1
|
Palivan CG, Heuberger L, Gaitzsch J, Voit B, Appelhans D, Borges Fernandes B, Battaglia G, Du J, Abdelmohsen L, van Hest JCM, Hu J, Liu S, Zhong Z, Sun H, Mutschler A, Lecommandoux S. Advancing Artificial Cells with Functional Compartmentalized Polymeric Systems - In Honor of Wolfgang Meier. Biomacromolecules 2024; 25:5454-5467. [PMID: 39196319 DOI: 10.1021/acs.biomac.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.
Collapse
Affiliation(s)
- Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Barbara Borges Fernandes
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Loai Abdelmohsen
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, and International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Angela Mutschler
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
2
|
López-Cuevas P, Oates TCL, Tong Q, McGowan LM, Cross SJ, Xu C, Zhao Y, Yin Z, Toye AM, Boussahel A, Hammond CL, Mann S, Martin P. Reprogramming macrophages with R848-loaded artificial protocells to modulate skin and skeletal wound healing. J Cell Sci 2024; 137:jcs262202. [PMID: 39078119 PMCID: PMC11385641 DOI: 10.1242/jcs.262202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
After tissue injury, inflammatory cells are rapidly recruited to the wound where they clear microbes and other debris, and coordinate the behaviour of other cell lineages at the repair site in both positive and negative ways. In this study, we take advantage of the translucency and genetic tractability of zebrafish to evaluate the feasibility of reprogramming innate immune cells in vivo with cargo-loaded protocells and investigate how this alters the inflammatory response in the context of skin and skeletal repair. Using live imaging, we show that protocells loaded with R848 cargo (which targets TLR7 and TLR8 signalling), are engulfed by macrophages resulting in their switching to a pro-inflammatory phenotype and altering their regulation of angiogenesis, collagen deposition and re-epithelialization during skin wound healing, as well as dampening osteoblast and osteoclast recruitment and bone mineralization during fracture repair. For infected skin wounds, R848-reprogrammed macrophages exhibited enhanced bactericidal activities leading to improved healing. We replicated our zebrafish studies in cultured human macrophages, and showed that R848-loaded protocells similarly reprogramme human cells, indicating how this strategy might be used to modulate wound inflammation in the clinic.
Collapse
Affiliation(s)
- Paco López-Cuevas
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Tiah C L Oates
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Qiao Tong
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Lucy M McGowan
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Stephen J Cross
- Wolfson Bioimaging Facility, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Can Xu
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Yu Zhao
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Zhuping Yin
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Ashley M Toye
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, Bristol BS34 7QH, UK
| | - Asme Boussahel
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Stephen Mann
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
You J, Qian Y, Xiong S, Zhang P, Mukwaya V, Levi-Kalisman Y, Raviv U, Dou H. Poly(ferrocenylsilane)-Based Redox-Active Artificial Organelles for Biomimetic Cascade Reactions. Chemistry 2024; 30:e202401435. [PMID: 38739532 DOI: 10.1002/chem.202401435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Artificial organelles serve as functional counterparts to natural organelles, which are primarily employed to artificially replicate, restore, or enhance cellular functions. While most artificial organelles exhibit basic functions, we diverge from this norm by utilizing poly(ferrocenylmethylethylthiocarboxypropylsilane) microcapsules (PFC MCs) to construct multifunctional artificial organelles through water/oil interfacial self-assembly. Within these PFC MCs, enzymatic cascades are induced through active molecular exchange across the membrane to mimic the functions of enzymes in mitochondria. We harness the inherent redox properties of the PFC polymer, which forms the membrane, to facilitate in-situ redox reactions similar to those supported by the inner membrane of natural mitochondria. Subsequent studies have demonstrated the interaction between PFC MCs and living cell including extended lifespans within various cell types. We anticipate that functional PFC MCs have the potential to serve as innovative platforms for organelle mimics capable of executing specific cellular functions.
Collapse
Affiliation(s)
- Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghui Qian
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuhan Xiong
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Vincent Mukwaya
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Koball A, Obst F, Gaitzsch J, Voit B, Appelhans D. Boosting Microfluidic Enzymatic Cascade Reactions with pH-Responsive Polymersomes by Spatio-Chemical Activity Control. SMALL METHODS 2024:e2400282. [PMID: 38989686 DOI: 10.1002/smtd.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Microfluidic flow reactors permit the implementation of sensitive biocatalysts in polymeric environments (e.g., hydrogel dots), mimicking nature through the use of diverse microstructures within defined confinements. However, establishing complex hybrid structures to mimic biological processes and functions under continuous flow with optimal utilization of all components involved in the reaction process represents a significant scientific challenge. To achieve spatial, chemical, and temporal control for any microfluidic application, compartmentalization is required, as well as the unification of different sensitive compartments in the reaction chamber for the microfluidic flow design. This study presents a self-regulating microfluidic system fabricated by a sequential photostructuring process with an intermediate chemical process step to realize pH-sensitive hybrid structures for the fabrication of a microfluidic double chamber reactor for controlled enzymatic cascade reaction (ECR). The key point is the adaptation and retention of the function of pH-responsive horseradish peroxidase-loaded polymersomes in a microfluidic chip under continuous flow. ECR is successfully triggered and controlled by an interplay between glucose oxidase-converted glucose, the membrane state of pH-responsive polymersomes, and other parameters (e.g., flow rate and fluid composition). This study establishes a promising noninvasive regulatory platform for extended spatio-chemical control of current and future ECR and other cascade reaction systems.
Collapse
Affiliation(s)
- Andrea Koball
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Technische Universität Dresden, Fakultät Chemie und Lebensmittelchemie, Organische Chemie der Polymere, D-01062, Dresden, Germany
| | - Franziska Obst
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Technische Universität Dresden, Institut für Halbleiter- und Mikrosystemtechnik, Nöthnitzer Straße 64, D-01187, Dresden, Germany
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Technische Universität Dresden, Fakultät Chemie und Lebensmittelchemie, Organische Chemie der Polymere, D-01062, Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| |
Collapse
|
5
|
Mu W, Jia L, Zhou M, Wu J, Lin Y, Mann S, Qiao Y. Superstructural ordering in self-sorting coacervate-based protocell networks. Nat Chem 2024; 16:158-167. [PMID: 37932411 DOI: 10.1038/s41557-023-01356-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Bottom-up assembly of higher-order cytomimetic systems capable of coordinated physical behaviours, collective chemical signalling and spatially integrated processing is a key challenge in the study of artificial multicellularity. Here we develop an interactive binary population of coacervate microdroplets that spontaneously self-sort into chain-like protocell networks with an alternating sequence of structurally and compositionally dissimilar microdomains with hemispherical contact points. The protocell superstructures exhibit macromolecular self-sorting, spatially localized enzyme/ribozyme biocatalysis and interdroplet molecular translocation. They are capable of topographical reconfiguration using chemical or light-mediated stimuli and can be used as a micro-extraction system for macroscale biomolecular sorting. Our methodology opens a pathway towards the self-assembly of multicomponent protocell networks based on selective processes of coacervate droplet-droplet adhesion and fusion, and provides a step towards the spontaneous orchestration of protocell models into artificial tissues and colonies with ordered architectures and collective functions.
Collapse
Affiliation(s)
- Wenjing Mu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Musen Zhou
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China.
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Gao R, Yu X, Kumar BVVSP, Tian L. Hierarchical Structuration in Protocellular System. SMALL METHODS 2023; 7:e2300422. [PMID: 37438327 DOI: 10.1002/smtd.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Spatial control is one of the ubiquitous features in biological systems and the key to the functional complexity of living cells. The strategies to achieve such precise spatial control in protocellular systems are crucial to constructing complex artificial living systems with functional collective behavior. Herein, the authors review recent advances in the spatial control within a single protocell or between different protocells and discuss how such hierarchical structured protocellular system can be used to understand complex living systems or to advance the development of functional microreactors with the programmable release of various biomacromolecular payloads, or smart protocell-biological cell hybrid system.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Ultrasound, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
7
|
Yu X, Mukwaya V, Mann S, Dou H. Signal Transduction in Artificial Cells. SMALL METHODS 2023; 7:e2300231. [PMID: 37116092 DOI: 10.1002/smtd.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Indexed: 06/19/2023]
Abstract
In recent years, significant progress has been made in the emerging field of constructing biomimetic soft compartments with life-like behaviors. Given that biological activities occur under a flux of energy and matter exchange, the implementation of rudimentary signaling pathways in artificial cells (protocells) is a prerequisite for the development of adaptive sense-response phenotypes in cytomimetic models. Herein, recent approaches to the integration of signal transduction modules in model protocells prepared by bottom-up construction are discussed. The approaches are classified into two categories involving invasive biochemical signals or non-invasive physical stimuli. In the former mechanism, transducers with intrinsic recognition capability respond with high specificity, while in the latter, artificial cells respond through intra-protocellular energy transduction. Although major challenges remain in the pursuit of a sophisticated artificial signaling network for the orchestration of higher-order cytomimetic models, significant advances have been made in establishing rudimentary protocell communication networks, providing novel organizational models for the development of life-like microsystems and new avenues in protoliving technologies.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
- Max Planck Bristol Centre for Minimal Biology and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
8
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
9
|
Xu X, Guan W, Yu X, Xu G, Wang C. Non-interfacial self-assembly of synthetic protocells. Biomater Res 2023; 27:64. [PMID: 37400932 PMCID: PMC10318706 DOI: 10.1186/s40824-023-00402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Protocell refers to the basic unit of life and synthetic molecular assembly with cell structure and function. The protocells have great applications in the field of biomedical technology. Simulating the morphology and function of cells is the key to the preparation of protocells. However, some organic solvents used in the preparation process of protocells would damage the function of the bioactive substance. Perfluorocarbon, which has no toxic effect on bioactive substances, is an ideal solvent for protocell preparation. However, perfluorocarbon cannot be emulsified with water because of its inertia. METHODS Spheroids can be formed in nature even without emulsification, since liquid can reshape the morphology of the solid phase through the scouring action, even if there is no stable interface between the two phases. Inspired by the formation of natural spheroids such as pebbles, we developed non-interfacial self-assembly (NISA) of microdroplets as a step toward synthetic protocells, in which the inert perfluorocarbon was utilized to reshape the hydrogel through the scouring action. RESULTS The synthetic protocells were successfully obtained by using NISA-based protocell techniques, with the morphology very similar to native cells. Then we simulated the cell transcription process in the synthetic protocell and used the protocell as an mRNA carrier to transfect 293T cells. The results showed that protocells delivered mRNAs, and successfully expressed proteins in 293T cells. Further, we used the NISA method to fabricate an artificial cell by extracting and reassembling the membrane, proteins, and genomes of ovarian cancer cells. The results showed that the recombination of tumor cells was successfully achieved with similar morphology as tumor cells. In addition, the synthetic protocell prepared by the NISA method was used to reverse cancer chemoresistance by restoring cellular calcium homeostasis, which verified the application value of the synthetic protocell as a drug carrier. CONCLUSION This synthetic protocell fabricated by the NISA method simulates the occurrence and development process of primitive life, which has great potential application value in mRNA vaccine, cancer immunotherapy, and drug delivery.
Collapse
Affiliation(s)
- Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P.R. China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P.R. China
| | - Xiaolei Yu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P.R. China.
| | - Chenglong Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P.R. China.
| |
Collapse
|
10
|
Wang X, Huang Y, Ren Y, Wang S, Li J, Lin Y, Chen H, Wang L, Huang X. Biotic communities inspired proteinosome-based aggregation for enhancing utilization rate of enzyme. J Colloid Interface Sci 2023; 635:456-465. [PMID: 36599243 DOI: 10.1016/j.jcis.2022.12.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Compared with the individuals, the collective behavior of biotic communities could show certain superior characteristics. Inspired by this idea and based on the conjugation between phenylboronic acid-grafted mesoporous silica nanoparticles and the polysaccharide functionalized membrane of proteinosomes, a type of proteinosomes-based aggregations was constructed. We demonstrated the emergent characteristics of proteinosomes aggregations including accelerated settling velocity and population surviving by sacrificing outside members for the inside. Moreover, this kind of "hand in hand" architecture provided the proteinosomes aggregations with the characteristic of resistance to the negative pressure phagocytosis of micropipette, as well as enhancing utilization rate of the encapsulated enzymes. Overall, it is anticipated that the construction and application of proteinosomes aggregations could contribute to advance the functionality of life-like assembled biomaterial in another way.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yu Ren
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
11
|
López‐Cuevas P, Xu C, Severn CE, Oates TCL, Cross SJ, Toye AM, Mann S, Martin P. Macrophage Reprogramming with Anti-miR223-Loaded Artificial Protocells Enhances In Vivo Cancer Therapeutic Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202717. [PMID: 36314048 PMCID: PMC9762313 DOI: 10.1002/advs.202202717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Several immune cell-expressed miRNAs (miRs) are associated with altered prognostic outcome in cancer patients, suggesting that they may be potential targets for development of cancer therapies. Here, translucent zebrafish (Danio rerio) is utilized to demonstrate that genetic knockout or knockdown of one such miR, microRNA-223 (miR223), globally or specifically in leukocytes, does indeed lead to reduced cancer progression. As a first step toward potential translation to a clinical therapy, a novel strategy is described for reprogramming neutrophils and macrophages utilizing miniature artificial protocells (PCs) to deliver anti-miRs against the anti-inflammatory miR223. Using genetic and live imaging approaches, it is shown that phagocytic uptake of anti-miR223-loaded PCs by leukocytes in zebrafish (and by human macrophages in vitro) effectively prolongs their pro-inflammatory state by blocking the suppression of pro-inflammatory cytokines, which, in turn, drives altered immune cell-cancer cell interactions and ultimately leads to a reduced cancer burden by driving reduced proliferation and increased cell death of tumor cells. This PC cargo delivery strategy for reprogramming leukocytes toward beneficial phenotypes has implications also for treating other systemic or local immune-mediated pathologies.
Collapse
Affiliation(s)
- Paco López‐Cuevas
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
| | - Can Xu
- Centre for Protolife ResearchSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Charlotte E. Severn
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolBS34 7QHUK
| | - Tiah C. L. Oates
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolBS34 7QHUK
| | - Stephen J. Cross
- Wolfson Bioimaging FacilityBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
| | - Ashley M. Toye
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell ProductsUniversity of BristolBristolBS34 7QHUK
| | - Stephen Mann
- Centre for Protolife ResearchSchool of ChemistryUniversity of BristolBristolBS8 1TSUK
- Max Planck Bristol Centre for Minimal BiologySchool of ChemistryUniversity of BristolBristolBS8 1TSUK
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Paul Martin
- School of BiochemistryBiomedical Sciences BuildingUniversity WalkUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
12
|
Living material assembly of bacteriogenic protocells. Nature 2022; 609:1029-1037. [DOI: 10.1038/s41586-022-05223-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/10/2022] [Indexed: 11/08/2022]
|
13
|
Signal processing and generation of bioactive nitric oxide in a model prototissue. Nat Commun 2022; 13:5254. [PMID: 36068269 PMCID: PMC9448809 DOI: 10.1038/s41467-022-32941-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
The design and construction of synthetic prototissues from integrated assemblies of artificial protocells is an important challenge for synthetic biology and bioengineering. Here we spatially segregate chemically communicating populations of enzyme-decorated phospholipid-enveloped polymer/DNA coacervate protocells in hydrogel modules to construct a tubular prototissue-like vessel capable of modulating the output of bioactive nitric oxide (NO). By decorating the protocells with glucose oxidase, horseradish peroxidase or catalase and arranging different modules concentrically, a glucose/hydroxyurea dual input leads to logic-gate signal processing under reaction-diffusion conditions, which results in a distinct NO output in the internal lumen of the model prototissue. The NO output is exploited to inhibit platelet activation and blood clot formation in samples of plasma and whole blood located in the internal channel of the device, thereby demonstrating proof-of-concept use of the prototissue-like vessel for anticoagulation applications. Our results highlight opportunities for the development of spatially organized synthetic prototissue modules from assemblages of artificial protocells and provide a step towards the organization of biochemical processes in integrated micro-compartmentalized media, micro-reactor technology and soft functional materials. A challenge for synthetic biology is the design and construction of prototissue. Here, the authors spatially segregate layers of enzyme-decorated coacervate protocells as a model prototissue capable of chemical signal processing and modulating outputs of nitric oxide to inhibit blood clot formation.
Collapse
|
14
|
Soto-Cruz J, Mukwaya V, Naz M, Zhang P, López-Brenes MJ, Sáenz-Arce G, Rojas-Carrillo O, Dou H. Polysaccharide/Lipid Nanoconjugates as Alternative Building Blocks for Highly Biocompatible Microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9556-9566. [PMID: 35880575 DOI: 10.1021/acs.langmuir.2c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Saccharide/lipid nanoconjugates are attractive building blocks for the construction of micro- and nanosized structures because of the roles of glycolipids in human body, courtesy of their intrinsic and functional properties. Herein, nanoconjugates based on dextran and oleic acid (Dex-OA) were synthesized via facile amide-linkage chemistry. The resultant Dex-OA micelles could self-assemble into spherical water-filled microcapsules via a water-in-oil emulsification process. By cross-linking, the microcapsules could be transferred to aqueous media, forming a stable microcapsule dispersion. According to optical and fluorescence microscopy, the microcapsules displayed a spherical morphology, and their synthesis is dependent on the concentration of Dex-OA nanoconjugates. Furthermore, the microcapsules could easily encapsulate and retain fluorescently labeled dextran. This strategy offers a robust and efficient method for the construction of microcapsules from fully natural amphiphilic building blocks with the potential for application in diverse fields such as biomedicine, protocell research, and microreactors.
Collapse
Affiliation(s)
- Jackeline Soto-Cruz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Laboratorio de Polímeros (POLIUNA), School of Chemistry, Universidad Nacional, Avenue 1, Street 9, Heredia 40101, Costa Rica
- National Center for Biotechnological Innovations (CENIBiot), CeNAT-CONARE, Avenue 35, Street 100, Pavas, San José 10109, Costa Rica
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| | - Mehwish Naz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| | - Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| | | | - Giovanni Sáenz-Arce
- Departamento de Física, Universidad Nacional, Avenue 1, Street 9, Heredia 40101, Costa Rica
| | - Oscar Rojas-Carrillo
- Laboratorio de Polímeros (POLIUNA), School of Chemistry, Universidad Nacional, Avenue 1, Street 9, Heredia 40101, Costa Rica
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 799 Dangui Road, Pudong New District, Shanghai 201203, China
| |
Collapse
|
15
|
Yang R, Wang L, Wu Z, Yin Y, Jiang SW. How Nanotechniques Could Vitalize the O-GlcNAcylation-Targeting Approach for Cancer Therapy. Int J Nanomedicine 2022; 17:1829-1841. [PMID: 35498390 PMCID: PMC9049135 DOI: 10.2147/ijn.s360488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Accumulated data indicated that many types of cancers have increased protein O-GlcNAcylation at cell surface and inside cells. The aberrant O-GlcNAcylation is considered a potential therapeutic target. Although several types of compounds capable of inhibiting O-GlcNAcylation have been developed, their low solubility, poor permeability and delivery efficiency have impeded the application for in vivo and pre-clinical studies. Nanocarriers have the advantages of controllable drug release and active cancer-targeting capability. Moreover, nanoparticles can improve drug delivery efficiency and reduce the non-specific distribution in normal tissues by the enhanced permeability and retention (EPR) effect in cancer. Taking the advantage of O-GlcNAc-specific antibodies or lectins, nanoparticles could further improve their cancer-targeting capability. Although nanocarriers targeting the canonical N- and O-linked glycosylation have been extensively investigated for cancer detection and therapy, application of nanotechniques for the specific targeting of O-GlcNAcylation has not been actively pursued. This review summarizes the general features of GlcNAcylation and its alterations in cancers. Analyses are focused on the following areas: How the nanocarriers may improve the solubility and/or cell permeability of O-GlcNAc transferase (OGT) inhibitors; The modification of nanocarriers with lectins or antibodies for active targeting of O-GlcNAc; The nanocarriers-mediated co-delivery of OGT inhibitors and conventional drugs, which may lead to synergistic effects. Unsolved issues impeding the research progression on O-GlcNAcylation-targeting scheme are also discussed.
Collapse
Affiliation(s)
- Rui Yang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People’s Republic of China
| | - Leilei Wang
- Department of Medical Genetics, Lianyungang Maternal and Child Health Hospital Affiliated to Yangzhou University, Lianyungang, 222000, Jiangsu, People’s Republic of China
| | - Zhifeng Wu
- Department of Ophthalmology, The Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu, People’s Republic of China
| | - Yongxiang Yin
- Department of Pathology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People’s Republic of China
| | - Shi-Wen Jiang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People’s Republic of China
| |
Collapse
|
16
|
Yu X, Zhou L, Wang G, Wang L, Dou H. Hierarchical Structures in Macromolecule-assembled Synthetic Cells. Macromol Rapid Commun 2022; 43:e2100926. [PMID: 35445490 DOI: 10.1002/marc.202100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Various models of synthetic cells have been developed as researchers have sought to explore the origin of life. Based on the fact that structural complexity is the foundation of higher-order functions, this review will focus on hierarchical structures in synthetic cell models that are inspired by living systems, in which macromolecules are the dominant participants. We discuss the underlying advantages and functions provided by biomimetic higher-order structures from four perspectives, including hierarchical structures in membranes, in the composite construction of membrane-coated artificial cytoplasm, in organelle-like subcellular compartments, as well as in synthetic cell-cell assembled synthetic tissues. In parallel, various feasible driving forces and approaches for the fabrication of such higher-order structures are showcased. Furthermore, we highlight both the implemented and potential applications of biomimetic systems, bottom-up biosynthesis, biomedical tissue engineering, and disease therapy. This thriving field is gradually narrowing the gap between fundamental research and applied science. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Long Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, P. R. China
| | - Gangyang Wang
- Gangyang Wang, Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, P. R. China
| | - Lei Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Gao N, Xu C, Yin Z, Li M, Mann S. Triggerable Protocell Capture in Nanoparticle-Caged Coacervate Microdroplets. J Am Chem Soc 2022; 144:3855-3862. [PMID: 35192333 PMCID: PMC9097475 DOI: 10.1021/jacs.1c11414] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Controlling the dynamics of mixed communities of cell-like entities (protocells) provides a step toward the development of higher-order cytomimetic behaviors in artificial cell consortia. In this paper, we develop a caged protocell model with a molecularly crowded coacervate interior surrounded by a non-cross-linked gold (Au)/poly(ethylene glycol) (PEG) nanoparticle-jammed stimuli-responsive membrane. The jammed membrane is unlocked by either exogenous light-mediated Au/PEG dissociation at the Au surface or endogenous enzyme-mediated cleavage of a ketal linkage on the PEG backbone. The membrane assembly/disassembly process is used for the controlled and selective uptake of guest protocells into the caged coacervate microdroplets as a path toward an all-water model of triggerable transmembrane uptake in synthetic protocell communities. Active capture of the guest protocells stems from the high sequestration potential of the coacervate interior such that tailoring the surface properties of the guest protocells provides a rudimentary system of protocell sorting. Our results highlight the potential for programming surface-contact interactions between artificial membrane-bounded compartments and could have implications for the development of protocell networks, storage and delivery microsystems, and microreactor technologies.
Collapse
Affiliation(s)
- Ning Gao
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, U.K.
- Centre
for Protolife Research and Centre for Organized Matter Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Can Xu
- Centre
for Protolife Research and Centre for Organized Matter Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Zhuping Yin
- Centre
for Protolife Research and Centre for Organized Matter Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Mei Li
- Centre
for Protolife Research and Centre for Organized Matter Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
- School
of Materials Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| | - Stephen Mann
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, U.K.
- Centre
for Protolife Research and Centre for Organized Matter Chemistry,
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
- School
of Materials Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
18
|
Chemical communication at the synthetic cell/living cell interface. Commun Chem 2021; 4:161. [PMID: 36697795 PMCID: PMC9814394 DOI: 10.1038/s42004-021-00597-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 01/28/2023] Open
Abstract
Although the complexity of synthetic cells has continued to increase in recent years, chemical communication between protocell models and living organisms remains a key challenge in bottom-up synthetic biology and bioengineering. In this Review, we discuss how communication channels and modes of signal processing can be established between living cells and cytomimetic agents such as giant unilamellar lipid vesicles, proteinosomes, polysaccharidosomes, polymer-based giant vesicles and membrane-less coacervate micro-droplets. We describe three potential modes of chemical communication in consortia of synthetic and living cells based on mechanisms of distributed communication and signal processing, physical embodiment and nested communication, and network-based contact-dependent communication. We survey the potential for applying synthetic cell/living cell communication systems in biomedicine, including the in situ production of therapeutics and development of new bioreactors. Finally, we present a short summary of our findings.
Collapse
|
19
|
Wang J, Wang D, Zhang Y, Dong J. Synthesis and Biopharmaceutical Applications of Sugar-Based Polymers: New Advances and Future Prospects. ACS Biomater Sci Eng 2021; 7:963-982. [PMID: 33523642 DOI: 10.1021/acsbiomaterials.0c01710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rapid rise in research interest in carbohydrate-based polymers is undoubtedly due to the nontoxic nature of such materials in an in vivo environment and the versatile roles that the polymers can play in cellular functions. Such polymers have served as therapeutic tools for drug delivery, including antigens, proteins, and genes, as well as diagnostic devices. Our focus in the first half of this Review is on synthetic methods based on ring-opening polymerization and enzyme-catalyzed polymerization, along with controlled radical polymerization. In the second half of this Review, sugar-based polymers are discussed on the basis of their remarkable success in competitive receptor binding, as multifunctional nanocarriers of targeting inhibitors for cancer treatment, in genome-editing delivery, in immunotherapy based on endogenous antibody recruitment, and in treatment of respiratory diseases, including influenza A. Particular emphasis is put on the synthesis and biopharmaceutical applications of sugar-based polymers published in the most recent 5 years. A noticeable attribute of carbohydrate-based polymers is that the sugar-receptor interactions can be facilitated by the cooperative effect of multiple sugar units. Their diversified topology and structures will drive the development of new synthetic strategies and bring about important applications, including coronavirus-related drug therapy.
Collapse
Affiliation(s)
- Jie Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Dong Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Yixian Zhang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Jian Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| |
Collapse
|
20
|
Yin J, Chu Y, Pan SJ, Tan L. Drug-loading colloidal gels assembled from polymeric nanoparticles as an anti-inflammatory platform. NEW J CHEM 2021. [DOI: 10.1039/d1nj02179f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Injectable colloidal gels shed PLA–PEG and CS nanoparticles autonomously under physiological conditions and release aspirin to inhibit inflammation.
Collapse
Affiliation(s)
- Jinkun Yin
- School of Materials Science and Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Yaoqing Chu
- School of Materials Science and Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Si-Jian Pan
- Department of Neurosurgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
- China
| | - Lianjiang Tan
- School of Materials Science and Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| |
Collapse
|
21
|
Buddingh' BC, Llopis-Lorente A, Abdelmohsen LKEA, van Hest JCM. Dynamic spatial and structural organization in artificial cells regulates signal processing by protein scaffolding. Chem Sci 2020; 11:12829-12834. [PMID: 34094478 PMCID: PMC8163283 DOI: 10.1039/d0sc03933k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/04/2020] [Indexed: 01/25/2023] Open
Abstract
Structural and spatial organization are fundamental properties of biological systems that allow cells to regulate a wide range of biochemical processes. This organization is often transient and governed by external cues that initiate dynamic self-assembly processes. The construction of synthetic cell-like materials with similar properties requires the hierarchical and reversible organization of selected functional components on molecular scaffolds to dynamically regulate signaling pathways. The realization of such transient molecular programs in synthetic cells, however, remains underexplored due to the associated complexity of such hierarchical platforms. In this contribution, we effectuate dynamic spatial organization of effector protein subunits in a synthetic biomimetic compartment, a giant unilamellar vesicle (GUV), by associating in a reversible manner two fragments of a split luciferase to the membrane. This induces their structural dimerization, which consequently leads to the activation of enzymatic signaling. Importantly, such organization and activation are dynamic processes, and can be autonomously regulated - thus opening up avenues toward continuous spatiotemporal control over supramolecular organization and signaling in an artificial cell.
Collapse
Affiliation(s)
- Bastiaan C Buddingh'
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology PO Box 513 5600 MB Eindhoven The Netherlands
| | - Antoni Llopis-Lorente
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology PO Box 513 5600 MB Eindhoven The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology PO Box 513 5600 MB Eindhoven The Netherlands
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology PO Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|