antonio Imbesi, Piazza Pugliatti 1, 98100 Messina, Italy
| | - Serena Vittorio
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
- Fondazione Prof. Antonio Imbesi, Piazza Pugliatti 1, 98100 Messina, Italy
| | - Antonio Rapisarda
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Yael Pazy
- Technion Center for Structural Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| |
Collapse
|
35
|
Li Q, Yang H, Mo J, Chen Y, Wu Y, Kang C, Sun Y, Sun H. Identification by shape-based virtual screening and evaluation of new tyrosinase inhibitors. PeerJ 2018; 6:e4206. [PMID: 29383286 PMCID: PMC5788061 DOI: 10.7717/peerj.4206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022] Open
Abstract
Targeting tyrosinase is considered to be an effective way to control the production of melanin. Tyrosinase inhibitor is anticipated to provide new therapy to prevent skin pigmentation, melanoma and neurodegenerative diseases. Herein, we report our results in identifying new tyrosinase inhibitors. The shape-based virtual screening was performed to discover new tyrosinase inhibitors. Thirteen potential hits derived from virtual screening were tested by biological determinations. Compound 5186-0429 exhibited the most potent inhibitory activity. It dose-dependently inhibited the activity of tyrosinase, with the IC50 values 6.2 ± 2.0 µM and 10.3 ± 5.4 µM on tyrosine and L-Dopa formation, respectively. The kinetic study of 5186-0429 demonstrated that this compound acted as a competitive inhibitor. We believe the discoveries here could serve as a good starting point for further design of potent tyrosinase inhibitor.
Collapse
Affiliation(s)
- Qi Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Hongyu Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Jun Mo
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Wu
- Nanjing Duoyuan Biochemistry Co., Ltd., Nanjing, China
| | - Chen Kang
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Yuan Sun
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, United States of America
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
36
|
Discovery and structure-activity relationship studies of 2-benzylidene-2,3-dihydro-1 H -inden-1-one and benzofuran-3(2 H )-one derivatives as a novel class of potential therapeutics for inflammatory bowel disease. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|