1
|
Leone SR. Reinvented: An Attosecond Chemist. Annu Rev Phys Chem 2024; 75:1-19. [PMID: 38012050 DOI: 10.1146/annurev-physchem-083122-011610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Attosecond science requires a substantial rethinking of how to make measurements on very short timescales; how to acquire the necessary equipment, technology, and personnel; and how to build a set of laboratories for such experiments. This entails a rejuvenation of the author in many respects, in the laboratory itself, with regard to students and postdocs, and in generating funding for research. It also brings up questions of what it means to do attosecond science, and the discovery of the power of X-ray spectroscopy itself, which complements the short timescales addressed. The lessons learned, expressed in the meanderings of this autobiographical article, may be of benefit to others who try to reinvent themselves.
Collapse
Affiliation(s)
- Stephen R Leone
- Departments of Chemistry and Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, California, USA;
| |
Collapse
|
2
|
de Vos EW, Neb S, Niedermayr A, Burri F, Hollm M, Gallmann L, Keller U. Ultrafast Transition from State-Blocking Dynamics to Electron Localization in Transition Metal β-Tungsten. PHYSICAL REVIEW LETTERS 2023; 131:226901. [PMID: 38101348 DOI: 10.1103/physrevlett.131.226901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/27/2023] [Accepted: 10/17/2023] [Indexed: 12/17/2023]
Abstract
We describe an ultrafast transition of the electronic response of optically excited transition metal β-tungsten with few-femtosecond time resolution. The response moves from a regime where state filling of the excited carrier population around the Fermi level dominates towards localization of carriers onto the outer d orbitals. This is in contrast to previous measurements using ultrafast element-specific core-level spectroscopy enabled by attosecond transient absorption spectroscopy on transition metals such as titanium and around the transition metal atom in transition metal dichalchogenides MoTe_{2} and MoSe_{2}. This surprisingly different dynamical response for β-tungsten can be explained by considering the electron-electron dynamics on a few-femtosecond timescale and the slower electron-phonon thermalization dynamics.
Collapse
Affiliation(s)
- E W de Vos
- Department of Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - S Neb
- Department of Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - A Niedermayr
- Department of Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - F Burri
- Department of Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - M Hollm
- Department of Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - L Gallmann
- Department of Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - U Keller
- Department of Physics, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Sayers C, Genco A, Trovatello C, Conte SD, Khaustov VO, Cervantes-Villanueva J, Sangalli D, Molina-Sanchez A, Coletti C, Gadermaier C, Cerullo G. Strong Coupling of Coherent Phonons to Excitons in Semiconducting Monolayer MoTe 2. NANO LETTERS 2023; 23:9235-9242. [PMID: 37751559 PMCID: PMC10603802 DOI: 10.1021/acs.nanolett.3c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/19/2023] [Indexed: 09/28/2023]
Abstract
The coupling of the electron system to lattice vibrations and their time-dependent control and detection provide unique insight into the nonequilibrium physics of semiconductors. Here, we investigate the ultrafast transient response of semiconducting monolayer 2H-MoTe2 encapsulated with hBN using broadband optical pump-probe microscopy. The sub-40 fs pump pulse triggers extremely intense and long-lived coherent oscillations in the spectral region of the A' and B' exciton resonances, up to ∼20% of the maximum transient signal, due to the displacive excitation of the out-of-plane A1g phonon. Ab initio calculations reveal a dramatic rearrangement of the optical absorption of monolayer MoTe2 induced by an out-of-plane stretching and compression of the crystal lattice, consistent with an A1g -type oscillation. Our results highlight the extreme sensitivity of the optical properties of monolayer TMDs to small structural modifications and their manipulation with light.
Collapse
Affiliation(s)
| | - Armando Genco
- Dipartimento
di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - Chiara Trovatello
- Dipartimento
di Fisica, Politecnico di Milano, 20133 Milano, Italy
- Department
of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | | | - Vladislav O. Khaustov
- Center
for Nanotechnology Innovation @ NEST, Istituto
Italiano di Tecnologia, 56127 Pisa, Italy
- Scuola
Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Jorge Cervantes-Villanueva
- Institute
of Materials Science (ICMUV), University
of Valencia, Catedrático Beltrán 2, E-46980 Valencia, Spain
| | - Davide Sangalli
- Division
of Ultrafast Processes in Materials (FLASHit), Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, 00016 Monterotondo, Scalo, Italy
| | - Alejandro Molina-Sanchez
- Institute
of Materials Science (ICMUV), University
of Valencia, Catedrático Beltrán 2, E-46980 Valencia, Spain
| | - Camilla Coletti
- Center
for Nanotechnology Innovation @ NEST, Istituto
Italiano di Tecnologia, 56127 Pisa, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, 20133 Milano, Italy
| |
Collapse
|
4
|
Jiang J, Xu W, Guo F, Yang S, Ge W, Shen B, Tang N. Polarization-Resolved Near-Infrared PdSe 2 p-i-n Homojunction Photodetector. NANO LETTERS 2023; 23:9522-9528. [PMID: 37823381 DOI: 10.1021/acs.nanolett.3c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Constructing high-quality homojunctions plays a pivotal role for the advancement of two-dimensional transition metal sulfide (TMDC) based optoelectronic devices. Here, a lateral PdSe2 p-i-n homojunction is constructed by electrostatic doping. Electrical measurements reveal that the homojunction diode exhibits a strong rectifying characteristic with a rectification ratio exceeding 104 and an ideality factor approaching 1. When functioning in photovoltaic mode, the device achieves a high responsivity of 1.1 A/W under 1064 nm illumination, with a specific detectivity of 1.3 × 1011 Jones and a high linearity of 45 dB. Benefiting from the lateral p-i-n structure, the junction capacitance is significantly reduced, and an ultrafast response (3/6 μs) is obtained. Additionally, the photodiode has the capability of polarization distinction due to the unique in-plane anisotropic structure of PdSe2, exhibiting a dichroic ratio of 1.6 at a 1064 nm wavelength. This high-performance polarization-sensitive near-infrared photodetector exhibits great potential in the next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Jiayang Jiang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Weiting Xu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Fuqiang Guo
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Shengxue Yang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Weikun Ge
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Bo Shen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Ning Tang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| |
Collapse
|
5
|
Ash R, Abhari Z, Candela R, Welke N, Murawski J, Gardezi SM, Venkatasubramanian N, Munawar M, Siewert F, Sokolov A, LaDuca Z, Kawasaki J, Bergmann U. X-FAST: A versatile, high-throughput, and user-friendly XUV femtosecond absorption spectroscopy tabletop instrument. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:073004. [PMID: 37462459 DOI: 10.1063/5.0146137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
We present the X-FAST (XUV Femtosecond Absorption Spectroscopy Tabletop) instrument at the University of Wisconsin-Madison. The instrument produces femtosecond extreme ultraviolet photon pulses via high-harmonic generation in the range of 40-72 eV, as well as optical pump pulses for transient-absorption experiments. The system implements a gas-cooled sample cell that enables studying the dynamics of thermally sensitive thin-film samples. This paper provides potential users with specifications of the optical, vacuum, data acquisition, and sample cooling systems of the X-FAST instrument, along with performance metrics and data of an ultrafast laser-induced phase transition in a Ni2MnGa Heusler thin film.
Collapse
Affiliation(s)
- Ryan Ash
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | - Zain Abhari
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | - Roberta Candela
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | - Noah Welke
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | - Jake Murawski
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | - S Minhal Gardezi
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | | | - Muneeza Munawar
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | - Frank Siewert
- Helmholtz Zentrum Berlin für Materialien und Energie, Department of Optics and Beamlines, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Andrey Sokolov
- Helmholtz Zentrum Berlin für Materialien und Energie, Department of Optics and Beamlines, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Zachary LaDuca
- Department of Materials Science and Engineering, University of Wisconsin Madison, 1509 University Ave., Madison, Wisconsin 53706, USA
| | - Jason Kawasaki
- Department of Materials Science and Engineering, University of Wisconsin Madison, 1509 University Ave., Madison, Wisconsin 53706, USA
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Wright JC, Kohler DD, Bergmann U. X-ray/Extreme Ultraviolet Floquet State Multidimensional Spectroscopy, an Analogue of Multiple Quantum Nuclear Magnetic Resonance. J Phys Chem Lett 2023:4908-4913. [PMID: 37201210 DOI: 10.1021/acs.jpclett.3c00778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is great interest in developing fully coherent multidimensional X-ray/extreme ultraviolet (XUV) spectroscopic techniques because of their capability for achieving atomic spectral selectivity. Current proposals rest on using sequentially and coherently driven core excitations with multiple X-ray/XUV excitation pulses and measuring the output using time domain Fourier transform methods. In this paper, we propose an alternative method that creates an entanglement of core and optical transitions to form a Floquet state that creates directional and coherent output beams. Multidimensional spectra are obtained by measuring the intensity of output beams while tuning the optical frequencies across resonances. This approach expands on previous optical pump-XUV probe spectroscopy of MoTe2 by theoretically demonstrating its multidimensional capabilities. Both parametric and non-parametric pathways are proposed to optimize the resolution of inhomogeneous broadening and k-selective features.
Collapse
Affiliation(s)
- John C Wright
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Daniel D Kohler
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Liu H, Michelsen JM, Mendes JL, Klein IM, Bauers SR, Evans JM, Zakutayev A, Cushing SK. Measuring Photoexcited Electron and Hole Dynamics in ZnTe and Modeling Excited State Core-Valence Effects in Transient Extreme Ultraviolet Reflection Spectroscopy. J Phys Chem Lett 2023; 14:2106-2111. [PMID: 36802601 DOI: 10.1021/acs.jpclett.2c03894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transient extreme ultraviolet (XUV) spectroscopy is becoming a valuable tool for characterizing solar energy materials because it can separate photoexcited electron and hole dynamics with element specificity. Here, we use surface-sensitive femtosecond XUV reflection spectroscopy to separately measure photoexcited electron, hole, and band gap dynamics of ZnTe, a promising photocathode for CO2 reduction. We develop an ab initio theoretical framework based on density functional theory and the Bethe-Salpeter equation to robustly assign the complex transient XUV spectra to the material's electronic states. Applying this framework, we identify the relaxation pathways and quantify their time scales in photoexcited ZnTe, including subpicosecond hot electron and hole thermalization, surface carrier diffusion, ultrafast band gap renormalization, and evidence of acoustic phonon oscillations.
Collapse
Affiliation(s)
- Hanzhe Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonathan M Michelsen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jocelyn L Mendes
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Isabel M Klein
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sage R Bauers
- Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jake M Evans
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Andriy Zakutayev
- Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Scott K Cushing
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Li C, Tian R, Chen X, Gu L, Luo Z, Zhang Q, Yi R, Li Z, Jiang B, Liu Y, Castellanos-Gomez A, Chua SJ, Wang X, Sun Z, Zhao J, Gan X. Waveguide-Integrated MoTe 2 p- i- n Homojunction Photodetector. ACS NANO 2022; 16:20946-20955. [PMID: 36413764 DOI: 10.1021/acsnano.2c08549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) materials, featuring distinctive electronic and optical properties and dangling-bond-free surfaces, are promising for developing high-performance on-chip photodetectors in photonic integrated circuits. However, most of the previously reported devices operating in the photoconductive mode suffer from a high dark current or a low responsivity. Here, we demonstrate a MoTe2 p-i-n homojunction fabricated directly on a silicon photonic crystal (PC) waveguide, which enables on-chip photodetection with ultralow dark current, high responsivity, and fast response speed. The adopted silicon PC waveguide is electrically split into two individual back gates to selectively dope the top regions of the MoTe2 channel in p- or n-types. High-quality reconfigurable MoTe2 (p-i-n, n-i-p, n-i-n, p-i-p) homojunctions are realized successfully, presenting rectification behaviors with ideality factors approaching 1.0 and ultralow dark currents less than 90 pA. Waveguide-assisted MoTe2 absorption promises a sensitive photodetection in the telecommunication O-band from 1260 to 1340 nm, though it is close to MoTe2's absorption band-edge. A competitive photoresponsivity of 0.4 A/W is realized with a light on/off current ratio exceeding 104 and a record-high normalized photocurrent-to-dark-current ratio of 106 mW-1. The ultrasmall capacitance of p-i-n homojunction and high carrier mobility of MoTe2 promise a high dynamic response bandwidth close to 34.0 GHz. The proposed device geometry has the advantages of employing a silicon PC waveguide as the back gates to build a 2D material p-i-n homojunction directly and simultaneously to enhance light-2D material interaction. It provides a potential pathway to develop 2D material-based photodetectors, laser diodes, and electro-optic modulators on silicon photonic chips.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710129, China
| | - Ruijuan Tian
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710129, China
| | - Xiaoqing Chen
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710129, China
| | - Linpeng Gu
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710129, China
| | - Zhengdong Luo
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi'an710071, China
| | - Qiao Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710129, China
| | - Ruixuan Yi
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710129, China
| | - Zhiwen Li
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710129, China
| | - Biqiang Jiang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710129, China
| | - Yan Liu
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi'an710071, China
| | - Andres Castellanos-Gomez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), MadridE-28049, Spain
| | - Soo-Jin Chua
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore
- LEES Program, Singapore-MIT Alliance for Research & Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, 138602, Singapore
| | - Xiaomu Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Aalto University, AaltoFI-00076, Finland
| | - Jianlin Zhao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710129, China
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710129, China
| |
Collapse
|
9
|
Kobayashi Y, Leone SR. Characterizing coherences in chemical dynamics with attosecond time-resolved x-ray absorption spectroscopy. J Chem Phys 2022; 157:180901. [DOI: 10.1063/5.0119942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Coherence can drive wave-like motion of electrons and nuclei in photoexcited systems, which can yield fast and efficient ways to exert materials’ functionalities beyond the thermodynamic limit. The search for coherent phenomena has been a central topic in chemical physics although their direct characterization is often elusive. Here, we highlight recent advances in time-resolved x-ray absorption spectroscopy (tr-XAS) to investigate coherent phenomena, especially those that utilize the eminent light source of isolated attosecond pulses. The unparalleled time and state sensitivities of tr-XAS in tandem with the unique element specificity render the method suitable to study valence electronic dynamics in a wide variety of materials. The latest studies have demonstrated the capabilities of tr-XAS to characterize coupled electronic–structural coherence in small molecules and coherent light–matter interactions of core-excited excitons in solids. We address current opportunities and challenges in the exploration of coherent phenomena, with potential applications for energy- and bio-related systems, potential crossings, strongly driven solids, and quantum materials. With the ongoing developments in both theory and light sources, tr-XAS holds great promise for revealing the role of coherences in chemical dynamics.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Stephen R. Leone
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Arias-Martinez JE, Cunha LA, Oosterbaan KJ, Lee J, Head-Gordon M. Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach. Phys Chem Chem Phys 2022; 24:20728-20741. [PMID: 36004629 DOI: 10.1039/d2cp01998a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the use of orbital-optimized references in conjunction with single-reference coupled-cluster theory with single and double substitutions (CCSD) for the study of core excitations and ionizations of 18 small organic molecules, without the use of response theory or equation-of-motion (EOM) formalisms. Three schemes are employed to successfully address the convergence difficulties associated with the coupled-cluster equations, and the spin contamination resulting from the use of a spin symmetry-broken reference, in the case of excitations. In order to gauge the inherent potential of the methods studied, an effort is made to provide reasonable basis set limit estimates for the transition energies. Overall, we find that the two best-performing schemes studied here for ΔCCSD are capable of predicting excitation and ionization energies with errors comparable to experimental accuracies. The proposed ΔCCSD schemes reduces statistical errors against experimental excitation energies by more than a factor of two when compared to the frozen-core core-valence separated (FC-CVS) EOM-CCSD approach - a successful variant of EOM-CCSD tailored towards core excitations.
Collapse
Affiliation(s)
- Juan E Arias-Martinez
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Leonardo A Cunha
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Katherine J Oosterbaan
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Joonho Lee
- Department of Chemistry, Columbia University, New York 10027, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Klein IM, Liu H, Nimlos D, Krotz A, Cushing SK. Ab Initio Prediction of Excited-State and Polaron Effects in Transient XUV Measurements of α-Fe 2O 3. J Am Chem Soc 2022; 144:12834-12841. [PMID: 35816667 DOI: 10.1021/jacs.2c03994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transient X-ray and extreme ultraviolet (XUV) spectroscopies have become invaluable tools for studying photoexcited dynamics due to their sensitivity to carrier occupations and local chemical or structural changes. One of the most studied materials using transient XUV spectroscopy is α-Fe2O3 because of its rich photoexcited dynamics, including small polaron formation. The interpretation of carrier and polaron effects in α-Fe2O3 is currently carried out using a semi-empirical method that is not transferrable to most materials. Here, an ab initio, Bethe-Salpeter equation (BSE) approach is developed that can incorporate photoexcited-state effects into arbitrary material systems. The accuracy of this approach is proven by calculating the XUV absorption spectra for the ground, photoexcited, and polaron states of α-Fe2O3. Furthermore, the theoretical approach allows for the projection of the core-valence excitons and different components of the X-ray transition Hamiltonian onto the band structure, providing new insights into old measurements. From this information, a physical intuition about the origins and nature of the transient XUV spectra can be built. A route to extracting electron and hole energies is even shown possible for highly angular momentum split XUV peaks. This method is easily generalized to K, L, M, and N edges to provide a general approach for analyzing transient X-ray absorption or reflection data.
Collapse
Affiliation(s)
- Isabel M Klein
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Hanzhe Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Danika Nimlos
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alex Krotz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Scott Kevin Cushing
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Borrego-Varillas R, Lucchini M, Nisoli M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:066401. [PMID: 35294930 DOI: 10.1088/1361-6633/ac5e7f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Since the first demonstration of the generation of attosecond pulses (1 as = 10-18s) in the extreme-ultraviolet spectral region, several measurement techniques have been introduced, at the beginning for the temporal characterization of the pulses, and immediately after for the investigation of electronic and nuclear ultrafast dynamics in atoms, molecules and solids with unprecedented temporal resolution. The attosecond spectroscopic tools established in the last two decades, together with the development of sophisticated theoretical methods for the interpretation of the experimental outcomes, allowed to unravel and investigate physical processes never observed before, such as the delay in photoemission from atoms and solids, the motion of electrons in molecules after prompt ionization which precede any notable nuclear motion, the temporal evolution of the tunneling process in dielectrics, and many others. This review focused on applications of attosecond techniques to the investigation of ultrafast processes in atoms, molecules and solids. Thanks to the introduction and ongoing developments of new spectroscopic techniques, the attosecond science is rapidly moving towards the investigation, understanding and control of coupled electron-nuclear dynamics in increasingly complex systems, with ever more accurate and complete investigation techniques. Here we will review the most common techniques presenting the latest results in atoms, molecules and solids.
Collapse
Affiliation(s)
- Rocío Borrego-Varillas
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Matteo Lucchini
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Mauro Nisoli
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
13
|
Dolso GL, Moio B, Inzani G, Di Palo N, Sato SA, Borrego-Varillas R, Nisoli M, Lucchini M. Reconstruction of ultrafast exciton dynamics with a phase-retrieval algorithm. OPTICS EXPRESS 2022; 30:12248-12267. [PMID: 35472864 DOI: 10.1364/oe.451759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The first step to gain optical control over the ultrafast processes initiated by light in solids is a correct identification of the physical mechanisms at play. Among them, exciton formation has been identified as a crucial phenomenon which deeply affects the electro-optical properties of most semiconductors and insulators of technological interest. While recent experiments based on attosecond spectroscopy techniques have demonstrated the possibility to observe the early-stage exciton dynamics, the description of the underlying exciton properties remains non-trivial. In this work we propose a new method called extended Ptychographic Iterative engine for eXcitons (ePIX), capable of reconstructing the main physical properties which determine the evolution of the quasi-particle with no prior knowledge of the exact relaxation dynamics or the pump temporal characteristics. By demonstrating its accuracy even when the exciton dynamics is comparable to the pump pulse duration, ePIX is established as a powerful approach to widen our knowledge of solid-state physics.
Collapse
|
14
|
Biswas S, Baker LR. Extreme Ultraviolet Reflection-Absorption Spectroscopy: Probing Dynamics at Surfaces from a Molecular Perspective. Acc Chem Res 2022; 55:893-903. [PMID: 35238529 DOI: 10.1021/acs.accounts.1c00765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extreme ultraviolet light sources based on high harmonic generation are enabling the development of novel spectroscopic methods to help advance the frontiers of ultrafast science and technology. In this Account, we discuss the development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy at near grazing incident reflection geometry and highlight recent applications of this method to study ultrafast electron dynamics at surfaces. Measuring core-to-valence transitions with broadband, femtosecond pulses of XUV light extends the benefits of X-ray absorption spectroscopy to a laboratory tabletop by providing a chemical fingerprint of materials, including the ability to resolve individual elements with sensitivity to oxidation state, spin state, carrier polarity, and coordination geometry. Combining this chemical state sensitivity with femtosecond time resolution provides new insight into the material properties that govern charge carrier dynamics in complex materials. It is well-known that surface dynamics differ significantly from equivalent processes in bulk materials and that charge separation, trapping, transport, and recombination occurring uniquely at surfaces govern the efficiency of numerous technologically relevant processes spanning photocatalysis, photovoltaics, and information storage and processing. Importantly, XUV-RA spectroscopy at near grazing angle is also surface sensitive with a probe depth of ∼3 nm, providing a new window into electronic and structural dynamics at surfaces and interfaces. Here we highlight the unique capabilities and recent applications of XUV-RA spectroscopy to study photoinduced surface dynamics in metal oxide semiconductors, including photocatalytic oxides (Fe2O3, Co3O4 NiO, and CuFeO2) as well as photoswitchable magnetic oxide (CoFe2O4). We first compare the ultrafast electron self-trapping rates via small polaron formation at the surface and bulk of Fe2O3 where we note that the energetics and kinetics of this process differ significantly at the surface. Additionally, we demonstrate the ability to systematically tune this kinetics by molecular functionalization, thereby providing a route to control carrier transport at surfaces. We also measure the spectral signatures of charge transfer excitons with site specific localization of both electrons and holes in a series of transition metal oxide semiconductors (Fe2O3, NiO, Co3O4). The presence of valence band holes probed at the oxygen L1-edge confirms a direct relationship between the metal-oxygen bond covalency and water oxidation efficiency. For a mixed metal oxide CuFeO2 in the layered delafossite structure, XUV-RA reveals that the sub-picosecond hole thermalization from O 2p to Cu 3d states of CuFeO2 leads to the spatial separation of electrons and holes, resulting in exceptional photocatalytic performance for H2 evolution and CO2 reduction of this material. Finally, we provide an example to show the ability of XUV-RA to probe spin state specific dynamics in a photoswitchable ferrimagnet, cobalt ferrite (CoFe2O4). This study provides a detailed understating of ultrafast spin switching in a complex magnetic material with site-specific resolution. In summary, the applications of XUV-RA spectroscopy demonstrated here illustrate the current abilities and future promise of this method to extend molecule-level understanding from well-defined photochemical complexes to complex materials so that charge and spin dynamics at surfaces can be tuned with the precision of molecular photochemistry.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| | - L. Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Guan MX, Liu XB, Chen DQ, Li XY, Qi YP, Yang Q, You PW, Meng S. Optical Control of Multistage Phase Transition via Phonon Coupling in MoTe_{2}. PHYSICAL REVIEW LETTERS 2022; 128:015702. [PMID: 35061482 DOI: 10.1103/physrevlett.128.015702] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The temporal characters of laser-driven phase transition from 2H to 1T^{'} has been investigated in the prototype MoTe_{2} monolayer. This process is found to be induced by fundamental electron-phonon interactions, with an unexpected phonon excitation and coupling pathway closely related to the nonequilibrium relaxation of photoexcited electrons. The order-to-order phase transformation is dissected into three substages, involving energy and momentum scattering processes from optical (A_{1}^{'} and E^{'}) to acoustic phonon modes [LA(M)] in subpicosecond timescale. An intermediate metallic state along the nonadiabatic transition pathway is also identified. These results have profound implications on nonequilibrium phase engineering strategies.
Collapse
Affiliation(s)
- Meng-Xue Guan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xin-Bao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Da-Qiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan-Yi Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ying-Peng Qi
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Pei-Wei You
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
16
|
Costantini R, Cilento F, Salvador F, Morgante A, Giorgi G, Palummo M, Dell’Angela M. Photo-induced lattice distortion in 2H-MoTe2 probed by time-resolved core level photoemission. Faraday Discuss 2022; 236:429-441. [DOI: 10.1039/d1fd00105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The technological interest in MoTe2 as a phase engineered material is related to the possibility of triggering the 2H-1T’ phase transition by optical excitation, potentially allowing for an accurate patterning...
Collapse
|
17
|
Verkamp M, Leveillee J, Sharma A, Lin MF, Schleife A, Vura-Weis J. Carrier-Specific Hot Phonon Bottleneck in CH 3NH 3PbI 3 Revealed by Femtosecond XUV Absorption. J Am Chem Soc 2021; 143:20176-20182. [PMID: 34813692 DOI: 10.1021/jacs.1c07817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Femtosecond carrier cooling in the organohalide perovskite semiconductor CH3NH3PbI3 is measured using extreme ultraviolet (XUV) and optical transient absorption spectroscopy. XUV absorption between 44 and 58 eV measures transitions from the I 4d core to the valence and conduction bands and gives distinct signals for hole and electron dynamics. The core-to-valence-band signal directly maps the photoexcited hole distribution and provides a quantitative measurement of the hole temperature. The combination of XUV and optical probes reveals that upon excitation at 400 nm, the initial hole distribution is 3.5 times hotter than the electron distribution. At an initial carrier density of 1.4 × 1020 cm-3 both carriers are subject to a hot phonon bottleneck, but at 4.2 × 1019 cm-3 the holes cool to less than 1000 K within 400 fs. This result places significant constraints on the use of organohalide perovskites in hot-carrier photovoltaics.
Collapse
Affiliation(s)
- Max Verkamp
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joshua Leveillee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aastha Sharma
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - André Schleife
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
|
19
|
Gao L, Hu Z, Lu J, Liu H, Ni Z. Defect-related dynamics of photoexcited carriers in 2D transition metal dichalcogenides. Phys Chem Chem Phys 2021; 23:8222-8235. [PMID: 33875990 DOI: 10.1039/d1cp00006c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) exhibit enormous potential in the field of optoelectronics. The high performance of TMD materials and optoelectronic devices significantly depends on processes involved in photoelectric conversion, including photo-excitation, relaxation, transportation, and recombination. Remarkably, inevitable defects in materials prolong or shorten the characteristic time of these processes and even bring about new photoelectric conversion channels, namely, the defect-related relaxation pathways of photoexcited carriers tailor the performance of photoelectric applications. In recent years, there have been numerous investigations in exploring the variant transient signals caused by defects in TMDs utilizing ultrafast spectroscopies. They have the capability in providing an accurate and overall representation of ultrafast processes owing to the subtle temporal resolution. The defect-related mechanisms occurring in different time scales (from femtosecond (fs) to microsecond (μs)) play influential roles throughout the relaxation process of photoexcited species. Herein, we review the defect-related relaxation mechanisms of photoexcited species in TMDs according to the time scale utilizing ultrafast spectroscopy techniques. By interpreting and summarizing the defect-related transient signals, we furnish the direction in material design and performance optimization.
Collapse
Affiliation(s)
- Lei Gao
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
| | - Zhenliang Hu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
| | - Junpeng Lu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
| | - Hongwei Liu
- Jiangsu Key Lab on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Zhenhua Ni
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
| |
Collapse
|
20
|
Britz A, Attar AR, Zhang X, Chang HT, Nyby C, Krishnamoorthy A, Park SH, Kwon S, Kim M, Nordlund D, Sainio S, Heinz TF, Leone SR, Lindenberg AM, Nakano A, Ajayan P, Vashishta P, Fritz D, Lin MF, Bergmann U. Carrier-specific dynamics in 2H-MoTe 2 observed by femtosecond soft x-ray absorption spectroscopy using an x-ray free-electron laser. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:014501. [PMID: 33511247 PMCID: PMC7808761 DOI: 10.1063/4.0000048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Femtosecond carrier dynamics in layered 2H-MoTe2 semiconductor crystals have been investigated using soft x-ray transient absorption spectroscopy at the x-ray free-electron laser (XFEL) of the Pohang Accelerator Laboratory. Following above-bandgap optical excitation of 2H-MoTe2, the photoexcited hole distribution is directly probed via short-lived transitions from the Te 3d 5/2 core level (M5-edge, 572-577 eV) to transiently unoccupied states in the valence band. The optically excited electrons are separately probed via the reduced absorption probability at the Te M5-edge involving partially occupied states of the conduction band. A 400 ± 110 fs delay is observed between this transient electron signal near the conduction band minimum compared to higher-lying states within the conduction band, which we assign to hot electron relaxation. Additionally, the transient absorption signals below and above the Te M5 edge, assigned to photoexcited holes and electrons, respectively, are observed to decay concomitantly on a 1-2 ps timescale, which is interpreted as electron-hole recombination. The present work provides a benchmark for applications of XFELs for soft x-ray absorption studies of carrier-specific dynamics in semiconductors, and future opportunities enabled by this method are discussed.
Collapse
Affiliation(s)
| | | | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
| | - Hung-Tzu Chang
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Aravind Krishnamoorthy
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, USA
| | - Sang Han Park
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Soonnam Kwon
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Minseok Kim
- PAL-XFEL, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sami Sainio
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | | | | | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, USA
| | - Pulickel Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
| | - Priya Vashishta
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089, USA
| | - David Fritz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ming-Fu Lin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|