1
|
Daoud S, Taha MO. Advances in the design and discovery of next-generation janus kinase-2 (JAK2) inhibitors for the treatment of myeloproliferative neoplasms. Expert Opin Drug Discov 2024; 19:1403-1415. [PMID: 39410824 DOI: 10.1080/17460441.2024.2417368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/13/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Myeloproliferative neoplasms (MPNs) are rare hematopoietic disorders driven by mutations in the JAK-STAT signaling pathway genes. While JAK2 inhibitors have transformed MPN treatment, they do not eliminate the malignant clone or prevent disease progression in most patients. This limitation underscores the need for more effective therapies. AREA COVERED This review examines the evolution of JAK2 inhibitors for treating MPNs. Current JAK2 inhibitors primarily function as type I inhibitors, targeting the active kinase conformation, but their effectiveness is limited by ongoing JAK-STAT signaling. To overcome these limitations, next-generation therapies, such as type II JAK2 inhibitors and pseudokinase domain inhibitors, are being developed to target inactive kinase conformations and alternative signaling pathways. Furthermore, combination therapies with PI3K, mTOR, CDK4/6 inhibitors, and epigenetic modulators are being investigated for their potential synergistic effects, aiming for deeper and more durable responses in MPN patients. EXPERT OPINION Next-generation JAK2 inhibitors are needed to enhance current MPNs treatments by overcoming resistance, improving selectivity, targeting specific patient groups, and exploring combination therapies. Addressing challenges in drug design, preclinical testing, and clinical trials is crucial. Developing dual or multiple inhibitors targeting JAK2 and other MPN-related pathways is urgent to address complex signaling networks and improve efficacy.
Collapse
Affiliation(s)
- Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Sciences Private University, Amman, Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Rao VK, Ashtam A, Panda D, Guchhait SK. Natural-Product-Inspired Discovery of Trimethoxyphenyl-1,2,4-triazolosulfonamides as Potent Tubulin Polymerization Inhibitors. ChemMedChem 2024; 19:e202300562. [PMID: 37975190 DOI: 10.1002/cmdc.202300562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
An approach of natural product-inspired strategy and incorporation of an NP-privileged motif has been investigated for the discovery of new tubulin polymerization inhibitors. Two series, N-Arylsulfonyl-3-arylamino-5-amino-1,2,4-triazole derivatives, and their isomers were considered. The compounds were synthesized by construction of the N-aryl-1,2,4-triazole-3,5-diamine motif and sulfonylation. Although the chemo- and regioselectivity in sulfonylation were challenging due to multiple ring-tautomerizable-NH and exocyclic NH2 functionalities present in the molecular motifs, the developed synthetic method enabled the preparation of designed molecular skeletons with biologically important motifs. The approach also led to explore interesting molecular regio- and stereochemical aspects valuable for activity. The X-ray crystallography study indicated that the hydrogen bonding between the arylamine-NH and the arylsulfonyl-"O" unit and appropriate molecular-functionality topology allowed the cis-locking of two aryls, which is important for tubulin-binding and antiproliferative properties. All synthesized compounds majorly showed characteristic antiproliferative effects in breast cancer cells (MCF-7), and four compounds exhibited potent antiproliferative activity. One compound potently bound to tubulin at the colchicine site and inhibited tubulin polymerization in vitro. The compound significantly depolymerized microtubules in MCF-7 cells, arrested the cells at the G2/M phase, and induced cell death. This study represents the importance of the design strategy in medicinal chemistry and the molecular structural features relevant to anticancer anti-tubulin properties. The explored molecules have the potential for further development.
Collapse
Affiliation(s)
- Vajja Krishna Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 160062, S.A.S. Nagar, India
| | - Anvesh Ashtam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Dulal Panda
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 160062, S.A.S. Nagar, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), 160062, S.A.S. Nagar, India
| |
Collapse
|
3
|
Bao H, He W, Chen J. Exploring conformation changes of Janus kinase 2 pseudokinase mediated by mutations through Gaussian accelerated molecular dynamics and principal component analysis. J Biomol Struct Dyn 2023; 42:11115-11132. [PMID: 37740650 DOI: 10.1080/07391102.2023.2260486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
The pseudokinase domain (JH2) of the protein tyrosine kinase (Janus kinase 2, JAK2) regulates the activity of a tyrosine kinase domain (JH1) in JAK2, which is further affected by mutations in the JH2. In this work, Gaussian accelerated molecular dynamics (GaMD) simulations followed by construction of free energy landscapes (FELs) and principal component analysis (PCA) were performed to study effect of two mutations V617F and V617F/E596A on the conformations of the ATP-bound JH2. The dynamic analyses reveal that mutations affect the structural flexibility and correlated motions of the JH2, meanwhile also change the dynamics behavior of the P-loop and αC-helix of the JH2. The information from FELs unveils that mutations induce less energy states than the free JH2 and the WT one. The analyses of interaction networks uncover that mutations affect the salt bridge interactions of ATP with K581, K677 and R715 and alter hydrogen bonding interactions (HBIs) of ATP with the JH2. The changes in conformations of the JH2 and ATP-JH2 interaction networks caused by mutations in turn generate effect on the activity regulations of the JH2 on the JH1. This work is expected to provide significant theoretical helps for deeply understanding the function of the JH2 and drug design toward JAK2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weikai He
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
4
|
Nair PC, Piehler J, Tvorogov D, Ross DM, Lopez AF, Gotlib J, Thomas D. Next-Generation JAK2 Inhibitors for the Treatment of Myeloproliferative Neoplasms: Lessons from Structure-Based Drug Discovery Approaches. Blood Cancer Discov 2023; 4:352-364. [PMID: 37498362 PMCID: PMC10472187 DOI: 10.1158/2643-3230.bcd-22-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023] Open
Abstract
Selective inhibitors of Janus kinase (JAK) 2 have been in demand since the discovery of the JAK2 V617F mutation present in patients with myeloproliferative neoplasms (MPN); however, the structural basis of V617F oncogenicity has only recently been elucidated. New structural studies reveal a role for other JAK2 domains, beyond the kinase domain, that contribute to pathogenic signaling. Here we evaluate the structure-based approaches that led to recently-approved type I JAK2 inhibitors (fedratinib and pacritinib), as well as type II (BBT594 and CHZ868) and pseudokinase inhibitors under development (JNJ7706621). With full-length JAK homodimeric structures now available, superior selective and mutation-specific JAK2 inhibitors are foreseeable. SIGNIFICANCE The JAK inhibitors currently used for the treatment of MPNs are effective for symptom management but not for disease eradication, primarily because they are not strongly selective for the mutant clone. The rise of computational and structure-based drug discovery approaches together with the knowledge of full-length JAK dimer complexes provides a unique opportunity to develop better targeted therapies for a range of conditions driven by pathologic JAK2 signaling.
Collapse
Affiliation(s)
- Pramod C. Nair
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Discipline of Clinical Pharmacology, Flinders Health and Medical Research Institute (FHMRI) Cancer Program, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - David M. Ross
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Angel F. Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Daniel Thomas
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Henry SP, Jorgensen WL. Progress on the Pharmacological Targeting of Janus Pseudokinases. J Med Chem 2023; 66:10959-10990. [PMID: 37578217 DOI: 10.1021/acs.jmedchem.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The Janus kinases (JAKs) are key components of the JAK-STAT signaling pathway and are involved in myriad physiological processes. Though they are the molecular targets of many FDA-approved drugs, these drugs manifest adverse effects due in part to their inhibition of the requisite JAK kinase activity. However, the JAKs uniquely possess an integrated pseudokinase domain (JH2) that regulates the adjacent kinase domain (JH1). The therapeutic targeting of JH2 domains has been less thoroughly explored and may present an avenue to modulate the JAKs without the adverse effects associated with targeting the adjacent JH1 domain. The potential of this strategy was recently demonstrated with the FDA approval of the TYK2 JH2 ligand deucravacitinib for treating plaque psoriasis. In this light, the structure and targetability of the JAK pseudokinases are discussed, in conjunction with the state of development of ligands that bind to these domains.
Collapse
Affiliation(s)
- Sean P Henry
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
6
|
Diluvio G, Kelley TT, Lahiry M, Alvarez-Trotta A, Kolb EM, Shersher E, Astudillo L, Kovall RA, Schürer SC, Capobianco AJ. A novel chemical attack on Notch-mediated transcription by targeting the NACK ATPase. Mol Ther Oncolytics 2023; 28:307-320. [PMID: 36938545 PMCID: PMC10015116 DOI: 10.1016/j.omto.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Notch activation complex kinase (NACK) is a component of the Notch transcriptional machinery critical for the Notch-mediated tumorigenesis. However, the mechanism through which NACK regulates Notch-mediated transcription is not well understood. Here, we demonstrate that NACK binds and hydrolyzes ATP and that only ATP-bound NACK can bind to the Notch ternary complex (NTC). Considering this, we sought to identify inhibitors of this ATP-dependent function and, using computational pipelines, discovered the first small-molecule inhibitor of NACK, Z271-0326, that directly blocks the activity of Notch-mediated transcription and shows potent antineoplastic activity in PDX mouse models. In conclusion, we have discovered the first inhibitor that holds promise for the efficacious treatment of Notch-driven cancers by blocking the Notch activity downstream of the NTC.
Collapse
Affiliation(s)
- Giulia Diluvio
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Tanya T. Kelley
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mohini Lahiry
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Annamil Alvarez-Trotta
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ellen M. Kolb
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Elena Shersher
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Cancer Epigenetics Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luisana Astudillo
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Stephan C. Schürer
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Corresponding author: Stephan C. Schürer, Miller School of Medicine, University of Miami, 1600 North West 10th Avenue, Miami, FL 33136, USA.
| | - Anthony J. Capobianco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Corresponding author: Anthony J. Capobianco, Miller School of Medicine, University of Miami, 1600 North West 10th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
7
|
Chen X, Zhang L, Bao Q, Meng F, Liu C, Xu R, Ji X, You Q, Jiang Z. A JAK tyrosine kinase and pseudokinase Co-inhibition strategy combines enhanced potency and on-demand activation. Eur J Med Chem 2023; 250:115198. [PMID: 36805946 DOI: 10.1016/j.ejmech.2023.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Janus tyrosine kinase (JAK) inhibitors have been on the market for several years, but their use is limited by drug resistance and intolerable side effects. Herein, we propose a novel strategy of JAK tyrosine kinase (TK) and pseudokinase (PK) domain co-inhibition system to consolidate robust JAK inhibition and on-demand activation. A photoexcited prodrug PAT-SIL-TG-1&AT exhibits the synergy effects of TK-PK co-inhibition and enable the spatiotemporal control of JAK2 signaling. The hypoxia-activated prodrug HAT-SIL-TG-1&AT significantly inhibited HEL cells proliferation and downregulated phosphorylated STAT3/5 under hypoxic conditions. Importantly, HAT-SIL-TG-1&AT showed synergistic antitumor effects and selectively inhibited the JAK-STAT signaling in tumor tissues in vivo. This work demonstrates a viable solution to achieve superior JAK2 inhibition, and provides an inspiration for other kinases containing PK domain.
Collapse
Affiliation(s)
- Xuetao Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Liangying Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacy, Hunan Food and Drug Vocational College, Changsha, 410208, China
| | - Qichao Bao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Fanying Meng
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chihong Liu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Rujun Xu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinrui Ji
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Identification of Novel Small Molecule Ligands for JAK2 Pseudokinase Domain. Pharmaceuticals (Basel) 2023; 16:ph16010075. [PMID: 36678572 PMCID: PMC9865020 DOI: 10.3390/ph16010075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Hyperactive mutation V617F in the JAK2 regulatory pseudokinase domain (JH2) is prevalent in patients with myeloproliferative neoplasms. Here, we identified novel small molecules that target JH2 of JAK2 V617F and characterized binding via biochemical and structural approaches. Screening of 107,600 small molecules resulted in identification of 55 binders to the ATP-binding pocket of recombinant JAK2 JH2 V617F protein at a low hit rate of 0.05%, which indicates unique structural characteristics of the JAK2 JH2 ATP-binding pocket. Selected hits and structural analogs were further assessed for binding to JH2 and JH1 (kinase) domains of JAK family members (JAK1-3, TYK2) and for effects on MPN model cell viability. Crystal structures were determined with JAK2 JH2 wild-type and V617F. The JH2-selective binders were identified in diaminotriazole, diaminotriazine, and phenylpyrazolo-pyrimidone chemical entities, but they showed low-affinity, and no inhibition of MPN cells was detected, while compounds binding to both JAK2 JH1 and JH2 domains inhibited MPN cell viability. X-ray crystal structures of protein-ligand complexes indicated generally similar binding modes between the ligands and V617F or wild-type JAK2. Ligands of JAK2 JH2 V617F are applicable as probes in JAK-STAT research, and SAR optimization combined with structural insights may yield higher-affinity inhibitors with biological activity.
Collapse
|
9
|
Henry SP, Liosi ME, Ippolito JA, Menges F, Newton AS, Schlessinger J, Jorgensen WL. Covalent Modification of the JH2 Domain of Janus Kinase 2. ACS Med Chem Lett 2022; 13:1819-1826. [PMID: 36385940 PMCID: PMC9661697 DOI: 10.1021/acsmedchemlett.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022] Open
Abstract
Probe molecules that covalently modify the JAK2 pseudokinase domain (JH2) are reported. Selective targeting of JH2 domains over the kinase (JH1) domains is a necessary feature for ligands intended to evaluate JH2 domains as therapeutic targets. The JH2 domains of three Janus kinases (JAK1, JAK2, and TYK2) possess a cysteine residue in the catalytic loop that does not occur in their JH1 domains. Starting from a non-selective kinase binding molecule, computer-aided design directed attachment of substituents terminating in acrylamide warheads to modify Cys675 of JAK2 JH2. Successful covalent attachment was demonstrated first through observation of enhanced binding with increasing incubation time in fluorescence polarization experiments. Covalent binding also increased selectivity to as much as ca. 30-fold for binding the JAK2 JH2 domain over the JH1 domain after a 20-h incubation. Covalency was confirmed through HPLC electrospray quadrupole time-of-flight HRMS experiments, which revealed the expected mass shifts.
Collapse
Affiliation(s)
- Sean P. Henry
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Maria-Elena Liosi
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joseph A. Ippolito
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Fabian Menges
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ana S. Newton
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joseph Schlessinger
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
| | - William L. Jorgensen
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
10
|
Liosi ME, Ippolito JA, Henry SP, Krimmer SG, Newton AS, Cutrona KJ, Olivarez RA, Mohanty J, Schlessinger J, Jorgensen WL. Insights on JAK2 Modulation by Potent, Selective, and Cell-Permeable Pseudokinase-Domain Ligands. J Med Chem 2022; 65:8380-8400. [PMID: 35653642 PMCID: PMC9939005 DOI: 10.1021/acs.jmedchem.2c00283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
JAK2 is a non-receptor tyrosine kinase that regulates hematopoiesis through the JAK-STAT pathway. The pseudokinase domain (JH2) is an important regulator of the activity of the kinase domain (JH1). V617F mutation in JH2 has been associated with the pathogenesis of various myeloproliferative neoplasms, but JAK2 JH2 has been poorly explored as a pharmacological target. In light of this, we aimed to develop JAK2 JH2 binders that could selectively target JH2 over JH1 and test their capacity to modulate JAK2 activity in cells. Toward this goal, we optimized a diaminotriazole lead compound into potent, selective, and cell-permeable JH2 binders leveraging computational design, synthesis, binding affinity measurements for the JH1, JH2 WT, and JH2 V617F domains, permeability measurements, crystallography, and cell assays. Optimized diaminotriazoles are capable of inhibiting STAT5 phosphorylation in both WT and V617F JAK2 in cells.
Collapse
Affiliation(s)
- Maria-Elena Liosi
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | - Sean P. Henry
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Stefan G. Krimmer
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Ana S. Newton
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Kara J. Cutrona
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Rene A. Olivarez
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Jyotidarsini Mohanty
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - William L. Jorgensen
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA,Corresponding author. William L. Jorgensen.
| |
Collapse
|
11
|
Zhou Y, Li X, Shen R, Wang X, Zhang F, Liu S, Li D, Liu J, Li P, Yan Y, Dong P, Zhang Z, Wu H, Zhuang L, Chowdhury R, Miller M, Issa M, Mao Y, Chen H, Feng J, Li J, Bai C, He F, Tao W. Novel Small Molecule Tyrosine Kinase 2 Pseudokinase Ligands Block Cytokine-Induced TYK2-Mediated Signaling Pathways. Front Immunol 2022; 13:884399. [PMID: 35693820 PMCID: PMC9186491 DOI: 10.3389/fimmu.2022.884399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 11/15/2022] Open
Abstract
A member of the Janus kinase (JAK) family, Tyrosine Kinase 2 (TYK2), is crucial in mediating various cytokine-signaling pathways such as interleukin-23 (IL23), interleukin-12 (IL12) and type I Interferons (IFN) which contribute to autoimmune disorders (e.g., psoriasis, lupus, and inflammatory bowel disease). Thus, TYK2 represents an attractive target to develop small-molecule therapeutics for the treatment of cytokine-driven inflammatory diseases. Selective inhibition of TYK2 over other JAK isoforms is critical to achieve a favorable therapeutic index in the development of TYK2 inhibitors. However, designing small molecule inhibitors to target the adenosine triphosphate (ATP) binding site of TYK2 kinase has been challenging due to the substantial structural homology of the JAK family catalytic domains. Here, we employed an approach to target the JAK homology 2 (JH2) pseudokinase regulatory domain of the TYK2 protein. We developed a series of small-molecule TYK2 pseudokinase ligands, which suppress the TYK2 catalytic activity through allosteric regulation. The TYK2 pseudokinase-binding small molecules in this study simultaneously achieve high affinity-binding for the TYK2 JH2 domain while also affording significantly reduced affinity for the TYK2 JAK homology 1 (JH1) kinase domain. These TYK2 JH2 selective molecules, although possessing little effect on suppressing the catalytic activity of the isolated TYK2 JH1 catalytic domain in the kinase assays, can still significantly block the TYK2-mediated receptor-stimulated pathways by binding to the TYK2 JH2 domain and allosterically regulating the TYK2 JH1 kinase. These compounds are potent towards human T-cell lines and primary immune cells as well as in human whole-blood specimens. Moreover, TYK2 JH2-binding ligands exhibit remarkable selectivity of TYK2 over JAK isoforms not only biochemically but also in a panel of receptor-stimulated JAK1/JAK2/JAK3-driven cellular functional assays. In addition, the TYK2 JH2-targeting ligands also demonstrate high selectivity in a multi-kinase screening panel. The data in the current study underscores that the TYK2 JH2 pseudokinase is a promising therapeutic target for achieving a high degree of biological selectivity. Meanwhile, targeting the JH2 domain represents an appealing strategy for the development of clinically well-tolerated TYK2 inhibitors that would have superior efficacy and a favorable safety profile compared to the existing Janus kinase inhibitors against autoimmune diseases.
Collapse
Affiliation(s)
- Yu Zhou
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
- *Correspondence: Yu Zhou, ; Xin Li,
| | - Xin Li
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
- *Correspondence: Yu Zhou, ; Xin Li,
| | - Ru Shen
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Xiangzhu Wang
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Fan Zhang
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Suxing Liu
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Di Li
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Jian Liu
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Puhui Li
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Yinfa Yan
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Ping Dong
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Zhigao Zhang
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Heping Wu
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Linghang Zhuang
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | | | - Matthew Miller
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Mena Issa
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Yuchang Mao
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Hongli Chen
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Jun Feng
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Jing Li
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Chang Bai
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Feng He
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Weikang Tao
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| |
Collapse
|
12
|
Henry SP, Liosi ME, Ippolito JA, Cutrona KJ, Krimmer SG, Newton AS, Schlessinger J, Jorgensen WL. Conversion of a False Virtual Screen Hit into Selective JAK2 JH2 Domain Binders Using Convergent Design Strategies. ACS Med Chem Lett 2022; 13:819-826. [PMID: 35586418 PMCID: PMC9109162 DOI: 10.1021/acsmedchemlett.2c00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
The Janus kinase 2 (JAK2) pseudokinase domain (JH2) is an ATP-binding domain that regulates the activity of the catalytic tyrosine kinase domain (JH1). Dysregulation of JAK2 JH1 signaling caused by the V617F mutation in JH2 is implicated in various myeloproliferative neoplasms. To explore if JAK2 activity can be modulated by a small molecule binding to the ATP site in JH2, we have developed several ligand series aimed at selectively targeting the JAK2 JH2 domain. We report here the evolution of a false virtual screen hit into a new JAK2 JH2 series. Optimization guided by computational modeling has yielded analogues with nanomolar affinity for the JAK2 JH2 domain and >100-fold selectivity for the JH2 domain over the JH1 domain. A crystal structure for one of the potent compounds bound to JAK2 JH2 clarifies the origins of the strong binding and selectivity. The compounds expand the platform for seeking molecules to regulate JAK2 signaling, including V617F JAK2 hyperactivation.
Collapse
Affiliation(s)
- Sean P. Henry
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Maria-Elena Liosi
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joseph A. Ippolito
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Kara J. Cutrona
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Stefan G. Krimmer
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Ana S. Newton
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joseph Schlessinger
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
| | - William L. Jorgensen
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
13
|
Newton AS, Liosi ME, Henry SP, Deiana L, Faver JC, Krimmer SG, Puleo DE, Schlessinger J, Jorgensen WL. Indoloxytriazines as binding molecules for the JAK2 JH2 pseudokinase domain and its V617F variant. Tetrahedron Lett 2021; 77. [PMID: 34393283 DOI: 10.1016/j.tetlet.2021.153248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Small molecules that selectively bind to the pseudokinase JH2 domain over the JH1 kinase domain of JAK2 kinase are sought. Virtual screening led to the purchase of 17 compounds among which 9 were found to bind to V617F JAK2 JH2 with affinities of 40 - 300 μM in a fluorogenic assay. Ten analogues were then purchased yielding 9 additional active compounds. Aminoanilinyltriazine 22 was particularly notable as it shows no detectable binding to JAK2 JH1, and it has a 65-μM dissociation constant K d with V617F JAK2 JH2. A crystal structure for 22 in complex with wild-type JAK2 JH2 was obtained to elucidate the binding mode. Additional de novo design led to the synthesis of 19 analogues of 22 with the most potent being 33n with K d values of 2-3 μM for WT and V617F JAK2 JH2, and with 16-fold selectivity relative to binding with WT JAK2 JH1.
Collapse
Affiliation(s)
- Ana S Newton
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107
| | - Maria-Elena Liosi
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107
| | - Sean P Henry
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107
| | - Luca Deiana
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107
| | - John C Faver
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107
| | - Stefan G Krimmer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066
| | - David E Puleo
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066
| | | |
Collapse
|
14
|
Sperti M, Malavolta M, Ciniero G, Borrelli S, Cavaglià M, Muscat S, Tuszynski JA, Afeltra A, Margiotta DPE, Navarini L. JAK inhibitors in immune-mediated rheumatic diseases: From a molecular perspective to clinical studies. J Mol Graph Model 2021; 104:107789. [DOI: 10.1016/j.jmgm.2020.107789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
|
15
|
Janus Kinases in Leukemia. Cancers (Basel) 2021; 13:cancers13040800. [PMID: 33672930 PMCID: PMC7918039 DOI: 10.3390/cancers13040800] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/12/2023] Open
Abstract
Janus kinases (JAKs) transduce signals from dozens of extracellular cytokines and function as critical regulators of cell growth, differentiation, gene expression, and immune responses. Deregulation of JAK/STAT signaling is a central component in several human diseases including various types of leukemia and other malignancies and autoimmune diseases. Different types of leukemia harbor genomic aberrations in all four JAKs (JAK1, JAK2, JAK3, and TYK2), most of which are activating somatic mutations and less frequently translocations resulting in constitutively active JAK fusion proteins. JAKs have become important therapeutic targets and currently, six JAK inhibitors have been approved by the FDA for the treatment of both autoimmune diseases and hematological malignancies. However, the efficacy of the current drugs is not optimal and the full potential of JAK modulators in leukemia is yet to be harnessed. This review discusses the deregulation of JAK-STAT signaling that underlie the pathogenesis of leukemia, i.e., mutations and other mechanisms causing hyperactive cytokine signaling, as well as JAK inhibitors used in clinic and under clinical development.
Collapse
|
16
|
Role of water in the determination of protonation states of titratable residues. J Mol Model 2021; 27:61. [PMID: 33517493 DOI: 10.1007/s00894-021-04677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Water is the fundamental unit for living being, and its contribution in variety of crucial cellular functions is widely accepted. The presence of water molecules in protein's environment also accounts for structural optimization, in which highly conserved water molecules ensure structural stability of the biomolecule by providing protein-water (solute-solvent) hydrogen-bond interaction networks. Similarly, protonation states and pKa values of individual amino acid residues are also influenced by neighboring water molecules present in the protein's vicinity. In the present study, we have highlighted the role of water molecules in hydrogen-bond optimization, in determining pKa values and protonation states of titratable residues in JH2 domain of JAK2 apo protein. We found that inclusion or exclusion of water molecules while calculating pKa and assigning protonation states to amino acid residues during the molecular system build-up step resulted in slight differences in pKa values of few titratable residues and alternative protonation states of a certain residue. Accordingly, different protonation states of ionizable residues offer differing interaction patterns. Thus, we inferred that the presence of water optimizes the hydrogen-bond interactions by forming direct protein-water interactions and by linking via protein-protein bridging interactions. However, in the absence of water, the interaction pattern is somewhat disrupted. We assume that water molecules could modulate the plausibility of a particular protonation state of titratable residues on the basis of its fit with the local environment, by utilizing some particular hydrogen-bond contacts that would remain unexploited in the absence of water.
Collapse
|
17
|
Mace PD, Murphy JM. There's more to death than life: Noncatalytic functions in kinase and pseudokinase signaling. J Biol Chem 2021; 296:100705. [PMID: 33895136 PMCID: PMC8141879 DOI: 10.1016/j.jbc.2021.100705] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Protein kinases are present in all domains of life and play diverse roles in cellular signaling. Whereas the impact of substrate phosphorylation by protein kinases has long been appreciated, it is becoming increasingly clear that protein kinases also play other, noncatalytic, functions. Here, we review recent developments in understanding the noncatalytic functions of protein kinases. Many noncatalytic activities are best exemplified by protein kinases that are devoid of enzymatic activity altogether-known as pseudokinases. These dead proteins illustrate that, beyond conventional notions of kinase function, catalytic activity can be dispensable for biological function. Through key examples we illustrate diverse mechanisms of noncatalytic kinase activity: as allosteric modulators; protein-based switches; scaffolds for complex assembly; and as competitive inhibitors in signaling pathways. In common, these noncatalytic mechanisms exploit the nature of the protein kinase fold as a versatile protein-protein interaction module. Many examples are also intrinsically linked to the ability of the protein kinase to switch between multiple states, a function shared with catalytic protein kinases. Finally, we consider the contemporary landscape of small molecules to modulate noncatalytic functions of protein kinases, which, although challenging, has significant potential given the scope of noncatalytic protein kinase function in health and disease.
Collapse
Affiliation(s)
- Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - James M Murphy
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
18
|
Cutrona KJ, Newton AS, Krimmer SG, Tirado-Rives J, Jorgensen WL. Metadynamics as a Postprocessing Method for Virtual Screening with Application to the Pseudokinase Domain of JAK2. J Chem Inf Model 2020; 60:4403-4415. [PMID: 32383599 DOI: 10.1021/acs.jcim.0c00276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With standard scoring methods, top-ranked compounds from virtual screening by docking often turn out to be inactive. For this reason, metadynamics, a method used to sample rare events, was studied to further evaluate docking poses with the aim of reducing false positives. Specifically, virtual screening was performed with Glide SP to seek potential molecules to bind to the ATP site in the pseudokinase domain of JAK2 kinase, and promising compounds were selected from the top-ranked 1000 based on visualization. Rescoring with Glide XP, GOLD, and MM/GBSA was unable to differentiate well between active and inactive compounds. Metadynamics was then used to gauge the relative binding affinity from the required time or the potential of mean force needed to dissociate the ligand from the bound complex. With consideration of previously known binders of varying affinities, metadynamics was able to differentiate between the most active compounds and inactive or weakly active ones, and it could identify correctly most of the selected virtual screening compounds as false positives. Thus, metadynamics has the potential to be a viable postprocessing method for virtual screening, minimizing the expense of buying or synthesizing inactive compounds.
Collapse
Affiliation(s)
- Kara J Cutrona
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ana S Newton
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Stefan G Krimmer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Julian Tirado-Rives
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
19
|
Liosi ME, Krimmer SG, Newton AS, Dawson TK, Puleo DE, Cutrona KJ, Suzuki Y, Schlessinger J, Jorgensen WL. Selective Janus Kinase 2 (JAK2) Pseudokinase Ligands with a Diaminotriazole Core. J Med Chem 2020; 63:5324-5340. [PMID: 32329617 DOI: 10.1021/acs.jmedchem.0c00192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Janus kinases (JAKs) are non-receptor tyrosine kinases that are essential components of the JAK-STAT signaling pathway. Associated aberrant signaling is responsible for many forms of cancer and disorders of the immune system. The present focus is on the discovery of molecules that may regulate the activity of JAK2 by selective binding to the JAK2 pseudokinase domain, JH2. Specifically, the Val617Phe mutation in JH2 stimulates the activity of the adjacent kinase domain (JH1) resulting in myeloproliferative disorders. Starting from a non-selective screening hit, we have achieved the goal of discovering molecules that preferentially bind to the ATP binding site in JH2 instead of JH1. We report the design and synthesis of the compounds and binding results for the JH1, JH2, and JH2 V617F domains, as well as five crystal structures for JH2 complexes. Testing with a selective and non-selective JH2 binder on the autophosphorylation of wild-type and V617F JAK2 is also contrasted.
Collapse
Affiliation(s)
- Maria-Elena Liosi
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Stefan G Krimmer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ana S Newton
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Thomas K Dawson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - David E Puleo
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Kara J Cutrona
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Yoshihisa Suzuki
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
20
|
Abstract
Pseudokinases are members of the protein kinase superfamily but signal primarily through noncatalytic mechanisms. Many pseudokinases contribute to the pathologies of human diseases, yet they remain largely unexplored as drug targets owing to challenges associated with modulation of their biological functions. Our understanding of the structure and physiological roles of pseudokinases has improved substantially over the past decade, revealing intriguing similarities between pseudokinases and their catalytically active counterparts. Pseudokinases often adopt conformations that are analogous to those seen in catalytically active kinases and, in some cases, can also bind metal cations and/or nucleotides. Several clinically approved kinase inhibitors have been shown to influence the noncatalytic functions of active kinases, providing hope that similar properties in pseudokinases could be pharmacologically regulated. In this Review, we discuss known roles of pseudokinases in disease, their unique structural features and the progress that has been made towards developing pseudokinase-directed therapeutics.
Collapse
|
21
|
Synthesis and biological evaluation of novel pyrazolo[1,5-a]pyrimidines: Discovery of a selective inhibitor of JAK1 JH2 pseudokinase and VPS34. Bioorg Med Chem Lett 2020; 30:126813. [DOI: 10.1016/j.bmcl.2019.126813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
|
22
|
Patel O, Roy MJ, Murphy JM, Lucet IS. The PEAK family of pseudokinases, their role in cell signalling and cancer. FEBS J 2019; 287:4183-4197. [PMID: 31599110 DOI: 10.1111/febs.15087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/11/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
Abstract
The study of pseudokinases has uncovered that catalysis-independent functions play a critical role in cell signalling regulation. However, how pseudokinases dynamically assemble and regulate oncogenic signalling pathways remains, in most cases, unclear due to a limited knowledge of the structural determinants that are critical for their functions. Here, we review the recent progress made to unravel the role of the PEAK family of pseudokinases, which comprises SgK269, SgK223 and the recently identified PEAK3, in assembling specific oncogenic signalling pathways that contribute to the progression of several aggressive cancers. We focus on recent structural advances revealing that SgK269 and SgK223 can homo- and heteroassociate via a unique dimerisation domain, comprising conserved regulatory helices directly surrounding the pseudokinase domain, which is also conserved in PEAK3. We also highlight a potential oligomerisation mechanism driven by the pseudokinase domain. While it is likely that homo- or heterodimerisation and oligomerisation mechanisms contribute to the assembly of complex signalling hubs and provide a means to spatially and temporally modulate and diversify signalling outputs, the exact role that these oncogenic scaffolds play in regulating cell migration, invasion and morphology remains unclear. Here, we attempt to link their structural characteristics to their cellular functions by providing a thorough analysis of the signalling transduction pathways they are known to modulate.
Collapse
Affiliation(s)
- Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Michael J Roy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
23
|
Pisa R, Cupido T, Steinman JB, Jones NH, Kapoor TM. Analyzing Resistance to Design Selective Chemical Inhibitors for AAA Proteins. Cell Chem Biol 2019; 26:1263-1273.e5. [PMID: 31257183 DOI: 10.1016/j.chembiol.2019.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/15/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022]
Abstract
Drug-like inhibitors are often designed by mimicking cofactor or substrate interactions with enzymes. However, as active sites are comprised of conserved residues, it is difficult to identify the critical interactions needed to design selective inhibitors. We are developing an approach, named RADD (resistance analysis during design), which involves engineering point mutations in the target to generate active alleles and testing compounds against them. Mutations that alter compound potency identify residues that make key interactions with the inhibitor and predict target-binding poses. Here, we apply this approach to analyze how diaminotriazole-based inhibitors bind spastin, a microtubule-severing AAA (ATPase associated with diverse cellular activities) protein. The distinct binding poses predicted for two similar inhibitors were confirmed by a series of X-ray structures. Importantly, our approach not only reveals how selective inhibition of the target can be achieved but also identifies resistance-conferring mutations at the early stages of the design process.
Collapse
Affiliation(s)
- Rudolf Pisa
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY 10065, USA
| | - Tommaso Cupido
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan B Steinman
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Natalie H Jones
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY 10065, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
24
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
25
|
McNally R, Li Q, Li K, Dekker C, Vangrevelinghe E, Jones M, Chène P, Machauer R, Radimerski T, Eck MJ. Discovery and Structural Characterization of ATP-Site Ligands for the Wild-Type and V617F Mutant JAK2 Pseudokinase Domain. ACS Chem Biol 2019; 14:587-593. [PMID: 30763067 DOI: 10.1021/acschembio.8b00722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The oncogenic V617F mutation lies in the pseudokinase domain of JAK2, marking it as a potential target for development of compounds that might inhibit the pathogenic activity of the mutant protein. We used differential scanning fluorimetry to identify compounds that bind the JAK2 pseudokinase domain. Crystal structures of five candidate compounds with the wild-type domain reveal their modes of binding. Exploration of analogs of screening hit BI-D1870 led to the identification of compound 2, a 123 nM ligand for the pseudokinase domain. Interestingly, crystal structures of the V617F domain in complex with two unrelated compounds reveal a conformation that is characteristic of the wild-type domain, rather than that previously observed for the V617F mutant. These structures suggest that certain ATP-site ligands can modulate the V617F allosteric site, thereby providing a mechanistic rationale for targeting the pseudokinase domain and a structural foundation for development of more potent and pseudokinase-selective compounds.
Collapse
Affiliation(s)
- Randall McNally
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Qing Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Kunhua Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Carien Dekker
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Eric Vangrevelinghe
- Oncology Research, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Matthew Jones
- Oncology Research, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Patrick Chène
- Oncology Research, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Rainer Machauer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Thomas Radimerski
- Oncology Research, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Michael J. Eck
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| |
Collapse
|
26
|
Gadina M, Le MT, Schwartz DM, Silvennoinen O, Nakayamada S, Yamaoka K, O’Shea JJ. Janus kinases to jakinibs: from basic insights to clinical practice. Rheumatology (Oxford) 2019; 58:i4-i16. [PMID: 30806710 PMCID: PMC6657570 DOI: 10.1093/rheumatology/key432] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/15/2018] [Indexed: 12/30/2022] Open
Abstract
Cytokines are critical mediators of diverse immune and inflammatory diseases. Targeting cytokines and cytokine receptors with biologics has revolutionized the treatment of many of these diseases, but targeting intracellular signalling with Janus kinase (JAK) inhibitors (jakinibs) now represents a major new therapeutic advance. We are still in the first decade since these drugs were approved and there is still much to be learned about the mechanisms of action of these drugs and the practical use of these agents. Herein we will review cytokines that do, and just as importantly, do not signal by JAKs, as well as explain how this relates to both efficacy and side effects in various diseases. We will review new, next-generation selective jakinibs, as well as the prospects and challenges ahead in targeting JAKs.
Collapse
Affiliation(s)
- Massimo Gadina
- Translational Immunology Section, National Institutes of Health, Bethesda, MD, USA
| | - Mimi T Le
- Translational Immunology Section, National Institutes of Health, Bethesda, MD, USA
| | - Daniella M Schwartz
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olli Silvennoinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Faculty of Medicine and Life Sciences, Fimlab Laboratories University of Tampere, Tampere, Finland
| | - Shingo Nakayamada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Kunihiro Yamaoka
- Department of Rheumatology and Infectious Disease, Kitasato University, School of Medicine, Sagamihara, Kanagawa, Japan
| | - John J O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Leroy E, Balligand T, Pecquet C, Mouton C, Colau D, Shiau AK, Dusa A, Constantinescu SN. Differential effect of inhibitory strategies of the V617 mutant of JAK2 on cytokine receptor signaling. J Allergy Clin Immunol 2019; 144:224-235. [PMID: 30707971 DOI: 10.1016/j.jaci.2018.12.1023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Janus kinase (JAK) 2 plays pivotal roles in signaling by several cytokine receptors. The mutant JAK2 V617F is the most common molecular event associated with myeloproliferative neoplasms. Selective targeting of the mutant would be ideal for treating these pathologies by sparing essential JAK2 functions. OBJECTIVE We characterize inhibitory strategies for JAK2 V617F and assess their effect on physiologic signaling by distinct cytokine receptors. METHODS Through structure-guided mutagenesis, we assessed the role of key residues around F617 and used a combination of cellular and biochemical assays to measure the activity of JAKs in reconstituted cells. We also assessed the effect of several specific JAK2 V617F inhibitory mutations on receptor dimerization using the NanoBiT protein complementation approach. RESULTS We identified a novel Janus kinase homology 2 (JH2) αC mutation, A598F, which is suggested to inhibit the aromatic stacking between F617 with F594 and F595. Like other JAK2 V617F inhibitory mutations, A598F decreased oncogenic activation and spared cytokine activation while preventing JAK2 V617F-promoted erythropoietin receptor dimerization. Surprisingly, A598F and other V617F-inhibiting mutations (F595A, E596R, and F537A) significantly impaired IFN-γ signaling. This was specific for IFN-γ because the inhibitory mutations preserved responses to ligands of a series of receptor complexes. Similarly, homologous mutations in JAK1 prevented signaling by IFN-γ. CONCLUSIONS The JH2 αC region, which is required for JAK2 V617F hyperactivation, is crucial for relaying cytokine-induced signaling of the IFN-γ receptor. We discuss how strategies aiming to inhibit JAK2 V617F could be used for identifying inhibitors of IFN-γ signaling.
Collapse
Affiliation(s)
- Emilie Leroy
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - Thomas Balligand
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Christian Pecquet
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Céline Mouton
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Didier Colau
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Andrew K Shiau
- Small Discovery Program, Ludwig Institute for Cancer Research, La Jolla, Calif
| | - Alexandra Dusa
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium.
| |
Collapse
|
28
|
Foulkes DM, Byrne DP, Yeung W, Shrestha S, Bailey FP, Ferries S, Eyers CE, Keeshan K, Wells C, Drewry DH, Zuercher WJ, Kannan N, Eyers PA. Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells. Sci Signal 2018; 11:11/549/eaat7951. [PMID: 30254057 DOI: 10.1126/scisignal.aat7951] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A major challenge associated with biochemical and cellular analysis of pseudokinases is a lack of target-validated small-molecule compounds with which to probe function. Tribbles 2 (TRIB2) is a cancer-associated pseudokinase with a diverse interactome, including the canonical AKT signaling module. There is substantial evidence that human TRIB2 promotes survival and drug resistance in solid tumors and blood cancers and therefore is of interest as a therapeutic target. The unusual TRIB2 pseudokinase domain contains a unique cysteine-rich C-helix and interacts with a conserved peptide motif in its own carboxyl-terminal tail, which also supports its interaction with E3 ubiquitin ligases. We found that TRIB2 is a target of previously described small-molecule protein kinase inhibitors, which were originally designed to inhibit the canonical kinase domains of epidermal growth factor receptor tyrosine kinase family members. Using a thermal shift assay, we discovered TRIB2-binding compounds within the Published Kinase Inhibitor Set (PKIS) and used a drug repurposing approach to classify compounds that either stabilized or destabilized TRIB2 in vitro. TRIB2 destabilizing agents, including the covalent drug afatinib, led to rapid TRIB2 degradation in human AML cancer cells, eliciting tractable effects on signaling and survival. Our data reveal new drug leads for the development of TRIB2-degrading compounds, which will also be invaluable for unraveling the cellular mechanisms of TRIB2-based signaling. Our study highlights that small molecule-induced protein down-regulation through drug "off-targets" might be relevant for other inhibitors that serendipitously target pseudokinases.
Collapse
Affiliation(s)
- Daniel M Foulkes
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Wayland Yeung
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Safal Shrestha
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Fiona P Bailey
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Samantha Ferries
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.,Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.,Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natarajan Kannan
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
29
|
Bryan MC, Rajapaksa NS. Kinase Inhibitors for the Treatment of Immunological Disorders: Recent Advances. J Med Chem 2018; 61:9030-9058. [DOI: 10.1021/acs.jmedchem.8b00667] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marian C. Bryan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Naomi S. Rajapaksa
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
30
|
Vainchenker W, Leroy E, Gilles L, Marty C, Plo I, Constantinescu SN. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000Res 2018; 7:82. [PMID: 29399328 PMCID: PMC5773931 DOI: 10.12688/f1000research.13167.1] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 01/04/2023] Open
Abstract
JAK inhibitors have been developed following the discovery of the
JAK2V617F in 2005 as the driver mutation of the majority of non-
BCR-ABL1 myeloproliferative neoplasms (MPNs). Subsequently, the search for JAK2 inhibitors continued with the discovery that the other driver mutations (
CALR and
MPL) also exhibited persistent JAK2 activation. Several type I ATP-competitive JAK inhibitors with different specificities were assessed in clinical trials and exhibited minimal hematologic toxicity. Interestingly, these JAK inhibitors display potent anti-inflammatory activity. Thus, JAK inhibitors targeting preferentially JAK1 and JAK3 have been developed to treat inflammation, autoimmune diseases, and graft-versus-host disease. Ten years after the beginning of clinical trials, only two drugs have been approved by the US Food and Drug Administration: one JAK2/JAK1 inhibitor (ruxolitinib) in intermediate-2 and high-risk myelofibrosis and hydroxyurea-resistant or -intolerant polycythemia vera and one JAK1/JAK3 inhibitor (tofacitinib) in methotrexate-resistant rheumatoid arthritis. The non-approved compounds exhibited many off-target effects leading to neurological and gastrointestinal toxicities, as seen in clinical trials for MPNs. Ruxolitinib is a well-tolerated drug with mostly anti-inflammatory properties. Despite a weak effect on the cause of the disease itself in MPNs, it improves the clinical state of patients and increases survival in myelofibrosis. This limited effect is related to the fact that ruxolitinib, like the other type I JAK2 inhibitors, inhibits equally mutated and wild-type JAK2 (JAK2WT) and also the JAK2 oncogenic activation. Thus, other approaches need to be developed and could be based on either (1) the development of new inhibitors specifically targeting
JAK2V617F or (2) the combination of the actual JAK2 inhibitors with other therapies, in particular with molecules targeting pathways downstream of JAK2 activation or the stability of JAK2 molecule. In contrast, the strong anti-inflammatory effects of the JAK inhibitors appear as a very promising therapeutic approach for many inflammatory and auto-immune diseases.
Collapse
Affiliation(s)
- William Vainchenker
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Emilie Leroy
- Signal Transduction & Molecular Hematology Unit, Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure Gilles
- Institut National de la Transfusion Sanguine, Paris, France
| | - Caroline Marty
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Stefan N Constantinescu
- Signal Transduction & Molecular Hematology Unit, Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
31
|
Speirs C, Williams JJL, Riches K, Salt IP, Palmer TM. Linking energy sensing to suppression of JAK-STAT signalling: A potential route for repurposing AMPK activators? Pharmacol Res 2017; 128:88-100. [PMID: 29037480 DOI: 10.1016/j.phrs.2017.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
Exaggerated Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling is key to the pathogenesis of pro-inflammatory disorders, such as rheumatoid arthritis and cardiovascular diseases. Mutational activation of JAKs is also responsible for several haematological malignancies, including myeloproliferative neoplasms and acute lymphoblastic leukaemia. Accumulating evidence links adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), an energy sensor and regulator of organismal and cellular metabolism, with the suppression of immune and inflammatory processes. Recent studies have shown that activation of AMPK can limit JAK-STAT-dependent signalling pathways via several mechanisms. These novel findings support AMPK activation as a strategy for management of an array of disorders characterised by hyper-activation of the JAK-STAT pathway. This review discusses the pivotal role of JAK-STAT signalling in a range of disorders and how both established clinically used and novel AMPK activators might be used to treat these conditions.
Collapse
Affiliation(s)
- Claire Speirs
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jamie J L Williams
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Kirsten Riches
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Timothy M Palmer
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
32
|
Newton AS, Deiana L, Puleo DE, Cisneros JA, Cutrona KJ, Schlessinger J, Jorgensen WL. JAK2 JH2 Fluorescence Polarization Assay and Crystal Structures for Complexes with Three Small Molecules. ACS Med Chem Lett 2017. [PMID: 28626520 DOI: 10.1021/acsmedchemlett.7b00154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A competitive fluorescence polarization (FP) assay is reported for determining binding affinities of probe molecules with the pseudokinase JAK2 JH2 allosteric site. The syntheses of the fluorescent 5 and 6 used in the assay are reported as well as Kd results for 10 compounds, including JNJ7706621, NVP-BSK805, and filgotinib (GLPG0634). X-ray crystal structures of JAK2 JH2 in complex with NVP-BSK805, filgotinib, and diaminopyrimidine 8 elucidate the binding poses.
Collapse
Affiliation(s)
- Ana S. Newton
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Luca Deiana
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - David E. Puleo
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - José A. Cisneros
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Kara J. Cutrona
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - William L. Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|