1
|
Erwin N, De U, Xiao Y, Wang L, Maharjan C, Pan X, Awasthee N, Zheng G, Liao D, Zhang W, He M. Proteolysis targeting chimera extracellular vesicles for therapeutic development treating triple negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.25.609564. [PMID: 39253438 PMCID: PMC11383279 DOI: 10.1101/2024.08.25.609564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) are an emerging targeted cancer therapy approach, but wide-spread clinical use of PROTAC is limited due to poor cell targeting and penetration, and instability in vivo. To overcome such issues and enhance the in vivo efficacy of PROTAC drugs, microfluidic droplet-based electroporation (µDES) was developed as a novel extracellular vesicle (EVs) transfection system, which enables the high-efficient PROTAC loading and effective delivery in vivo. Our previously developed YX968 PROTAC drug had shown the selectively degradation of HDAC3 and 8, which effectively suppresses the growth of breast tumor cell lines, including MDA-MB-231 triple negative breast cancer (TNBC) line, via dual degradation without provoking a global histone hyperacetylation. In this study, we demonstrated that µDES-based PROTAC loading in EVs significantly enhanced therapeutic function of PROTAC drug in vivo in the TNBC breast tumor mouse model. NSG mice with pre-established MDA-MB-231 tumors and treated with intraperitoneal injection of EVs for tumor inhibition study, which showed significantly higher HDAC 3 and 8 degradation efficiency and tumor inhibition than PROTAC only group. The liver, spleen, kidney, lung, heart, and brain were collected for safety testing, which exhibited improved toxicity. The EV delivery of PROTAC drug enhances drug stability and bioavailability in vivo, transportability, and drug targeting ability, which fills an important gap in current development of PROTAC therapeutic functionality in vivo and clinical translation. This novel EV-based drug transfection and delivery strategy could be applicable to various therapeutics for enhancing in vivo delivery, efficacy, and safety.
Collapse
|
2
|
Liu Y, Fan Z, Xiang XW, Tao X, Xia X, Shi Q, Lu Y, Lu J, Gu H, Liu YJ, Liu B. Engineering of Multivalent Membrane-Anchored DNA Frameworks for Precise Profiling of Variable Membrane Permeability During Reversible Electroporation. SMALL METHODS 2024; 8:e2301198. [PMID: 38152955 DOI: 10.1002/smtd.202301198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Electroporation techniques have emerged as attractive tools for intracellular delivery, rendering promising prospects towards clinical therapies. Transient disruption of membrane permeability is the critical process for efficient electroporation-based cargo delivery. However, smart nanotools for precise characterization of transient membrane changes induced by strong electric pulses are extremely limited. Herein, multivalent membrane-anchored fluorescent nanoprobes (MMFNPs) that take advantages of flexible functionalization and spatial arrangement of DNA frameworks are developed for in situ evaluation of electric field-induced membrane permeability during reversible electroporation . Single-molecule fluorescence imaging techniques are adopted to precisely verify the excellent analytical performance of the engineered MMFNPs. Benefited from tight membrane anchoring and sensitive adenosine triphosphate (ATP) profiling, varying degrees of membrane disturbances are visually exhibited under different intensities of the microsecond pulse electric field (µsPEF). Significantly, the dynamic process of membrane repair during reversible electroporation is well demonstrated via ATP fluctuations monitored by the designed MMFNPs. Furthermore, molecular dynamics (MD) simulations are performed for accurate verification of electroporation-driven dynamic cargo entry via membrane nanopores. This work provides an avenue for effectively capturing transient fluctuations of membrane permeability under external stimuli, offering valuable guidance for developing efficient and safe electroporation-driven delivery strategies for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zihui Fan
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiao-Wei Xiang
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xiaonan Tao
- School of Information Science and Technology, Fudan University, Shanghai, 200032, China
| | - Xinwei Xia
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qian Shi
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiayin Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hongzhou Gu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan-Jun Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
3
|
Sun H, Yu L, Chen Y, Yang H, Sun L. Analysis of In Situ Electroporation Utilizing Induced Electric Field at a Wireless Janus Microelectrode. MICROMACHINES 2024; 15:819. [PMID: 39064330 PMCID: PMC11279304 DOI: 10.3390/mi15070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
In situ electroporation, a non-invasive technique for enhancing the permeability of cell membranes, has emerged as a powerful tool for intracellular delivery and manipulation. This method allows for the precise introduction of therapeutic agents, such as nucleic acids, drugs, and proteins, directly into target cells within their native tissue environment. Herein, we introduce an innovative electroporation strategy that employs a Janus particle (JP)-based microelectrode to generate a localized and controllable electric field within a microfluidic chip. The microfluidic device is engineered with an indium tin oxide (ITO)-sandwiched microchannel, where the electric field is applied, and suspended JP microelectrodes that induce a stronger localized electric field. The corresponding simulation model is developed to better understand the dynamic electroporation process. Numerical simulations for both single-cell and chain-assembled cell electroporation have been successfully conducted. The effects of various parameters, including pulse voltage, duration medium conductivity, and radius of Janus microelectrode, on cell membrane permeabilization are systematically investigated. Our findings indicate that the enhanced electric intensity near the poles of the JP microelectrode significantly contributes to the electroporation process. In addition, the distribution for both transmembrane voltage and the resultant nanopores can be altered by conveniently adjusting the relative position of the JP microelectrode, demonstrating a selective and in situ electroporation technique for spatial control over the delivery area. Moreover, the obtained differences in the distribution of electroporation between chain cells can offer insightful directives for the electroporation of tissues or cell populations, enabling the precise and targeted modulation of specific cell populations. As a proof of concept, this work can provide a robust alternative technique for the study of complex and personalized cellular processes.
Collapse
Affiliation(s)
- Haizhen Sun
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Linkai Yu
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Yifan Chen
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Hao Yang
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Lining Sun
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
He GQ, Li H, Liu J, Hu YL, Liu Y, Wang ZL, Jiang P. Recent Progress in Implantable Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312530. [PMID: 38376369 DOI: 10.1002/adma.202312530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/03/2024] [Indexed: 02/21/2024]
Abstract
In recent years, tremendous effort is devoted to developing platforms, such as implantable drug delivery systems (IDDSs), with temporally and spatially controlled drug release capabilities and improved adherence. IDDSs have multiple advantages: i) the timing and location of drug delivery can be controlled by patients using specific stimuli (light, sound, electricity, magnetism, etc.). Some intelligent "closed-loop" IDDS can even realize self-management without human participation. ii) IDDSs enable continuous and stable delivery of drugs over a long period (months to years) and iii) to administer drugs directly to the lesion, thereby helping reduce dosage and side effects. iv) IDDSs enable personalized drug delivery according to patient needs. The high demand for such systems has prompted scientists to make efforts to develop intelligent IDDS. In this review, several common stimulus-responsive mechanisms including endogenous (e.g., pH, reactive oxygen species, proteins, etc.) and exogenous stimuli (e.g., light, sound, electricity, magnetism, etc.), are given in detail. Besides, several types of IDDS reported in recent years are reviewed, including various stimulus-responsive systems based on the above mechanisms, radio frequency-controlled IDDS, "closed-loop" IDDS, self-powered IDDS, etc. Finally, the advantages and disadvantages of various IDDS, bottleneck problems, and possible solutions are analyzed to provide directions for subsequent research.
Collapse
Affiliation(s)
- Guang-Qin He
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Haimei Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Junyi Liu
- Albany Medical College, New York, 12208, USA
| | - Yu-Lin Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| |
Collapse
|
5
|
Lee DH, Lim S, Kwak SS, Kim J. Advancements in Skin-Mediated Drug Delivery: Mechanisms, Techniques, and Applications. Adv Healthc Mater 2024; 13:e2302375. [PMID: 38009520 PMCID: PMC11468599 DOI: 10.1002/adhm.202302375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Indexed: 11/29/2023]
Abstract
Skin-mediated drug delivery methods currently are receiving significant attention as a promising approach for the enhanced delivery of drugs through the skin. Skin-mediated drug delivery offers the potential to overcome the limitations of traditional drug delivery methods, including oral administration and intravenous injection. The challenges associated with drug permeation through layers of skin, which act as a major barrier, are explored, and strategies to overcome these limitations are discussed in detail. This review categorizes skin-mediated drug delivery methods based on the means of increasing drug permeation, and it provides a comprehensive overview of the mechanisms and techniques associated with these methods. In addition, recent advancements in the application of skin-mediated drug delivery are presented. The review also outlines the limitations of ongoing research and suggests future perspectives of studies regarding the skin-mediated delivery of drugs.
Collapse
Affiliation(s)
- Dong Ha Lee
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sunyoung Lim
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sung Soo Kwak
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Joohee Kim
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
6
|
Dolai J, Sarkar AR, Maity A, Mukherjee B, Jana NR. Ultrasonic Electroporation for Cells Grown on Piezoelectric Film Composed of Hydroxyapatite Nanowire and PVDF. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59155-59164. [PMID: 38100427 DOI: 10.1021/acsami.3c13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The delivery of cell impermeable exogenous material into live cells by external stimuli is critical for both biological research and therapeutic applications. Although electroporation-based delivery of foreign materials inside the cell is a powerful approach, cell viability is often compromised due to the requirement of high voltage. Here, we report a piezoelectric hydroxyapatite nanowire-embedded poly(vinylidene fluoride) (PVDF) film for ultrasonic electroporation-based delivery of foreign materials to adherent cells. We found that 9 wt % loading of hydroxyapatite nanowires into PVDF can enhance the piezoelectric property by 2-3 times (with a piezoelectric constant value of 58 pm/V) than pure PVDF/nanowire, which is comparable to commonly known piezoelectric ceramics. These films can harvest mechanical as well as ultrasound-based energy to produce electrical potential up to 2 V. This biocompatible film can be used to grow cells on top of it and for subsequent application of ultrasound to exert electric voltage on cell membrane. We found that ultrasonic exposure to adhered cells leads to reversible pore formation on cell membrane that offers intracellular delivery of FITC-dextran with 75% efficiency. The developed piezoelectric film-based ultrasonic electroporation can be used for wireless electroporation in remote areas.
Collapse
Affiliation(s)
- Jayanta Dolai
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Abu Raihan Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Anupam Maity
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Buddhadev Mukherjee
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
7
|
Zhou X, Li G, Wu D, Liang H, Zhang W, Zeng L, Zhu Q, Lai P, Wen Z, Yang C, Pan Y. Recent advances of cellular stimulation with triboelectric nanogenerators. EXPLORATION (BEIJING, CHINA) 2023; 3:20220090. [PMID: 37933231 PMCID: PMC10624380 DOI: 10.1002/exp.20220090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/06/2022] [Indexed: 11/08/2023]
Abstract
Triboelectric nanogenerators (TENGs) are new energy collection devices that have the characteristics of high efficiency, low cost, miniaturization capability, and convenient manufacture. TENGs mainly utilize the triboelectric effect to obtain mechanical energy from organisms or the environment, and this mechanical energy is then converted into and output as electrical energy. Bioelectricity is a phenomenon that widely exists in various cellular processes, including cell proliferation, senescence, apoptosis, as well as adjacent cells' communication and coordination. Therefore, based on these features, TENGs can be applied in organisms to collect energy and output electrical stimulation to act on cells, changing their activities and thereby playing a role in regulating cellular function and interfering with cellular fate, which can further develop into new methods of health care and disease intervention. In this review, we first introduce the working principle of TENGs and their working modes, and then summarize the current research status of cellular function regulation and fate determination stimulated by TENGs, and also analyze their application prospects for changing various processes of cell activity. Finally, we discuss the opportunities and challenges of TENGs in the fields of life science and biomedical engineering, and propose a variety of possibilities for their potential development direction.
Collapse
Affiliation(s)
- Xingyu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Di Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lingli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Qianqian Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouChina
| | - Puxiang Lai
- Department of Biomedical EngineeringHong Kong Polytechnic UniversityHong KongChina
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouChina
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research Center, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
8
|
Choi D, Lee Y, Lin ZH, Cho S, Kim M, Ao CK, Soh S, Sohn C, Jeong CK, Lee J, Lee M, Lee S, Ryu J, Parashar P, Cho Y, Ahn J, Kim ID, Jiang F, Lee PS, Khandelwal G, Kim SJ, Kim HS, Song HC, Kim M, Nah J, Kim W, Menge HG, Park YT, Xu W, Hao J, Park H, Lee JH, Lee DM, Kim SW, Park JY, Zhang H, Zi Y, Guo R, Cheng J, Yang Z, Xie Y, Lee S, Chung J, Oh IK, Kim JS, Cheng T, Gao Q, Cheng G, Gu G, Shim M, Jung J, Yun C, Zhang C, Liu G, Chen Y, Kim S, Chen X, Hu J, Pu X, Guo ZH, Wang X, Chen J, Xiao X, Xie X, Jarin M, Zhang H, Lai YC, He T, Kim H, Park I, Ahn J, Huynh ND, Yang Y, Wang ZL, Baik JM, Choi D. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS NANO 2023; 17:11087-11219. [PMID: 37219021 PMCID: PMC10312207 DOI: 10.1021/acsnano.2c12458] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing. Significant experimental and theoretical efforts have been achieved toward understanding fundamental behaviors and a wide range of demonstrations since its report in 2012. As a result, considerable technological advancement has been exhibited and it advances the timeline of achievement in the proposed roadmap. Now, the technology has reached the stage of prototype development with verification of performance beyond the lab scale environment toward its commercialization. In this review, distinguished authors in the world worked together to summarize the state of the art in theory, materials, devices, systems, circuits, and applications in TENG fields. The great research achievements of researchers in this field around the world over the past decade are expected to play a major role in coming to fruition of unexpectedly accelerated technological advances over the next decade.
Collapse
Affiliation(s)
- Dongwhi Choi
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Younghoon Lee
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Soft Robotics Research Center, Seoul National University, Seoul 08826, South Korea
- Department
of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Zong-Hong Lin
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sumin Cho
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Miso Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Chi Kit Ao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Siowling Soh
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Changwan Sohn
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Chang Kyu Jeong
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Jeongwan Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Minbaek Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Seungah Lee
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jungho Ryu
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Parag Parashar
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Feng Jiang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Flexible
Electronics Technology of Tsinghua, Jiaxing, Zhejiang 314000, China
| | - Pooi See Lee
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Gaurav Khandelwal
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
- School
of Engineering, University of Glasgow, Glasgow G128QQ, U. K.
| | - Sang-Jae Kim
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
| | - Hyun Soo Kim
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Hyun-Cheol Song
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Minje Kim
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Junghyo Nah
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Wook Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Habtamu Gebeyehu Menge
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Yong Tae Park
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Wei Xu
- Research
Centre for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, P. R. China
| | - Jianhua Hao
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hong Kong, P.R. China
| | - Hyosik Park
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ju-Hyuck Lee
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Sang-Woo Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- Samsung
Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ji Young Park
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Haixia Zhang
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication;
Beijing Advanced Innovation Center for Integrated Circuits, School
of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yunlong Zi
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Ru Guo
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Jia Cheng
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Ze Yang
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Yannan Xie
- College
of Automation & Artificial Intelligence, State Key Laboratory
of Organic Electronics and Information Displays & Institute of
Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Sangmin Lee
- School
of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jihoon Chung
- Department
of Mechanical Design Engineering, Kumoh
National Institute of Technology (KIT), 61 Daehak-ro, Gumi, Gyeongbuk 39177, South Korea
| | - Il-Kwon Oh
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ji-Seok Kim
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Tinghai Cheng
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Qi Gao
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Gang Cheng
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Guangqin Gu
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Minseob Shim
- Department
of Electronic Engineering, College of Engineering, Gyeongsang National University, 501, Jinjudae-ro, Gaho-dong, Jinju 52828, South Korea
| | - Jeehoon Jung
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Changwoo Yun
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Chi Zhang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Chen
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Suhan Kim
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiangyu Chen
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Jun Hu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xiong Pu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Zi Hao Guo
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xudong Wang
- Department
of Materials Science and Engineering, University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xing Xie
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mourin Jarin
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hulin Zhang
- College
of Information and Computer, Taiyuan University
of Technology, Taiyuan 030024, P. R. China
| | - Ying-Chih Lai
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung 40227, Taiwan
- i-Center
for Advanced Science and Technology, National
Chung Hsing University, Taichung 40227, Taiwan
- Innovation
and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tianyiyi He
- Department
of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - Hakjeong Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Inkyu Park
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junseong Ahn
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Nghia Dinh Huynh
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ya Yang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Center
on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Zhong Lin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeong Min Baik
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Dukhyun Choi
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| |
Collapse
|
9
|
Liao X, Gong G, Dai M, Xiang Z, Pan J, He X, Shang J, Blocki AM, Zhao Z, Shields CW, Guo J. Systemic Tumor Suppression via Macrophage-Driven Automated Homing of Metal-Phenolic-Gated Nanosponges for Metastatic Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207488. [PMID: 37072673 PMCID: PMC10288275 DOI: 10.1002/advs.202207488] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Cell-based therapies comprising the administration of living cells to patients for direct therapeutic activities have experienced remarkable success in the clinic, of which macrophages hold great potential for targeted drug delivery due to their inherent chemotactic mobility and homing ability to tumors with high efficiency. However, such targeted delivery of drugs through cellular systems remains a significant challenge due to the complexity of balancing high drug-loading with high accumulations in solid tumors. Herein, a tumor-targeting cellular drug delivery system (MAGN) by surface engineering of tumor-homing macrophages (Mφs) with biologically responsive nanosponges is reported. The pores of the nanosponges are blocked with iron-tannic acid complexes that serve as gatekeepers by holding encapsulated drugs until reaching the acidic tumor microenvironment. Molecular dynamics simulations and interfacial force studies are performed to provide mechanistic insights into the "ON-OFF" gating effect of the polyphenol-based supramolecular gatekeepers on the nanosponge channels. The cellular chemotaxis of the Mφ carriers enabled efficient tumor-targeted delivery of drugs and systemic suppression of tumor burden and lung metastases in vivo. The findings suggest that the MAGN platform offers a versatile strategy to efficiently load therapeutic drugs to treat advanced metastatic cancers with a high loading capacity of various therapeutic drugs.
Collapse
Affiliation(s)
- Xue Liao
- BMI Center for Biomass Materials and NanointerfacesCollege of Biomass Science and EngineeringSichuan UniversityChengduSichuan610065China
| | - Guidong Gong
- BMI Center for Biomass Materials and NanointerfacesCollege of Biomass Science and EngineeringSichuan UniversityChengduSichuan610065China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengduSichuan610065China
| | - Mengyuan Dai
- BMI Center for Biomass Materials and NanointerfacesCollege of Biomass Science and EngineeringSichuan UniversityChengduSichuan610065China
| | - Zhenyu Xiang
- BMI Center for Biomass Materials and NanointerfacesCollege of Biomass Science and EngineeringSichuan UniversityChengduSichuan610065China
| | - Jiezhou Pan
- BMI Center for Biomass Materials and NanointerfacesCollege of Biomass Science and EngineeringSichuan UniversityChengduSichuan610065China
| | - Xianglian He
- BMI Center for Biomass Materials and NanointerfacesCollege of Biomass Science and EngineeringSichuan UniversityChengduSichuan610065China
| | - Jiaojiao Shang
- BMI Center for Biomass Materials and NanointerfacesCollege of Biomass Science and EngineeringSichuan UniversityChengduSichuan610065China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengduSichuan610065China
| | - Anna Maria Blocki
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Illinois at ChicagoChicagoIL60612USA
| | - C. Wyatt Shields
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO80303USA
| | - Junling Guo
- BMI Center for Biomass Materials and NanointerfacesCollege of Biomass Science and EngineeringSichuan UniversityChengduSichuan610065China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengduSichuan610065China
- Bioproducts InstituteDepartment of Chemical and Biological EngineeringUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
- State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065China
| |
Collapse
|
10
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
11
|
Han J, Zhang Y, Wang X, Zhang G, Yu Z, Wang C, Xu T, Zhou Z, Yang X, Jin X, Liu C, Zhou L, Wang Y, Tang B, Guo S, Jiang H, Yu L. Ultrasound-mediated piezoelectric nanoparticle modulation of intrinsic cardiac autonomic nervous system for rate control in atrial fibrillation. Biomater Sci 2023; 11:655-665. [PMID: 36511142 DOI: 10.1039/d2bm01733d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rate control is a cornerstone of atrial fibrillation treatment. Barium titanate nanoparticles (BTNPs) are piezoelectric nanomaterials that can generate local electromagnetic fields under ultrasound activation, stimulating nearby neuronal tissue. This study aimed to modulate the inferior right ganglionated plexus (IRGP) of the heart and reduce the ventricular rate during rapid atrial pacing (RAP)-induced atrial fibrillation using ultrasound-mediated BTNPs. Adult male beagles were randomly divided into a phosphate-buffered saline (PBS) group (n = 6) and a BTNP group (n = 6). PBS or nanoparticles were injected into the IRGP of both groups before RAP. The biological safety of the material was evaluated according to electrophysiology recordings, thermal effects and level of inflammation. Compared to the PBS group, the BaTiO3 piezoelectric nanoparticle group had reduced ventricular rates in the sinus rhythm and atrial fibrillation models after stimulating the IRGP by applying ultrasound. In addition, transient stimulation by BTNPs did not lead to sustained neuronal excitation in the IRGP. The activation of the BTNPs did not induce inflammation or thermal damage effects in the IRGP. Ultrasound-mediated BTNP neuromodulation can significantly reduce the ventricular rate by stimulating the IRGP. Thus, ultrasound-mediated BTNP neuromodulation is a potential therapy for atrial fibrillation rate control.
Collapse
Affiliation(s)
- Jiapeng Han
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Yuanzheng Zhang
- Hubei Yangtze Memory Laboratories, Wuhan 430205, PR China; Key Laboratory of Artificial Micro, and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China.
| | - Xiaofei Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Guocheng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Zhiyao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Changyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Tianyou Xu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Zhen Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Xiaomeng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Xiaoxing Jin
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Chenzhe Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Baopeng Tang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urmuqi, Xinjiang 830011, P.R. China.
| | - Shishang Guo
- Hubei Yangtze Memory Laboratories, Wuhan 430205, PR China; Key Laboratory of Artificial Micro, and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| |
Collapse
|
12
|
Ikram M, Mahmud MAP. Advanced triboelectric nanogenerator-driven drug delivery systems for targeted therapies. Drug Deliv Transl Res 2023; 13:54-78. [PMID: 35713781 DOI: 10.1007/s13346-022-01184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
In the current decade, remarkable efforts have been made to develop a self-regulated, on-demand and controlled release drug delivery system driven by triboelectric nanogenerators (TENGs). TENGs have great potential to convert biomechanical energy into electricity and are suitable candidates for self-powered drug delivery systems (DDSs) with exciting features such as small size, easy fabrication, biocompatible, high power output and economical. This review exclusively explains the development and implementation process of TENG-mediated, self-regulated, on-demand and targeted DDSs. It also highlights the recently used TENG-driven DDSs for cancer therapy, infected wounds healing, tissue regeneration and many other chronic disorders. Moreover, it summarises the crucial challenges that are needed to be addressed for their universal applications. Finally, a roadmap to advance the TENG-based drug delivery system developments is depicted for the targeted therapies and personalised healthcare.
Collapse
Affiliation(s)
- Muhammad Ikram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - M A Parvez Mahmud
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia.
| |
Collapse
|
13
|
Wang T, Cornel EJ, Li C, Du J. Drug delivery approaches for enhanced antibiofilm therapy. J Control Release 2023; 353:350-365. [PMID: 36473605 DOI: 10.1016/j.jconrel.2022.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Biofilms have attracted increasing attention in recent years. Many bacterial infections are associated with biofilm formation. A bacterial biofilm is an aggregated membrane-like substance that is composed of a large number of bacteria and their secreted extracellular polymeric substances. The traditional antibiofilm approaches, such as chemotherapy based on antibiotics, are often ineffective in eradicating biofilms owing to the limited diffusion ability of antibiotics within biofilms and inactivation of antibiotics by biofilms. Moreover, a larger dosage of antibiotics could be effective, but leads to an increased tolerance. Smart drug delivery systems that deliver antibiotics into the biofilm interior is a promising strategy to meet this challenge. In this review, we focus on the methods to improve drug delivery efficiency for enhanced chemotherapy of biofilms. Furthermore, we have summarized chemical approaches for enhanced drug delivery, such as chemical shields, charge reversal, and dual corona enhanced delivery strategies; these methods focus on physicochemical biofilm properties and specific biofilm features. Afterwards, physical approaches are discussed, such as magnetism-mediated drug delivery, electricity-mediated drug delivery, ultrasound-mediated drug delivery, and shock wave-mediated drug delivery. Finally, a perspective on the development of next-generation antibiofilm drug delivery systems is given.
Collapse
Affiliation(s)
- Tao Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Erik Jan Cornel
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Chang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China; Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
14
|
Wan F, Dong Z, Liu B, Yan S, Wu N, Yang M, Chang L. Sensitive Interrogation of Enhancer Activity in Living Cells on a Nanoelectroporation-Probing Platform. ACS Sens 2022; 7:3671-3681. [PMID: 36410738 DOI: 10.1021/acssensors.2c01187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enhancers involved in the upregulation of multiple oncogenes play a fundamental role in tumorigenesis and immortalization. Exploring the activity of enhancers in living cells has emerged as a critical path to a deep understanding of cancer properties, further providing important clues to targeted therapy. However, identifying enhancer activity in living cells is challenging due to the double biological barriers of a cell cytoplasmic membrane and a nuclear membrane, limiting the sensitivity and responsiveness of conventional probing methods. In this work, we developed a nanoelectroporation-probing (NP) platform, which enables intranuclear probe delivery for sensitive interrogation of enhancer activity in living cells. The nanoelectroporation biochip achieved highly focused perforation of the cell cytoplasmic membrane and brought about additional driving force to expedite the delivery of probes into the nucleus. The probes targeting enhancer activity (named "PH probe") are programmed with a cyclic amplification strategy and enable an increase in the fluorescence signals over 100-fold within 1 h. The platform was leveraged to detect the activity of CCAT1 enhancers (CCAT1, colon cancer-associated transcript-1, a long noncoding RNA that functions in tumor invasion and metastasis) in cell samples from clinical lung cancer patients, as well as reveal the heterogeneity of enhancers among different patients. The observations may extend the linkages between enhancers and cancer cells while validating the robustness and reliability of the platform for the assay of enhancer activity. This platform will be a promising toolbox with wide applicable potential for the intranuclear study of living cells.
Collapse
Affiliation(s)
- Fengqi Wan
- Key Laboratory of Biomechanics and Mechanobiology (Ministry of Education), Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.,Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Zaizai Dong
- Key Laboratory of Biomechanics and Mechanobiology (Ministry of Education), Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Mingzhu Yang
- Key Laboratory of Biomechanics and Mechanobiology (Ministry of Education), Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lingqian Chang
- Key Laboratory of Biomechanics and Mechanobiology (Ministry of Education), Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.,School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
15
|
Yao S, Zheng M, Wang Z, Zhao Y, Wang S, Liu Z, Li Z, Guan Y, Wang ZL, Li L. Self-Powered, Implantable, and Wirelessly Controlled NO Generation System for Intracranial Neuroglioma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205881. [PMID: 36189858 DOI: 10.1002/adma.202205881] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Gas therapy is an emerging technology for improving cancer therapy with high efficiency and low side effects. However, due to the existence of the gatekeeper of the blood-brain barrier (BBB) and the limited availability of current drug delivery systems, there still have been no reports on gas therapy for intracranial neuroglioma. Herein, an integrated, self-powered, and wirelessly controlled gas-therapy system is reported, which is composed of a self-powered triboelectric nanogenerator (TENG) and an implantable nitric oxide (NO) releasing device for intracranial neuroglioma therapy. In the system, the patient self-driven TENG converts the mechanical energy of body movements into electricity as a sustainable and self-controlled power source. When delivering energy to light a light-emitting diode in the implantable NO releasing device via wireless control, the encapsulated NO donor s-nitrosoglutathione (GSNO) can generate NO gas to locally kill the glioma cells. The efficacy of the proof-of-concept system in subcutaneous 4T1 breast cancer model in mice and intracranial glioblastoma multiforme in rats is verified. This self-powered gas-therapy system has great potential to be an effective adjuvant treatment modality to inhibit tumor growth, relapse, and invasion via teletherapy.
Collapse
Affiliation(s)
- Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Minjia Zheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Yunchao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| | - Shaobo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| | - Yunqian Guan
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
16
|
Liu G, Lu Y, Zhang F, Liu Q. Electronically powered drug delivery devices: considerations and challenges. Expert Opin Drug Deliv 2022; 19:1636-1649. [PMID: 36305080 DOI: 10.1080/17425247.2022.2141709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Electronically powered drug delivery devices enable a controlled drug release route for a more convenient and painless way with reduced side effects. The current advances in microfabrication and microelectronics have facilitated miniaturization and intelligence with the integration of sensors and wireless communication modules. These devices have become an essential component of commercialized on-demand drug delivery. AREAS COVERED This review aims to provide a concise overview of current progress in electronically powered drug devices, focusing on delivery strategies, manufacturing techniques, and control circuit design with specific examples. EXPERT OPINION The application of electronically powered drug delivery systems is now considered a feasible therapeutic approach with improved drug release efficiency and increased patient comfort. It is anticipated that these technologies will gradually fulfill clinical needs and resolve commercialization challenges in the future. This review discusses the current advances in electronic drug delivery devices, especially focusing on designing strategies to achieve an effective drug release, as well as the perspectives and challenges for future applications in clinical therapy.
Collapse
Affiliation(s)
- Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
17
|
Liu F, Yang Z, Yao R, Li H, Cheng J, Guo M. Bulk Electroporation for Intracellular Delivery Directly Driven by Mechanical Stimulus. ACS NANO 2022; 16:19363-19372. [PMID: 36350673 DOI: 10.1021/acsnano.2c08945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electroporation (EP) is an effective and widely accepted intracellular delivery method for fundamental research and medical applications. Existing electroporation methods usually require a commercially available EP system or tailor-made high-voltage (HV, up to kV) power source and are complicated, expensive, harmful to the cells, and even dangerous to the operators. A triboelectric nanogenerator (TENG) is a highly studied device that can generate HV output with limited charges and ultrahigh internal impedance. Here, we developed a Bulk Electroporation System based on TENG (BEST). To maximize the load voltage of the TENG, a flowing EP unit with a capillary was designed as a resistive load to realize impedance matching. A low conductivity buffer was used to further match and assist cell electroporation. Besides, the electrical model and experiments on cells transfected with the BEST showed that the bulk electric field of the cell medium could reach up to 1 kV/cm, therefore resulting in a nearly 30 times increase of trans-membrane potential, thus largely improving transfection efficiency. Finally, using 40 kDa FITC-dextran, we showed that a delivery efficiency above 50% with a cell viability maintained over 90% can be achieved in HeLa cells. This work demonstrated the potential of TENG in the biomedical field as a naturally safe HV power source. It also provided a simple, alternative, and low-cost solution for EP research and related biomedicine applications.
Collapse
Affiliation(s)
- Fan Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Ze Yang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing100084, P. R. China
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing100083, P. R. China
| | - Rui Yao
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing100084, P.R. China
| | - Hui Li
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing100875, P.R. China
| | - Jia Cheng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
18
|
Tang C, Liu Z, Li L. Mechanical Sensors for Cardiovascular Monitoring: From Battery-Powered to Self-Powered. BIOSENSORS 2022; 12:651. [PMID: 36005046 PMCID: PMC9405976 DOI: 10.3390/bios12080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide. Long-term and real-time monitoring of cardiovascular indicators is required to detect abnormalities and conduct early intervention in time. To this end, the development of flexible wearable/implantable sensors for real-time monitoring of various vital signs has aroused extensive interest among researchers. Among the different kinds of sensors, mechanical sensors can reflect the direct information of pressure fluctuations in the cardiovascular system with the advantages of high sensitivity and suitable flexibility. Herein, we first introduce the recent advances of four kinds of mechanical sensors for cardiovascular system monitoring, based on capacitive, piezoresistive, piezoelectric, and triboelectric principles. Then, the physio-mechanical mechanisms in the cardiovascular system and their monitoring are described, including pulse wave, blood pressure, heart rhythm, endocardial pressure, etc. Finally, we emphasize the importance of real-time physiological monitoring in the treatment of cardiovascular disease and discuss its challenges in clinical translation.
Collapse
Affiliation(s)
- Chuyu Tang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Li
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Abstract
Electroporation (EP) is a commonly used strategy to increase cell permeability for intracellular cargo delivery or irreversible cell membrane disruption using electric fields. In recent years, EP performance has been improved by shrinking electrodes and device structures to the microscale. Integration with microfluidics has led to the design of devices performing static EP, where cells are fixed in a defined region, or continuous EP, where cells constantly pass through the device. Each device type performs superior to conventional, macroscale EP devices while providing additional advantages in precision manipulation (static EP) and increased throughput (continuous EP). Microscale EP is gentle on cells and has enabled more sensitive assaying of cells with novel applications. In this Review, we present the physical principles of microscale EP devices and examine design trends in recent years. In addition, we discuss the use of reversible and irreversible EP in the development of therapeutics and analysis of intracellular contents, among other noteworthy applications. This Review aims to inform and encourage scientists and engineers to expand the use of efficient and versatile microscale EP technologies.
Collapse
Affiliation(s)
- Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
20
|
Lee D, Naikar JS, Chan SSY, Meivita MP, Li L, Tan YS, Bajalovic N, Loke DK. Ultralong recovery time in nanosecond electroporation systems enabled by orientational-disordering processes. NANOSCALE 2022; 14:7934-7942. [PMID: 35603889 DOI: 10.1039/d1nr07362a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The growing importance of applications based on molecular medicine and genetic engineering is driving the need to develop high-performance electroporation technologies. The electroporation phenomenon involves disruption of the cell for increasing membrane permeability. Although there is a multitude of research focused on exploring new electroporation techniques, the engineering of programming schemes suitable for these electroporation methods remains a challenge. Nanosecond stimulations could be promising candidates for these techniques owing to their ability to generate a wide range of biological responses. Here we control the membrane permeabilization of cancer cells using different numbers of electric-field pulses through orientational disordering effects. We then report our exploration of a few-volt nanosecond alternating-current (AC) stimulation method with an increased number of pulses for developing electroporation systems. A recovery time of ∼720 min was achieved, which is above the average of ∼76 min for existing electroporation methods using medium cell populations, as well as a previously unreported increased conductance with an increase in the number of pulses using weak bias amplitudes. All-atom molecular dynamics (MD) simulations reveal the orientation-disordering-facilitated increase in the degree of permeabilization. These findings highlight the potential of few-volt nanosecond AC-stimulation with an increased number of pulse strategies for the development of next-generation low-power electroporation systems.
Collapse
Affiliation(s)
- Denise Lee
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372.
| | - J Shamita Naikar
- Office of Innovation, Changi General Hospital, Singapore, 529889
| | - Sophia S Y Chan
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372.
| | - Maria Prisca Meivita
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372.
| | - Lunna Li
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372.
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372.
- Office of Innovation, Changi General Hospital, Singapore, 529889
| |
Collapse
|
21
|
Chen N, He Y, Zang M, Zhang Y, Lu H, Zhao Q, Wang S, Gao Y. Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials 2022; 286:121567. [DOI: 10.1016/j.biomaterials.2022.121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
|
22
|
Yao S, Zhao X, Wang X, Huang T, Ding Y, Zhang J, Zhang Z, Wang ZL, Li L. Bioinspired Electron Polarization of Nanozymes with a Human Self-Generated Electric Field for Cancer Catalytic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109568. [PMID: 35151235 DOI: 10.1002/adma.202109568] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) production efficiencies of the nanocatalysts are highly desired for cancer therapy, but currently the ROS generation efficiency is still far from defecting the tumors. Therefore, improving their ROS generation ability is highly desirable for cancer therapy. Herein, inspired by the electrostatic preorganization effect during the catalysis of natural protein enzymes, a human self-driven catalysis-promoting system, TENG-CatSystem is developed, to improve catalytic cancer therapy. The TENG-CatSystem is mainly composed of three elements: a human self-driven triboelectric nanogenerator (TENG) as the electric field stimulator to provide electric pulses with high biosafety, a nanozyme comprising a 1D ferriporphyrin covalent organic framework coated on a carbon nanotube (COF-CNT) to generate ROS, and a COF-CNT-embedded conductive hydrogel that can be injected into the tumor tissues to increase local accumulation of COF-CNT and decrease the electrical impedances of tissues. Under the human self-generated electric field provided by the wearable TENG, the peroxidase-like activity of the COF-CNT is fourfold higher than that without an electric field. Highly malignant 4T1 breast carcinoma in mice is significantly suppressed using the TENG-CatSystem. The human self-driven TENG-CatSystem not only demonstrates high catalytic ROS generation efficiency for improved cancer therapy, but also offers a new therapeutic mode for self-driven at-home therapy.
Collapse
Affiliation(s)
- Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Xinyang Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Xueyu Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Tian Huang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, China
| | - Yiming Ding
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, China
| | - Jiaming Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zeyu Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, China
| |
Collapse
|
23
|
Scanning electrochemical microscope as a tool for the electroporation of living yeast cells. Biosens Bioelectron 2022; 205:114096. [PMID: 35219018 DOI: 10.1016/j.bios.2022.114096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022]
Abstract
In this study, a scanning electrochemical microscope (SECM) was for the first time adapted to perform the electroporation process of living yeast cells. We have demonstrated that relatively low voltage pulses of 1-2 V vs. Ag/AglCl,Cl-sat applied to gold-based ultramicroelectrode (Au-UME) are performing reversible electroporation of yeast cells immobilized on fluorine-doped tin oxide (FTO)/glass surface. SECM and electrochemical impedance spectroscopy (EIS) were used for the determination of quantitative electrochemical characteristics before and after the electroporation. The electrochemical impedance spectroscopy (EIS) illustrated significant electrochemical changes of electroporated yeast cells, while SECM feedback mode surface vertical scan current-distance curves showed that the diameter of the area affected by the electrical pulse is about 25 times larger than the diameter of the Au-UME used for the electroporation process. The results presented in this research open up a possibility to develop a targeted electroporation system which will affect only the selected area of tissue or some other cell-covered surface. Such model is promising for the selective treatment of selected cells in tissues and/or other sensitive biological systems while selecting the location and size of electroporated areas.
Collapse
|
24
|
Transdermal Drug Delivery in the Pig Skin. Pharmaceutics 2021; 13:pharmaceutics13122016. [PMID: 34959299 PMCID: PMC8707795 DOI: 10.3390/pharmaceutics13122016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
Transdermal delivery can be accomplished through various mechanisms including formulation optimization, epidermal stratum corneum barrier disruption, or directly by removing the stratum corneum layer. Microneedling, electroporation, a combination of both and also the intradermal injection known as mesotherapy have proved efficacy in epidermal-barrier disruption. Here we analyzed the effects of these methods of epidermal-barrier disruption in the structure of the skin and the absorption of four compounds with different characteristics and properties (ketoprofen, biotin, caffein, and procaine). Swine skin (Pietrain x Durox) was used as a human analogue, both having similar structure and pharmacological release. They were biopsied at different intervals, up to 2 weeks after application. High-pressure liquid chromatography and brightfield microscopy were performed, conducting a biometric analysis and measuring histological structure and vascular status. The performed experiments led to different results in the function of the studied molecules: ketoprofen and biotin had the best concentrations with intradermal injections, while delivery methods for obtaining procaine and caffein maximum concentrations changed on the basis of the lapsed time. The studied techniques did not produce significant histological alterations after their application, except for an observed increase in Langerhans cells and melanocytes after applying electroporation, and an epidermal thinning after using microneedles, with variable results regarding dermal thickness. Although all the studied barrier disruptors can accomplish transdermal delivery, the best disruptor is dependent on the particular molecule.
Collapse
|
25
|
|
26
|
Zhang Y, Gao X, Wu Y, Gui J, Guo S, Zheng H, Wang ZL. Self-powered technology based on nanogenerators for biomedical applications. EXPLORATION (BEIJING, CHINA) 2021; 1:90-114. [PMID: 37366464 PMCID: PMC10291576 DOI: 10.1002/exp.20210152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 06/28/2023]
Abstract
Biomedical electronic devices have enormous benefits for healthcare and quality of life. Still, the long-term working of those devices remains a great challenge due to the short life and large volume of conventional batteries. Since the nanogenerators (NGs) invention, they have been widely used to convert various ambient mechanical energy sources into electrical energy. The self-powered technology based on NGs is dedicated to harvesting ambient energy to supply electronic devices, which is an effective pathway to conquer the energy insufficiency of biomedical electronic devices. With the aid of this technology, it is expected to develop self-powered biomedical electronic devices with advanced features and distinctive functions. The goal of this review is to summarize the existing self-powered technologies based on NGs and then review the applications based on self-powered technologies in the biomedical field during their rapid development in recent years, including two main directions. The first is the NGs as independent sensors to converts biomechanical energy and heat energy into electrical signals to reflect health information. The second direction is to use the electrical energy produced by NGs to stimulate biological tissues or powering biomedical devices for achieving the purpose of medical application. Eventually, we have analyzed and discussed the remaining challenges and perspectives of the field. We believe that the self-powered technology based on NGs would advance the development of modern biomedical electronic devices.
Collapse
Affiliation(s)
- Yuanzheng Zhang
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of EducationSchool of Physics and TechnologyWuhan UniversityWuhanP. R. China
- International Joint Research Laboratory of New Energy Materials and Devices of Henan ProvinceHenan UniversityKaifengP. R. China
| | - Xiangyang Gao
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of EducationSchool of Physics and TechnologyWuhan UniversityWuhanP. R. China
| | - Yonghui Wu
- International Joint Research Laboratory of New Energy Materials and Devices of Henan ProvinceHenan UniversityKaifengP. R. China
| | - Jinzheng Gui
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of EducationSchool of Physics and TechnologyWuhan UniversityWuhanP. R. China
| | - Shishang Guo
- Key Laboratory of Artificial Micro‐ and Nano‐structures of Ministry of EducationSchool of Physics and TechnologyWuhan UniversityWuhanP. R. China
| | - Haiwu Zheng
- International Joint Research Laboratory of New Energy Materials and Devices of Henan ProvinceHenan UniversityKaifengP. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingP. R. China
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
27
|
Xiao X, Chen G, Libanori A, Chen J. Wearable Triboelectric Nanogenerators for Therapeutics. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|