1
|
Zhao H, Yang S, Ge C, Zhang D, Huang L, Chen M, Pan A, Wang X. Tunable Out-of-Plane Reconstructions in Moiré Superlattices of Transition Metal Dichalcogenide Heterobilayers. ACS NANO 2024; 18:27479-27486. [PMID: 39316511 DOI: 10.1021/acsnano.4c08081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The reconstructed moiré superlattices of the transition metal chalcogenide (TMD), formed by the combined effects of interlayer coupling and intralayer strain, provide a platform for exploring quantum physics. Here, using scanning tunneling microscopy/spectroscopy, we observe that the strained WSe2/WS2 moiré superlattices undergo various out-of-plane atomically buckled configurations, a phenomenon termed out-of-plane reconstruction. This evolution is attributed to the differentiated response of intralayer strain in high-symmetry stacking regions to external strain. Notably, in larger out-of-plane reconstructions, there is a significant alteration in the local density of states (LDOS) near the Γ point in the valence band, exceeding 300%, with the moiré potential in the valence band surpassing 200 meV. Further, we confirm that the variation in interlayer coupling within high-symmetry stacking regions is the main factor affecting the moiré electronic states rather than the intralayer strain. Our study unveils intrinsic regulating mechanisms of out-of-plane reconstructed moiré superlattices and contributes to the study of reconstructed moiré physics.
Collapse
Affiliation(s)
- Haipeng Zhao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Shengguo Yang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
| | - Cuihuan Ge
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Danliang Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Lanyu Huang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mingxing Chen
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Singh AK, Gao W, Deb P. Twist Proximity-Endowed Large Figure of Merit in a Band-Modulated CrI 3/1T-MoS 2 Moiré Superlattice. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35438-35446. [PMID: 38937139 DOI: 10.1021/acsami.4c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Moiré superlattices with a robust twist proximity effect in the low-dimensional regime can facilitate nanoscale thermoelectric devices. In pristine systems, the low efficiency and lack of proficient control of thermoelectric properties impede desirable advancements in the field of energy conversion. In the present study, we demonstrate remarkable macroscopic thermoelectric response as a consequence of microscopic band structure modulation via the twist proximity in an engineered CrI3/1T-MoS2 moiré superlattice. The local twist effect, which leads to the microscopic phenomena of electron localization, results in a comprehensive electronic structure modulation. Consequently, these local effects convolute the macroscopic thermoelectric effect. Additionally, flat bands and angle-dependent metallic to semiconducting transitions are observed at 10.89, 23.41, and 30° twist angles. We correlate the observed phenomenon with the augmented spin-charge transport and interconversion via the twist proximity effect in its semiconducting phase. The estimated ultralow electronic and lattice thermal conductivities further corroborate with the observed large figure of merit and Seebeck coefficient. The maximum values of the Seebeck coefficient and figure of merit are estimated to be ∼413 μV/K and ∼4.3 at 200 K for 30° under the constant time relaxation approach. The twist-endowed outstanding thermoelectric effect in moiré superlattices with band modulation unveils a distinctive approach to establish efficient thermoelectric devices.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Pritam Deb
- Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| |
Collapse
|
3
|
Molino L, Aggarwal L, Maity I, Plumadore R, Lischner J, Luican-Mayer A. Influence of Atomic Relaxations on the Moiré Flat Band Wave Functions in Antiparallel Twisted Bilayer WS 2. NANO LETTERS 2023; 23:11778-11784. [PMID: 38054731 DOI: 10.1021/acs.nanolett.3c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Twisting bilayers of transition metal dichalcogenides gives rise to a moiré potential resulting in flat bands with localized wave functions and enhanced correlation effects. In this work, scanning tunneling microscopy is used to image a WS2 bilayer twisted approximately 3° off the antiparallel alignment. Scanning tunneling spectroscopy reveals localized states in the vicinity of the valence band onset, which is observed to occur first in regions with S-on-S Bernal stacking. In contrast, density functional theory calculations on twisted bilayers that have been relaxed in vacuum predict the highest-lying flat valence band to be localized in regions of AA' stacking. However, agreement with experiment is recovered when the calculations are performed on bilayers in which the atomic displacements from the unrelaxed positions have been reduced, reflecting the influence of the substrate and finite temperature. This demonstrates the delicate interplay of atomic relaxations and the electronic structure of twisted bilayer materials.
Collapse
Affiliation(s)
- Laurent Molino
- Department of Physics, University of Ottawa, Ottawa K1N 6X3, Canada
| | - Leena Aggarwal
- Department of Physics, University of Ottawa, Ottawa K1N 6X3, Canada
| | - Indrajit Maity
- Department of Materials, Imperial College London, and Thomas Young Centre for Theory and Simulation of Materials, London SW7 2BP, U.K
| | - Ryan Plumadore
- Department of Physics, University of Ottawa, Ottawa K1N 6X3, Canada
| | - Johannes Lischner
- Department of Materials, Imperial College London, and Thomas Young Centre for Theory and Simulation of Materials, London SW7 2BP, U.K
| | | |
Collapse
|
4
|
Tulyagankhodjaev JA, Shih P, Yu J, Russell JC, Chica DG, Reynoso ME, Su H, Stenor AC, Roy X, Berkelbach TC, Delor M. Room-temperature wavelike exciton transport in a van der Waals superatomic semiconductor. Science 2023; 382:438-442. [PMID: 37883547 DOI: 10.1126/science.adf2698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
The transport of energy and information in semiconductors is limited by scattering between electronic carriers and lattice phonons, resulting in diffusive and lossy transport that curtails all semiconductor technologies. Using Re6Se8Cl2, a van der Waals (vdW) superatomic semiconductor, we demonstrate the formation of acoustic exciton-polarons, an electronic quasiparticle shielded from phonon scattering. We directly imaged polaron transport in Re6Se8Cl2 at room temperature, revealing quasi-ballistic, wavelike propagation sustained for a nanosecond and several micrometers. Shielded polaron transport leads to electronic energy propagation lengths orders of magnitude greater than in other vdW semiconductors, exceeding even silicon over a nanosecond. We propose that, counterintuitively, quasi-flat electronic bands and strong exciton-acoustic phonon coupling are together responsible for the transport properties of Re6Se8Cl2, establishing a path to ballistic room-temperature semiconductors.
Collapse
Affiliation(s)
| | - Petra Shih
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jessica Yu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jake C Russell
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Daniel G Chica
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | - Haowen Su
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Athena C Stenor
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | - Milan Delor
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
5
|
Schleder GR, Pizzochero M, Kaxiras E. One-Dimensional Moiré Physics and Chemistry in Heterostrained Bilayer Graphene. J Phys Chem Lett 2023; 14:8853-8858. [PMID: 37755819 DOI: 10.1021/acs.jpclett.3c01919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Twisted bilayer graphene (tBLG) has emerged as a promising platform for exploring exotic electronic phases. However, the formation of moiré patterns in tBLG has thus far been confined to the introduction of twist angles between the layers. Here, we propose heterostrained bilayer graphene (hBLG), as an alternative avenue for accessing twist angle-free moiré physics via lattice mismatch. Using atomistic and first-principles calculations, we demonstrate that the uniaxial heterostrain can promote isolated flat electronic bands around the Fermi level. Furthermore, the heterostrain-induced out-of-plane lattice relaxation may lead to a spatially modulated reactivity of the surface layer, paving the way for moiré-driven chemistry and magnetism. We anticipate that our findings can be readily generalized to other layered materials.
Collapse
Affiliation(s)
- Gabriel R Schleder
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, 13083-970 Campinas São Paulo, Brazil
| | - Michele Pizzochero
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Efthimios Kaxiras
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
Li Y, Yuan Q, Guo D, Lou C, Cui X, Mei G, Petek H, Cao L, Ji W, Feng M. 1D Electronic Flat Bands in Untwisted Moiré Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300572. [PMID: 37057612 DOI: 10.1002/adma.202300572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/03/2023] [Indexed: 06/16/2023]
Abstract
After the preparation of 2D electronic flat band (EFB) in van der Waals (vdW) superlattices, recent measurements suggest the existence of 1D electronic flat bands (1D-EFBs) in twisted vdW bilayers. However, the realization of 1D-EFBs is experimentally elusive in untwisted 2D layers, which is desired considering their fabrication and scalability. Herein, the discovery of 1D-EFBs is reported in an untwisted in situ-grown two atomic-layer Bi(110) superlattice self-aligned on an SnSe(001) substrate using scanning probe microscopy measurements and density functional theory calculations. While the Bi-Bi dimers of Bi zigzag (ZZ) chains are buckled, the epitaxial lattice mismatch between the Bi and SnSe layers induces two 1D buckling reversal regions (BRRs) extending along the ZZ direction in each Bi(110)-11 × 11 supercell. A series of 1D-EFBs arises spatially following BRRs that isolate electronic states along the armchair (AC) direction and localize electrons in 1D extended states along ZZ due to quantum interference at a topological node. This work provides a generalized strategy for engineering 1D-EFBs in utilizing lattice mismatch between untwisted rectangular vdW layers.
Collapse
Affiliation(s)
- Yafei Li
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Qing Yuan
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Deping Guo
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, P. R. China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin Universiry of China, Beijing, 100872, P. R. China
| | - Cancan Lou
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Xingxia Cui
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Guangqiang Mei
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Hrvoje Petek
- Department of Physics and Astronomy and the IQ Initiative, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Limin Cao
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, P. R. China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin Universiry of China, Beijing, 100872, P. R. China
| | - Min Feng
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
- Institute for Advanced Study, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
7
|
Li J, Ghorbani-Asl M, Lasek K, Pathirage V, Krasheninnikov AV, Batzill M. A van der Waals Heterostructure with an Electronically Textured Moiré Pattern: PtSe 2/PtTe 2. ACS NANO 2023; 17:5913-5920. [PMID: 36926837 DOI: 10.1021/acsnano.2c12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The interlayer interaction in Pt-dichalcogenides strongly affects their electronic structures. The modulations of the interlayer atom-coordination in vertical heterostructures based on these materials are expected to laterally modify these interlayer interactions and thus provide an opportunity to texture the electronic structure. To determine the effects of local variation of the interlayer atom coordination on the electronic structure of PtSe2, van der Waals heterostructures of PtSe2 and PtTe2 have been synthesized by molecular beam epitaxy. The heterostructure forms a coincidence lattice with 13 unit cells of PtSe2 matching 12 unit cells of PtTe2, forming a moiré superstructure. The interaction with PtTe2 reduces the band gap of PtSe2 monolayers from 1.8 eV to 0.5 eV. While the band gap is uniform across the moiré unit cell, scanning tunneling spectroscopy and dI/dV mapping identify gap states that are localized within certain regions of the moiré unit cell. Deep states associated with chalcogen pz-orbitals at binding energies of ∼ -2 eV also exhibit lateral variation within the moiré unit cell, indicative of varying interlayer chalcogen interactions. Density functional theory calculations indicate that local variations in atom coordination in the moiré unit cell cause variations in the charge transfer from PtTe2 to PtSe2, thus affecting the value of the interface dipole. Experimentally this is confirmed by measuring the local work function by field emission resonance spectroscopy, which reveals a large work function modulation of ∼0.5 eV within the moiré structure. These results show that the local coordination variation of the chalcogen atoms in the PtSe2/PtTe2 van der Waals heterostructure induces a nanoscale electronic structure texture in PtSe2.
Collapse
Affiliation(s)
- Jingfeng Li
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Mahdi Ghorbani-Asl
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Kinga Lasek
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Vimukthi Pathirage
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Arkady V Krasheninnikov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Matthias Batzill
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
8
|
Lin BH, Chao YC, Hsieh IT, Chuu CP, Lee CJ, Chu FH, Lu LS, Hsu WT, Pao CW, Shih CK, Su JJ, Chang WH. Remarkably Deep Moiré Potential for Intralayer Excitons in MoSe 2/MoS 2 Twisted Heterobilayers. NANO LETTERS 2023; 23:1306-1312. [PMID: 36745443 DOI: 10.1021/acs.nanolett.2c04524] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A moiré superlattice formed in twisted van der Waals bilayers has emerged as a new tuning knob for creating new electronic states in two-dimensional materials. Excitonic properties can also be altered drastically due to the presence of moiré potential. However, quantifying the moiré potential for excitons is nontrivial. By creating a large ensemble of MoSe2/MoS2 heterobilayers with a systematic variation of twist angles, we map out the minibands of interlayer and intralayer excitons as a function of twist angles, from which we determine the moiré potential for excitons. Surprisingly, the moiré potential depth for intralayer excitons is up to ∼130 meV, comparable to that for interlayer excitons. This result is markedly different from theoretical calculations based on density functional theory, which show an order of magnitude smaller moiré potential for intralayer excitons. The remarkably deep intralayer moiré potential is understood within the framework of structural reconstruction within the moiré unit cell.
Collapse
Affiliation(s)
- Bo-Han Lin
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Yung-Chun Chao
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - I Ta Hsieh
- Research Center for Applied Sciences, Academia Sinica, Taipei11529, Taiwan
| | - Chih-Piao Chuu
- Corporate Research, Taiwan Semiconductor Manufacturing Company (TSMC), Hsinchu30075, Taiwan
| | - Chien-Ju Lee
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Fu-Hsien Chu
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Li-Syuan Lu
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei11529, Taiwan
| | - Wei-Ting Hsu
- Department of Physics, The University of Texas at Austin, Austin, Texas78712, United States
- Department of Physics, National Tsing Hua University, Hsinchu30004, Taiwan
| | - Chun-Wei Pao
- Research Center for Applied Sciences, Academia Sinica, Taipei11529, Taiwan
| | - Chih-Kang Shih
- Department of Physics, The University of Texas at Austin, Austin, Texas78712, United States
| | - Jung-Jung Su
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
| | - Wen-Hao Chang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei11529, Taiwan
- College of Engineering, Chang Gung University, Taoyuan33302, Taiwan
| |
Collapse
|
9
|
Tilak N, Li G, Taniguchi T, Watanabe K, Andrei EY. Moiré Potential, Lattice Relaxation, and Layer Polarization in Marginally Twisted MoS 2 Bilayers. NANO LETTERS 2023; 23:73-81. [PMID: 36576808 DOI: 10.1021/acs.nanolett.2c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Artificially twisted heterostructures of semiconducting transition-metal dichalcogenides (TMDs) offer unprecedented control over their electronic and optical properties via the spatial modulation of interlayer interactions and structural reconstruction. Here we study twisted MoS2 bilayers in a wide range of twist angles near 0° using scanning tunneling microscopy/spectroscopy. We investigate the twist angle dependence of the moiré pattern, which is dominated by lattice reconstruction for small angles (<2°), leading to large triangular domains with rhombohedral stacking. Local spectroscopy measurements reveal a large moiré-potential strength of 100-200 meV for angles <3°. In reconstructed regions, we see a bias-dependent asymmetry between neighboring triangular domains, which we relate to the vertical polarization that is intrinsic to rhombohedral stacked TMDs. This viewpoint is further supported by spectroscopy maps and ambient piezoresponse measurements. Our results provide a microscopic perspective of this new class of interfacial ferroelectrics and can offer clues for designing novel heterostructures that harness this effect.
Collapse
Affiliation(s)
- Nikhil Tilak
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Rd, Piscataway, New Jersey 08854, United States
| | - Guohong Li
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Rd, Piscataway, New Jersey 08854, United States
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Eva Y Andrei
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Rd, Piscataway, New Jersey 08854, United States
| |
Collapse
|
10
|
Kim J, Ko E, Jo J, Kim M, Yoo H, Son YW, Cheong H. Anomalous optical excitations from arrays of whirlpooled lattice distortions in moiré superlattices. NATURE MATERIALS 2022; 21:890-895. [PMID: 35484329 DOI: 10.1038/s41563-022-01240-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Moiré superlattices formed by stacking two-dimensional crystals have reinvigorated the pursuit for emergent functionalities of engineered superlattices. Unique optical characteristics can be realized from the interplay between the electronic excitations and the atomic rearrangements owing to their intrinsic softness. Although large-scale reconstructions have been identified at small twist angles, they have been treated as being rigid at large twist angles. Here, we report that moiré superlattices made from single layers of MoS2 and WSe2 exhibit a pair of torsional strains with opposite chirality irrespective of the twist angle. The whirlpool-shaped periodic lattice distortions introduce fuzziness in the Raman spectra and universal redshifts to the intralayer excitons for all twist angles. We show that both of these modulations become weaker as the twist angle increases but do not disappear, whereas they are turned off when the constituent layers are not tightly coupled, thus establishing an essential structure-property relationship for moiré superlattices.
Collapse
Affiliation(s)
- Jungcheol Kim
- Department of Physics, Sogang University, Seoul, Korea
| | - Eunjung Ko
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Jaeyeon Jo
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Korea
| | - Miyoung Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Korea
| | - Hyobin Yoo
- Department of Physics, Sogang University, Seoul, Korea.
- Institute of Emergent Materials, Sogang University, Seoul, Korea.
| | - Young-Woo Son
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea.
| | | |
Collapse
|
11
|
Li K, Xiao F, Guan W, Xiao Y, Xu C, Zhang J, Lin C, Li D, Tong Q, Li SY, Pan A. Morphology Deformation and Giant Electronic Band Modulation in Long-Wavelength WS 2 Moiré Superlattices. NANO LETTERS 2022; 22:5997-6003. [PMID: 35839083 DOI: 10.1021/acs.nanolett.2c02418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a lattice interference effect, moiré superlattices feature a magnification effect that they respond sensitively to both the extrinsic mechanical perturbations and intrinsic atomic reconstructions. Here, using scanning tunneling microscopy and spectroscopy, we observe that long-wavelength WS2 superlattices are reconstructed into various moiré morphologies, ranging from regular hexagons to heavily deformed ones. We show that a dedicated interplay between the extrinsic nonuniform heterostrain and the intrinsic atomic reconstruction is responsible for this interesting moiré structure evolution. Importantly, the interplay between these two factors also introduces a local inhomogeneous intralayer strain within a moiré. Contrary to the commonly reported electronic modulation that occurred at the valence band edge due to interlayer hybridization, we find that this local intralayer strain induces a strong modulation at K point of the conduction band, reaching up to 300 meV in the heavily deformed moiré. Our microscopic explorations provide valuable information in understanding the intriguing physics in TMD moirés.
Collapse
Affiliation(s)
- Kaihui Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, People's Republic of China
| | - Feiping Xiao
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Wen Guan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, People's Republic of China
| | - Yulong Xiao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, People's Republic of China
| | - Chang Xu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, People's Republic of China
| | - Jinding Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, People's Republic of China
| | - Chenfang Lin
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, People's Republic of China
| | - Dong Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, People's Republic of China
| | - Qingjun Tong
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Si-Yu Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, People's Republic of China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
12
|
Lüpke F, Waters D, Pham AD, Yan J, Mandrus DG, Ganesh P, Hunt BM. Quantum Spin Hall Edge States and Interlayer Coupling in Twisted Bilayer WTe 2. NANO LETTERS 2022; 22:5674-5680. [PMID: 35759639 DOI: 10.1021/acs.nanolett.2c00432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The quantum spin Hall (QSH) effect, characterized by topologically protected spin-polarized edge states, was recently demonstrated in monolayers of the transition metal dichalcogenide (TMD) WTe2. However, the robustness of this topological protection remains largely unexplored in van der Waals heterostructures containing one or more layers of a QSH insulator. In this work, we use scanning tunneling microscopy and spectroscopy (STM/STS) to explore the topological nature of twisted bilayer (tBL) WTe2. At the tBL edges, we observe the characteristic spectroscopic signatures of the QSH edge states. For small twist angles, a rectangular moiré pattern develops, which results in local modifications of the band structure. Using first-principles calculations, we quantify the interactions in tBL WTe2 and its topological edge states as a function of interlayer distance and conclude that it is possible to engineer the topology of WTe2 bilayers via the twist angle as well as interlayer interactions.
Collapse
Affiliation(s)
- Felix Lüpke
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dacen Waters
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Anh D Pham
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jiaqiang Yan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David G Mandrus
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Panchapakesan Ganesh
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin M Hunt
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
13
|
Wu Q, Fang Z, Zhu Y, Song H, Liu Y, Su X, Pan D, Gao Y, Wang P, Yan S, Fei Z, Yao J, Shi Y. Controllable Edge Epitaxy of Helical GeSe/GeS Heterostructures. NANO LETTERS 2022; 22:5086-5093. [PMID: 35613359 DOI: 10.1021/acs.nanolett.2c00395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Emerging twistronics based on van der Waals (vdWs) materials has attracted great interest in condensed matter physics. Recently, more neoteric three-dimensional (3D) architectures with interlayer twist are realized in germanium sulfide (GeS) crystals. Here, we further demonstrate a convenient way for tailoring the twist rate of helical GeS crystals via tuning of the growth temperature. Under higher growth temperatures, the twist angles between successive nanoplates of the GeS mesowires (MWs) are statistically smaller, which can be understood by the dynamics of the catalyst during the growth. Moreover, we fabricate self-assembled helical heterostructures by introducing germanium selenide (GeSe) onto helical GeS crystals via edge epitaxy. Besides the helical architecture, the moiré superlattices at the twisted interfaces are also inherited. Compared with GeS MWs, helical GeSe/GeS heterostructures exhibit improved electrical conductivity and photoresponse. These results manifest new opportunities in future electronics and optoelectronics by harnessing 3D twistronics based on vdWs materials.
Collapse
Affiliation(s)
- Qi Wu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Zixuan Fang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Yuelei Zhu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Haizeng Song
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yin Liu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Xin Su
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Danfeng Pan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yuan Gao
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Peng Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Shancheng Yan
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Zaiyao Fei
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Jie Yao
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Yi Shi
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
14
|
Huang D, Choi J, Shih CK, Li X. Excitons in semiconductor moiré superlattices. NATURE NANOTECHNOLOGY 2022; 17:227-238. [PMID: 35288673 DOI: 10.1038/s41565-021-01068-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Semiconductor moiré superlattices represent a rapidly developing area of engineered photonic materials and a new platform to explore correlated electron states and quantum simulation. In this Review, we briefly introduce early experiments that identified new exciton resonances in transition metal dichalcogenide heterobilayers and discuss several topics including two types of transition metal dichalcogenide moiré superlattice, new optical selection rules, early evidence of moiré excitons, and how the resonant energy, dynamics and diffusion properties of moiré excitons can be controlled via the twist angle. To interpret optical spectra, it is important to measure the energy modulation within a moiré supercell. In this context, we describe a few scanning tunnelling microscopy experiments that measure the moiré potential landscape directly. Finally, we review a few recent experiments that applied excitonic optical spectroscopy to probe correlated electron phenomena in transition metal dichalcogenide moiré superlattices.
Collapse
Affiliation(s)
- Di Huang
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA.
| | - Junho Choi
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA
| | - Chih-Kang Shih
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA
| | - Xiaoqin Li
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA.
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA.
| |
Collapse
|
15
|
Sun X, Chen Y, Li Z, Han Y, Zhou Q, Wang B, Taniguchi T, Watanabe K, Zhao A, Wang J, Liu Y, Xue J. Visualizing Band Profiles of Gate-Tunable Junctions in MoS 2/WSe 2 Heterostructure Transistors. ACS NANO 2021; 15:16314-16321. [PMID: 34651496 DOI: 10.1021/acsnano.1c05491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heterostructure devices based on two-dimensional materials have been under intensive study due to their intriguing electrical and optical properties. One key factor in understanding these devices is their nanometer-scale band profiles, which is challenging to obtain in devices. Here, we use a technique named contact-mode scanning tunneling spectroscopy to directly visualize the band profiles of MoS2/WSe2 heterostructure devices at different gate voltages with nanometer resolution. The long-held view of a conventional p-n junction in the MoS2/WSe2 heterostructure is reexamined. Due to strong inter- and intralayer charge transfer, the MoS2 layer in contact with WSe2 is found to convert from n-type to p-type, and a series of gate-tunable p-n and p-p+ junctions are developed in the devices. Highly conductive edges are also discovered which could strongly affect the device properties.
Collapse
Affiliation(s)
- Xinzuo Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Chen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Zhiwei Li
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yu Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qin Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Binbin Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Aidi Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianlu Wang
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiamin Xue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
16
|
Sattari F, Mirershadi S. Effect of the strain on spin-valley transport properties in MoS 2 superlattice. Sci Rep 2021; 11:17617. [PMID: 34475509 PMCID: PMC8413316 DOI: 10.1038/s41598-021-97189-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
The effect of the strain on the spin and valley dependent transport properties, including the conductance and polarization, through a monolayer MoS2 superlattice under Rashba spin-orbit coupling is theoretically investigated. It is found that the conductance strongly depends on the spin and valley degrees of freedom, and spin-inversion can be achieved by MoS2 superlattice. Also, the spin and valley dependent conductance in a monolayer MoS2 superlattice can be efficiently adjusted via strain and the number of the superlattice barriers. Moreover, it is demonstrated that both the magnitude and sign of the spin and valley polarization depend on the strain strength, the number of barriers, and electrostatic barrier height. Both full spin and valley polarized current (with 100% or - 100% efficiency) can be realized in a MoS2 superlattice under strain.
Collapse
Affiliation(s)
- Farhad Sattari
- Department of Physics, Faculty of Sciences, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
- Nanoscience and Nanotechnology Research Group, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Soghra Mirershadi
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| |
Collapse
|
17
|
Wu X, Zhang H, Zhang J, Lou XWD. Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008376. [PMID: 34405909 DOI: 10.1002/adma.202008376] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/11/2021] [Indexed: 06/13/2023]
Abstract
Transition metal dichalcogenides (TMDCs) hold great promise for electrochemical energy conversion technologies in view of their unique structural features associated with the layered structure and ultrathin thickness. Because the inert basal plane accounts for the majority of a TMDC's bulk, activation of the basal plane sites is necessary to fully exploit the intrinsic potential of TMDCs. Here, recent advances on TMDCs-based hybrids/composites with greatly enhanced electrochemical activity are reviewed. After a summary of the synthesis of TMDCs with different sizes and morphologies, comprehensive in-plane activation strategies are described in detail, mainly including in-plane-modification-induced phase transformation, surface-layer modulation, and interlayer modification/coupling. Simultaneously, the underlying mechanisms for improved electrochemical activities are highlighted. Finally, the strategic evaluation on further research directions of TMDCs in-plane activation is featured. This work would shed some light on future design trends of TMDCs-based functional materials for electrochemical energy-related applications.
Collapse
Affiliation(s)
- Xin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
18
|
Li H, Li S, Naik MH, Xie J, Li X, Wang J, Regan E, Wang D, Zhao W, Zhao S, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie SG, Wang F, Crommie MF. Imaging moiré flat bands in three-dimensional reconstructed WSe 2/WS 2 superlattices. NATURE MATERIALS 2021; 20:945-950. [PMID: 33558718 DOI: 10.1038/s41563-021-00923-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/07/2021] [Indexed: 05/25/2023]
Abstract
Moiré superlattices in transition metal dichalcogenide (TMD) heterostructures can host novel correlated quantum phenomena due to the interplay of narrow moiré flat bands and strong, long-range Coulomb interactions1-9. However, microscopic knowledge of the atomically reconstructed moiré superlattice and resulting flat bands is still lacking, which is critical for fundamental understanding and control of the correlated moiré phenomena. Here we quantitatively study the moiré flat bands in three-dimensional (3D) reconstructed WSe2/WS2 moiré superlattices by comparing scanning tunnelling spectroscopy (STS) of high-quality exfoliated TMD heterostructure devices with ab initio simulations of TMD moiré superlattices. A strong 3D buckling reconstruction accompanied by large in-plane strain redistribution is identified in our WSe2/WS2 moiré heterostructures. STS imaging demonstrates that this results in a remarkably narrow and highly localized K-point moiré flat band at the valence band edge of the heterostructure. A series of moiré flat bands are observed at different energies that exhibit varying degrees of localization. Our observations contradict previous simplified theoretical models but agree quantitatively with ab initio simulations that fully capture the 3D structural reconstruction. Our results reveal that the strain redistribution and 3D buckling in TMD heterostructures dominate the effective moiré potential and the corresponding moiré flat bands at the Brillouin zone K points.
Collapse
Affiliation(s)
- Hongyuan Li
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Graduate Group in Applied Science and Technology, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shaowei Li
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Kavli Energy Nano Sciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Mit H Naik
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jingxu Xie
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Xinyu Li
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Jiayin Wang
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Emma Regan
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Graduate Group in Applied Science and Technology, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danqing Wang
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Graduate Group in Applied Science and Technology, University of California at Berkeley, Berkeley, CA, USA
| | - Wenyu Zhao
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Sihan Zhao
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Salman Kahn
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kentaro Yumigeta
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Mark Blei
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Alex Zettl
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Kavli Energy Nano Sciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven G Louie
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Feng Wang
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Kavli Energy Nano Sciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Michael F Crommie
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Kavli Energy Nano Sciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
19
|
Cho C, Wong J, Taqieddin A, Biswas S, Aluru NR, Nam S, Atwater HA. Highly Strain-Tunable Interlayer Excitons in MoS 2/WSe 2 Heterobilayers. NANO LETTERS 2021; 21:3956-3964. [PMID: 33914542 DOI: 10.1021/acs.nanolett.1c00724] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interlayer excitons in heterobilayers of transition-metal dichalcogenides (TMDCs) have generated enormous interest due to their permanent vertical dipole moments and long lifetimes. However, the effects of mechanical strain on the optoelectronic properties of interlayer excitons in heterobilayers remain relatively uncharacterized. Here, we experimentally demonstrate strain tuning of Γ-K interlayer excitons in molybdenum disulfide and tungsten diselenide (MoS2/WSe2) wrinkled heterobilayers and obtain a deformation potential constant of ∼107 meV/% uniaxial strain, which is approximately twice that of the intralayer excitons in the constituent monolayers. We further observe a nonmonotonic dependence of the interlayer exciton photoluminescence intensity with strain, which we interpret as being due to the sensitivity of the Γ point to band hybridization arising from the competition between in-plane strain and out-of-plane interlayer coupling. Strain engineering with interlayer excitons in TMDC heterobilayers offers higher strain tunability and new degrees of freedom compared to their monolayer counterparts.
Collapse
Affiliation(s)
- Chullhee Cho
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joeson Wong
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Amir Taqieddin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Souvik Biswas
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Narayana R Aluru
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - SungWoo Nam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Harry A Atwater
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
20
|
Jin C, Olsen BC, Luber EJ, Buriak JM. van der Waals Epitaxy of Soft Twisted Bilayers: Lattice Relaxation and Mass Density Waves. ACS NANO 2020; 14:13441-13450. [PMID: 32931263 DOI: 10.1021/acsnano.0c05310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Interfaces comprising incommensurate or twisted hexagonal lattices are ubiquitous and of great interest, from adsorbed organic/inorganic interfaces in electronic devices, to superlubricants, and more recently to van der Waals bilayer heterostructures (vdWHs) of graphene and other 2D materials that demonstrate a range of properties such as superconductivity and ferromagnetism. Here we show how growth of 2D crystalline domains of soft block copolymers (BCPs) on patterned hard hexagonal lattices provide fundamental insights into van der Waals heteroepitaxy. At moderate registration forces, it is experimentally found that these BCP-hard lattice vdWHs do not adopt a simple moiré superstructure, but instead adopt local structural relaxations known as mass density waves (MDWs). Simulations reveal that MDWs are a primary mechanism of energy minimization and are the origin of the observed preferential twist angle between the lattices.
Collapse
Affiliation(s)
- Cong Jin
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Brian C Olsen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Erik J Luber
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Jillian M Buriak
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|