1
|
Zeng Y, Lei Y, Wang Y, Cheng M, Liao L, Wang X, Ge J, Liu Z, Ming W, Li C, Xie S, Li J, Li C. High Quality Epitaxial Piezoelectric and Ferroelectric Wurtzite Al 1- xSc xN Thin Films. SMALL METHODS 2025; 9:e2400722. [PMID: 39118585 DOI: 10.1002/smtd.202400722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Piezoelectric and ferroelectric wurtzite are promising to reshape modern microelectronics because they can be easily integrated with mainstream semiconductor technology. Sc doped AlN (Al1- xScxN) has attracted much attention for its enhanced piezoelectric and emerging ferroelectric properties, yet the commonly used sputtering results in polycrystalline Al1- xScxN films with high leakage current. Here, the pulsed laser deposition of single crystalline epitaxial Al1- xScxN thin films on sapphire and 4H-SiC substrates is reported. Pure wurtzite phase is maintained up to x = 0.3 with ≤0.1 at% oxygen contamination. Polarization is estimated to be 140 µC cm-2 via atomic scale microscopy imaging and found to be switchable via a scanning probe. The piezoelectric coefficient is found to be five times of the undoped one when x = 0.3, making it desirable for high-frequency radiofrequency (RF) filters and 3D nonvolatile memories.
Collapse
Affiliation(s)
- Yang Zeng
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yihan Lei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yanghe Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Mingqiang Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Luocheng Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xuyang Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jinxin Ge
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhenghao Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wenjie Ming
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chao Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shuhong Xie
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
- Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Jiangyu Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Changjian Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
2
|
Ovchinnikova EN, Kozlovskaya KA, Dmitrienko VE, Oreshko AP. The Use of Circularly Polarized Synchrotron Radiation in Diffraction and Spectral Studies of Noncentrosymmetric Crystals. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522060207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Yan X, Jin Q, Jiang Y, Yao T, Li X, Tao A, Gao C, Chen C, Ma X, Ye H. Direct Determination of Band Gap of Defects in a Wide Band Gap Semiconductor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36875-36881. [PMID: 35926161 DOI: 10.1021/acsami.2c10143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Crystal defects play an important role in the degradation and failure of semiconductor materials and devices. Direct determination of band gap of defects is a critical step for clarifying how the defects affect the physical properties of semiconductors. Here, high-quality aluminum nitride (AlN) thin films were grown epitaxially on single-crystal Al2O3 substrates via pulsed laser deposition. The atomic structure and band gap of three types of inversion domain boundaries (IDBs) in AlN were determined using aberration-corrected transmission electron microscopy and atomic-resolution valence electron energy-loss spectroscopy. It was found that the band gap of all of the IDBs reduces evidently compared to that of the bulk AlN. The maximum band gap reduction of the IDBs is 1.0 eV. First-principles calculations revealed that the band gap reduction of the IDBs is mainly due to the rise of pz orbital at the valence band maximum, which originates from the elongated Al-N bonds along the [0001] direction at the IDBs. The successful band gap determination of defects paves an avenue for quantitatively evaluating the effect of defects on the performance of semiconductor materials and devices.
Collapse
Affiliation(s)
- Xuexi Yan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Qianqian Jin
- School of Microelectronics and Materials Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Yixiao Jiang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Tingting Yao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Xiang Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Ang Tao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Chunyang Gao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Chunlin Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- Jihua Lab, Foshan 528251, China
| | - Xiuliang Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
- State Key Lab of Advanced Processing and Recycling on Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | | |
Collapse
|
4
|
Ren Z, Xu J, Le X, Lee C. Heterogeneous Wafer Bonding Technology and Thin-Film Transfer Technology-Enabling Platform for the Next Generation Applications beyond 5G. MICROMACHINES 2021; 12:946. [PMID: 34442568 PMCID: PMC8398582 DOI: 10.3390/mi12080946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Wafer bonding technology is one of the most effective methods for high-quality thin-film transfer onto different substrates combined with ion implantation processes, laser irradiation, and the removal of the sacrificial layers. In this review, we systematically summarize and introduce applications of the thin films obtained by wafer bonding technology in the fields of electronics, optical devices, on-chip integrated mid-infrared sensors, and wearable sensors. The fabrication of silicon-on-insulator (SOI) wafers based on the Smart CutTM process, heterogeneous integrations of wide-bandgap semiconductors, infrared materials, and electro-optical crystals via wafer bonding technology for thin-film transfer are orderly presented. Furthermore, device design and fabrication progress based on the platforms mentioned above is highlighted in this work. They demonstrate that the transferred films can satisfy high-performance power electronics, molecular sensors, and high-speed modulators for the next generation applications beyond 5G. Moreover, flexible composite structures prepared by the wafer bonding and de-bonding methods towards wearable electronics are reported. Finally, the outlooks and conclusions about the further development of heterogeneous structures that need to be achieved by the wafer bonding technology are discussed.
Collapse
Affiliation(s)
- Zhihao Ren
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (Z.R.); (J.X.); (X.L.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Jikai Xu
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (Z.R.); (J.X.); (X.L.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Xianhao Le
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (Z.R.); (J.X.); (X.L.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (Z.R.); (J.X.); (X.L.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
5
|
Godard P. On the use of the scattering amplitude in coherent X-ray Bragg diffraction imaging. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721003113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Lens-less imaging of crystals with coherent X-ray diffraction offers some unique possibilities for strain-field characterization. It relies on numerically retrieving the phase of the scattering amplitude from a crystal illuminated with coherent X-rays. In practice, the algorithms encode this amplitude as a discrete Fourier transform of an effective or Bragg electron density. This short article suggests a detailed route from the classical expression of the (continuous) scattering amplitude to this discrete function. The case of a heterogeneous incident field is specifically detailed. Six assumptions are listed and quantitatively discussed when no such analysis was found in the literature. Details are provided for two of them: the fact that the structure factor varies in the vicinity of the probed reciprocal lattice vector, and the polarization factor, which is heterogeneous along the measured diffraction patterns. With progress in X-ray sources, data acquisition and analysis, it is believed that some approximations will prove inappropriate in the near future.
Collapse
|
6
|
Vicente R, Neckel IT, Sankaranarayanan SKS, Solla-Gullon J, Fernández PS. Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis. ACS NANO 2021; 15:6129-6146. [PMID: 33793205 PMCID: PMC8155327 DOI: 10.1021/acsnano.1c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Electrocatalysis is at the heart of a broad range of physicochemical applications that play an important role in the present and future of a sustainable economy. Among the myriad of different electrocatalysts used in this field, nanomaterials are of ubiquitous importance. An increased surface area/volume ratio compared to bulk makes nanoscale catalysts the preferred choice to perform electrocatalytic reactions. Bragg coherent diffraction imaging (BCDI) was introduced in 2006 and since has been applied to obtain 3D images of crystalline nanomaterials. BCDI provides information about the displacement field, which is directly related to strain. Lattice strain in the catalysts impacts their electronic configuration and, consequently, their binding energy with reaction intermediates. Even though there have been significant improvements since its birth, the fact that the experiments can only be performed at synchrotron facilities and its relatively low resolution to date (∼10 nm spatial resolution) have prevented the popularization of this technique. Herein, we will briefly describe the fundamentals of the technique, including the electrocatalysis relevant information that we can extract from it. Subsequently, we review some of the computational experiments that complement the BCDI data for enhanced information extraction and improved understanding of the underlying nanoscale electrocatalytic processes. We next highlight success stories of BCDI applied to different electrochemical systems and in heterogeneous catalysis to show how the technique can contribute to future studies in electrocatalysis. Finally, we outline current challenges in spatiotemporal resolution limits of BCDI and provide our perspectives on recent developments in synchrotron facilities as well as the role of machine learning and artificial intelligence in addressing them.
Collapse
Affiliation(s)
- Rafael
A. Vicente
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| | - Itamar T. Neckel
- Brazilian
Synchrotron Light Laboratory, Brazilian
Center for Research in Energy and Materials, 13083-970, Campinas, São Paulo, Brazil
| | - Subramanian K.
R. S. Sankaranarayanan
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center
for Nanoscale Materials, Argonne National
Laboratory, Argonne, Illinois 60439, United
States
| | - José Solla-Gullon
- Institute
of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante, Spain
| | - Pablo S. Fernández
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| |
Collapse
|