1
|
Xiong W, Zhang G, Bao DL, Lu J, Gao L, Li Y, Zhang H, Ruan Z, Hao Z, Gao HJ, Chen L, Cai J. Visualizing stepwise evolution of carbon hybridization from sp 3 to sp 2 and to sp. Nat Commun 2025; 16:690. [PMID: 39814741 PMCID: PMC11735776 DOI: 10.1038/s41467-024-55719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
Regulating carbon hybridization states lies at the heart of engineering carbon materials with tailored properties but orchestrating the sequential transition across three states has remained elusive. Here, we visiualize stepwise evolution in carbon hybridizations from sp³ to sp² and to sp states via dehydrogenation and elimination reactions of methylcyano-functionalized molecules on surfaces. Utilizing scanning probing microscopy, we distinguish three distinct carbon-carbon bond types within polymers induced by annealing at elevated temperatures. Density-functional-theory calculations unveil the pivotal role of the electron-withdrawing cyano group in activating neighboring methylene to form C(sp3)-C(sp3) bonds, and in facilitating subsequent stepwise HCN eliminations to realize the transformation across three carbon-carbon bond types. We also demonstrate the applicability of this strategy on one-dimensional molecular wires and two-dimensional covalent organic framework on different substrates. Our work expands the scope of carbon hybridization evolution and serves as an advance in flexibly engineering carbon-material by employing cyanomethyl-substituted molecules.
Collapse
Affiliation(s)
- Wei Xiong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China
| | - Guang Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, 300072, Tianjin, PR China
| | - De-Liang Bao
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China.
| | - Lei Gao
- Faculty of Science, Kunming University of Science and Technology, 650093, Kunming, PR China
| | - Yusen Li
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, 300072, Tianjin, PR China
| | - Hui Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China
| | - Zilin Ruan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China
| | - Zhenliang Hao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China
| | - Hong-Jun Gao
- Institute of Physics & University of Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Long Chen
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, 300072, Tianjin, PR China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, PR China.
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China.
- Southwest United Graduate School, 650093, Kunming, PR China.
| |
Collapse
|
2
|
Lombana A, Chaunchaiyakul S, Chuzel O, Hagebaum-Reignier D, Parrain JL, Bocquet F, Nony L, Loppacher C, Bondino F, Magnano E, Imada H, Kazuma E, Kim Y, Giovanelli L, Clair S. Competing pathways to aromaticity governed by amine dehydrogenation and metal-organic complexation in on-surface synthesis. Chem Sci 2025:d4sc07550a. [PMID: 39840291 PMCID: PMC11744327 DOI: 10.1039/d4sc07550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025] Open
Abstract
We investigated the reactivity of a gem-dichlorovinyl-carbazole precursor in the on-surface synthesis approach. Our findings reveal that, on the Au(111) surface, the thermally-induced dehalogenation reaction led to the formation of cumulene dimers. Contrastingly, the more reactive Cu(111) surface promoted the formation of a polyheterocyclic compound exhibiting extended aromaticity. The latter was found to be related to the dehydrogenation of the amine groups, which did not occur on Au(111), thus promoting the different reactivity observed. At higher annealing temperature, selective C-H activation led to the formation of well-defined organometallic chains. In addition, we found that the amine complexation with metal adatom on Cu(111) was an inhibiting factor for the dimerization reaction, a challenge that could be overcome through proper control of the deposition conditions.
Collapse
Affiliation(s)
- Andrés Lombana
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Songpol Chaunchaiyakul
- Surface and Interface Science Laboratory, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Olivier Chuzel
- Aix Marseille Univ., CNRS, Centrale Med., ISM2 Marseille France
| | | | | | - Franck Bocquet
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Laurent Nony
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Christian Loppacher
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Federica Bondino
- CNR - Istituto Officina dei Materiali (IOM) AREA Science Park, Basovizza 34149 Trieste Italy
| | - Elena Magnano
- CNR - Istituto Officina dei Materiali (IOM) AREA Science Park, Basovizza 34149 Trieste Italy
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney Camperdown 2006 Australia
| | - Hiroshi Imada
- Surface and Interface Science Laboratory, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Emiko Kazuma
- Surface and Interface Science Laboratory, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Luca Giovanelli
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Sylvain Clair
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| |
Collapse
|
3
|
Hu T, Deng H, Chen Q, Liu J, Wu K. Low-Dimensional Metal-Alkynyls: On-Surface Synthesis and Properties. J Phys Chem Lett 2024; 15:12584-12593. [PMID: 39680668 DOI: 10.1021/acs.jpclett.4c03248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Metal-alkynyls, an emerging class of functional metal-organic materials, have attracted widespread attention due to their fascinating properties and multifaceted potential applications, such as luminescence, nonlinear optics, liquid crystals, and catalysis. Despite considerable effort toward their synthesis, precise construction of complex metal-alkynyl structures with a high selectivity remains a great challenge. The rise of on-surface chemistry not only offers a route to realizing controlled synthesis of low-dimensional (LD) metal-alkynyls but also provides an opportunity for their in-depth investigations with advanced surface characterization techniques such as scanning tunneling microscopy. This Perspective presents an overview of some recent progress in precise on-surface synthesis of LD metal-alkynyls. Atomic-level explorations of chemical reactivities and electronic properties of surface-confined metal-alkynyls are then summarized to highlight their conjugated electronic states and rich chemistry.
Collapse
Affiliation(s)
- Ting Hu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haoyang Deng
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiwei Chen
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Liu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Li H, Wang Y, Yang B, Zhang H, Xie M, Chi L. Theoretical Investigation on the Initial Reaction Mechanism of Hexaethynylbenzene on Au(111) Surface. J Phys Chem A 2024; 128:7536-7545. [PMID: 39194318 DOI: 10.1021/acs.jpca.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Graphyne has attracted considerable interest and attention since its successful synthesis, due to its enormous potential for applications in the fields of electronics, energy, catalysis, information technology, etc. Although various methods for synthesizing graphyne have been explored, single-layer graphynes have not been successfully developed. Hexaethynylbenzene (HEB) is considered an ideal precursor molecule because it can undergo Glaser coupling reactions between molecules to synthesize single layer graphdiyne on single crystal metal surfaces via on-surface reactions. Unfortunately, this method fails to achieve the expected results, and the underlying mechanism is not clear. In this work, we employed a combination of ab initio molecular dynamics (AIMD) and quantum mechanics (QM) methods to investigate the initial reaction mechanism of HEB molecules on a Au(111) surface. We revealed that HEB molecules undergo both intermolecular coupling and intramolecular cyclization on the Au(111) surface. The favorable pathways of these two types of reactions were then distinguished, confirming that the distance between the terminal carbon atoms of the ethynyl groups plays an important role in C-C coupling. The insights revealed from this work could facilitate the rational design of precursor molecules and deepen the understanding of the reaction processes.
Collapse
Affiliation(s)
- Hailong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yuying Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Biao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Miao Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
5
|
Zhao W, Haag F, Piquero-Zulaica I, Abd El-Fattah ZM, Pendem P, Vezzoni Vicente P, Zhang YQ, Cao N, Seitsonen AP, Allegretti F, Yang B, Barth JV. Transmetalation in Surface-Confined Single-Layer Organometallic Networks with Alkynyl-Metal-Alkynyl Linkages. ACS NANO 2024; 18:20157-20166. [PMID: 39042431 PMCID: PMC11308921 DOI: 10.1021/acsnano.4c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Transmetalation represents an appealing strategy toward fabricating and tuning functional metal-organic polymers and frameworks for diverse applications. In particular, building two-dimensional metal-organic and organometallic networks affords versatile nanoarchitectures of potential interest for nanodevices and quantum technology. The controlled replacement of embedded metal centers holds promise for exploring versatile material varieties by serial modification and different functionalization. Herein, we introduce a protocol for the modification of a single-layer carbon-metal-based organometallic network via transmetalation. By integrating external Cu atoms into the alkynyl-Ag organometallic network constructed with 1,3,5-triethynylbenzene precursors, we successfully realized in situ its highly regular alkynyl-Cu counterpart on the Ag(111) surface. While maintaining a similar lattice periodicity and pore morphology to the original alkynyl-Ag sheet, the Cu-based network exhibits increased thermal stability, guaranteeing improved robustness for practical implementation.
Collapse
Affiliation(s)
- Wenchao Zhao
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Felix Haag
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Ignacio Piquero-Zulaica
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Zakaria M. Abd El-Fattah
- Physics
Department, Faculty of Science, Al-Azhar
University, Nasr City, Cairo 11884, Egypt
- Physics
Department, Faculty of Science, Galala University, New Galala City, Suez 43511, Egypt
| | - Prashanth Pendem
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Pablo Vezzoni Vicente
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Yi-Qi Zhang
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Cao
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Ari Paavo Seitsonen
- Département
de Chemie, École Normale Supérieure, 24 rue Lhomond, Paris F-75005, France
| | - Francesco Allegretti
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| | - Biao Yang
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials and
Devices, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
| | - Johannes V. Barth
- Physics
Department E20, TUM School of Natural Sciences, Technical University of Munich, James Franck Straße 1, Garching 85748, Germany
| |
Collapse
|
6
|
Li X, Ge H, Gao Y, Yang F, Kang F, Xue R, Yan L, Du S, Xu W, Zhang H, Chi L. Scanning Tunneling Spectroscopy Investigation of Au- bis-acetylide Networks on Au(111): The Influence of Metal-Organic Hybridization. J Phys Chem Lett 2024; 15:4593-4601. [PMID: 38639727 DOI: 10.1021/acs.jpclett.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Graphdiyne (GDY) is an appealing two-dimensional carbon material, but the on-surface synthesis of a single layer remains challenging. Demetalation of well-crystalline metal acetylide networks, though in its infancy, provides a new avenue to on-surface synthesized GDY substructures. In spite of the synthetic efforts and theoretical concerns, there are few reports steeped in elaborate characterization of the electronic influence of metalation. In this context, we focused on the surface supported Au-bis-acetylide network, which underwent demetalation after further annealing to form hydrogen-substituted GDY. We made a comprehensive study on the geometric structure and electronic structure and the corresponding demetalized structure on Au(111) through STM, noncontact atomic force microscopy (nc-AFM), scanning tunneling spectroscopy (STS), and density functional theory (DFT) simulations. The bandgap of the Au-bis-acetylide network on Au(111) is measured to be 2.7 eV, while the bandgap of a fully demetalized Au-bis-acetylide network is estimated to be about 4.1 eV. Our findings reveal that the intercalated Au adatoms are positioned closer to the metal surface compared with the organic skeletons, facilitating electronic hybridization between the surface state and unoccupied frontier molecular orbitals of organic components. This leads to an extended conjugation through Au-bis-acetylene bonds, resulting in a reduced bandgap.
Collapse
Affiliation(s)
- Xuechao Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Haitao Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yixuan Gao
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Fangyu Yang
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Faming Kang
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Renjie Xue
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Linghao Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Xu
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Department of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
7
|
Wang J, Niu K, Zhu H, Xu C, Deng C, Zhao W, Huang P, Lin H, Li D, Rosen J, Liu P, Allegretti F, Barth JV, Yang B, Björk J, Li Q, Chi L. Universal inter-molecular radical transfer reactions on metal surfaces. Nat Commun 2024; 15:3030. [PMID: 38589464 PMCID: PMC11001993 DOI: 10.1038/s41467-024-47252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/23/2024] [Indexed: 04/10/2024] Open
Abstract
On-surface synthesis provides tools to prepare low-dimensional supramolecular structures. Traditionally, reactive radicals are a class of single-electron species, serving as exceptional electron-withdrawing groups. On metal surfaces, however, such species are affected by conduction band screening effects that may even quench their unpaired electron characteristics. As a result, radicals are expected to be less active, and reactions catalyzed by surface-stabilized radicals are rarely reported. Herein, we describe a class of inter-molecular radical transfer reactions on metal surfaces. With the assistance of aryl halide precursors, the coupling of terminal alkynes is steered from non-dehydrogenated to dehydrogenated products, resulting in alkynyl-Ag-alkynyl bonds. Dehalogenated molecules are fully passivated by detached hydrogen atoms. The reaction mechanism is unraveled by various surface-sensitive technologies and density functional theory calculations. Moreover, we reveal the universality of this mechanism on metal surfaces. Our studies enrich the on-surface synthesis toolbox and develop a pathway for producing low-dimensional organic materials.
Collapse
Affiliation(s)
- Junbo Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Kaifeng Niu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, 58183, Sweden
| | - Huaming Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Chaojie Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chuan Deng
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenchao Zhao
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Peipei Huang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Dengyuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, 58183, Sweden
| | - Peinian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Francesco Allegretti
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Johannes V Barth
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Biao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, 58183, Sweden.
| | - Qing Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
- Department of Materials Science and Engineering, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
8
|
Zhao C, Bhagwandin DD, Xu W, Ruffieux P, Khan SI, Pignedoli CA, Fasel R, Rubin Y. Dramatic Acceleration of the Hopf Cyclization on Gold(111): From Enediynes to Peri-Fused Diindenochrysene Graphene Nanoribbons. J Am Chem Soc 2024; 146:2474-2483. [PMID: 38227949 PMCID: PMC10835731 DOI: 10.1021/jacs.3c10144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hopf et al. reported the high-temperature 6π-electrocyclization of cis-hexa-1,3-diene-5-yne to benzene in 1969. Subsequent studies using this cyclization have been limited by its very high reaction barrier. Here, we show that the reaction barrier for two model systems, (E)-1,3,4,6-tetraphenyl-3-hexene-1,5-diyne (1a) and (E)-3,4-bis(4-iodophenyl)-1,6-diphenyl-3-hexene-1,5-diyne (1b), is decreased by nearly half on a Au(111) surface. We have used scanning tunneling microscopy (STM) and noncontact atomic force microscopy (nc-AFM) to monitor the Hopf cyclization of enediynes 1a,b on Au(111). Enediyne 1a undergoes two sequential, quantitative Hopf cyclizations, first to naphthalene derivative 2, and finally to chrysene 3. Density functional theory (DFT) calculations reveal that a gold atom from the Au(111) surface is involved in all steps of this reaction and that it is crucial to lowering the reaction barrier. Our findings have important implications for the synthesis of novel graphene nanoribbons. Ullmann-like coupling of enediyne 1b at 20 °C on Au(111), followed by a series of Hopf cyclizations and aromatization reactions at higher temperatures, produces nanoribbons 12 and 13. These results show for the first time that graphene nanoribbons can be synthesized on a Au(111) surface using the Hopf cyclization mechanism.
Collapse
Affiliation(s)
- Chenxiao Zhao
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Dayanni D Bhagwandin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Wangwei Xu
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Pascal Ruffieux
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Saeed I Khan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Carlo A Pignedoli
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roman Fasel
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Yves Rubin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| |
Collapse
|
9
|
Choi J, Seo S, Lee S, Ko H, Luo Y, Han Y, Shin JH, Cho H, Lee H. Low-Temperature Layer-by-Layer Growth of Semiconducting Few-Layer γ-Graphyne to Exploit Robust Biocompatibility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41708-41719. [PMID: 37621110 DOI: 10.1021/acsami.3c08446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The sp-hybridized carbon network in single- or few-layer γ-graphyne (γ-GY) has a polarized electron distribution, which can be crucial in overcoming biosafety issues. Here, we report the low-temperature synthesis, electronic properties, and amyloid fibril nanostructures of electrostatic few-layer γ-GY. ABC stacked γ-GY is synthesized by layer-by-layer growth on a catalytic copper surface, exhibiting intrinsic p-type semiconducting properties in few-layer γ-GY. Thickness-dependent electronic properties of γ-GY elucidate interlayer interactions by electron doping between electrostatic layers and layer stacking-involved modulation of the band gap. Electrostatic few-layer γ-GY induces high electronic sensitivity and intense interaction with amyloid beta (i.e., Aβ40) peptides assembling into elongated mature Aβ40 fibrils. Two-dimensional biocompatible nanostructures of Aβ40 fibrils/few-layer γ-GY enable excellent cell viability and high neuronal differentiation of living cells without external stimulation.
Collapse
Affiliation(s)
- Jungsue Choi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Centre for Integrated Nanostructure Physics, Institute of Basic Science, Suwon 16419, Republic of Korea
| | - Sohyeon Seo
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Creative Research Institute, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Ko
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yongguang Luo
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Centre for Integrated Nanostructure Physics, Institute of Basic Science, Suwon 16419, Republic of Korea
| | - Yeonsu Han
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hee Shin
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hansang Cho
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Centre for Integrated Nanostructure Physics, Institute of Basic Science, Suwon 16419, Republic of Korea
- Creative Research Institute, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Abstract
Belonging to the enyne family, enetriynes comprise a distinct electron-rich all-carbon bonding scheme. However, the lack of convenient synthesis protocols limits the associated application potential within, e.g., biochemistry and materials science. Herein we introduce a pathway for highly selective enetriyne formation via tetramerization of terminal alkynes on a Ag(100) surface. Taking advantage of a directing hydroxyl group, we steer molecular assembly and reaction processes on square lattices. Induced by O2 exposure the terminal alkyne moieties deprotonate and organometallic bis-acetylide dimer arrays evolve. Upon subsequent thermal annealing tetrameric enetriyne-bridged compounds are generated in high yield, readily self-assembling into regular networks. We combine high-resolution scanning probe microscopy, X-ray photoelectron spectroscopy and density functional theory calculations to examine the structural features, bonding characteristics and the underlying reaction mechanism. Our study introduces an integrated strategy for the precise fabrication of functional enetriyne species, thus providing access to a distinct class of highly conjugated π-system compounds.
Collapse
|
11
|
Borca B, Michnowicz T, Aguilar-Galindo F, Pétuya R, Pristl M, Schendel V, Pentegov I, Kraft U, Klauk H, Wahl P, Arnau A, Schlickum U. Chiral and Catalytic Effects of Site-Specific Molecular Adsorption. J Phys Chem Lett 2023; 14:2072-2077. [PMID: 36799542 PMCID: PMC9986952 DOI: 10.1021/acs.jpclett.2c03575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The changes of properties and preferential interactions based on subtle energetic differences are important characteristics of organic molecules, particularly for their functionalities in biological systems. Only slightly energetically favored interactions are important for the molecular adsorption and bonding to surfaces, which define their properties for further technological applications. Here, prochiral tetracenothiophene molecules are adsorbed on the Cu(111) surface. The chiral adsorption configurations are determined by Scanning Tunneling Microscopy studies and confirmed by first-principles calculations. Remarkably, the selection of the adsorption sites by chemically different moieties of the molecules is dictated by the arrangement of the atoms in the first and second surface layers. Furthermore, we have investigated the thermal effects on the direct desulfurization reaction that occurs under the catalytic activity of the Cu substrate. This reaction leads to a product that is covalently bound to the surface in chiral configurations.
Collapse
Affiliation(s)
- Bogdana Borca
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
- National
Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Ilfov, Romania
| | - Tomasz Michnowicz
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | | | - Rémi Pétuya
- Donostia
International Physics Center, E-20018 Donostia - San Sebastián, Spain
| | - Marcel Pristl
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Verena Schendel
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Ivan Pentegov
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Ulrike Kraft
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Hagen Klauk
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Peter Wahl
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| | - Andrés Arnau
- Donostia
International Physics Center, E-20018 Donostia - San Sebastián, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física,
Química y Tecnología UPV/EHU and Material
Physics Center (MPC), Centro Mixto CSIC-UPV/EHU, E-20018 Donostia
- San Sebastián, Spain
| | - Uta Schlickum
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
- Institute
of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104 Braunschweig, Germany
| |
Collapse
|
12
|
Li X, Niu K, Duan S, Tang Y, Hao Z, Xu Z, Ge H, Rosen J, Björk J, Zhang H, Xu X, Chi L. Pyridinic Nitrogen Modification for Selective Acetylenic Homocoupling on Au(111). J Am Chem Soc 2023; 145:4545-4552. [PMID: 36794794 DOI: 10.1021/jacs.2c11799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
On-surface acetylenic homocoupling has been proposed to construct carbon nanostructures featuring sp hybridization. However, the efficiency of linear acetylenic coupling is far from satisfactory, often resulting in undesired enyne products or cyclotrimerization products due to the lack of strategies to enhance chemical selectivity. Herein, we inspect the acetylenic homocoupling reaction of polarized terminal alkynes (TAs) on Au(111) with bond-resolved scanning probe microscopy. The replacement of benzene with pyridine moieties significantly prohibits the cyclotrimerization pathway and facilitates the linear coupling to produce well-aligned N-doped graphdiyne nanowires. Combined with density functional theory calculations, we reveal that the pyridinic nitrogen modification substantially differentiates the coupling motifs at the initial C-C coupling stage (head-to-head vs head-to-tail), which is decisive for the preference of linear coupling over cyclotrimerization.
Collapse
Affiliation(s)
- Xuechao Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Kaifeng Niu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.,Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 581 83, Sweden
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai, Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yanning Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhengming Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhichao Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Haitao Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 581 83, Sweden
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 581 83, Sweden
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai, Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
de Oteyza DG, Frederiksen T. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:443001. [PMID: 35977474 DOI: 10.1088/1361-648x/ac8a7f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Emergence ofπ-magnetism in open-shell nanographenes has been theoretically predicted decades ago but their experimental characterization was elusive due to the strong chemical reactivity that makes their synthesis and stabilization difficult. In recent years, on-surface synthesis under vacuum conditions has provided unprecedented opportunities for atomically precise engineering of nanographenes, which in combination with scanning probe techniques have led to a substantial progress in our capabilities to realize localized electron spin states and to control electron spin interactions at the atomic scale. Here we review the essential concepts and the remarkable advances in the last few years, and outline the versatility of carbon-basedπ-magnetic materials as an interesting platform for applications in spintronics and quantum technologies.
Collapse
Affiliation(s)
- Dimas G de Oteyza
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, E-33940 El Entrego, Spain
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain
| |
Collapse
|
14
|
Zhang C, Kazuma E, Kim Y. Steering the Reaction Pathways of Terminal Alkynes by Introducing Oxygen Species: From C-C Coupling to C-H Activation. J Am Chem Soc 2022; 144:10282-10290. [PMID: 35587810 DOI: 10.1021/jacs.2c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selective regulation of chemical reactions is crucial in chemistry. Oxygen, as a key reagent in ubiquitous oxidative chemistry, exhibits great potential in regulating molecular assemblies, and more importantly, chemical reactions in molecular systems supported by metal surfaces. However, the unique catalytic performance and reaction mechanisms of oxygen species remain elusive, which are essential for understanding reaction selection and regulation. In this study, by a combination of scanning tunneling microscopy (STM) imaging/manipulations and density functional theory (DFT) calculations, we showed that the on-surface reaction pathways of terminal alkynes could be steered from C-C coupling to C-H activation with high selectivity by introducing O2 into the molecular system. The catalytic performance and reaction mechanisms of oxygen species were explored in the C-H activation processes, and both molecular O2 and atomic O could efficiently steer the reaction pathways. These results would provide a fundamental understanding of interfacial catalytic reaction processes.
Collapse
Affiliation(s)
- Chi Zhang
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai 201804, People's Republic of China
| | - Emiko Kazuma
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
Hao Z, Peng G, Wang L, Li X, Liu Y, Xu C, Niu K, Ding H, Hu J, Zhang L, Dong B, Zhang H, Zhu J, Chi L. Converting n-Alkanol to Conjugated Polyenal on Cu(110) Surface at Mild Temperature. J Phys Chem Lett 2022; 13:3276-3282. [PMID: 35389642 DOI: 10.1021/acs.jpclett.2c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Achieving C(sp3)-H activation at a mild temperature is of great importance from both scientific and technologic points of view. Herein, on the basis of the on-surface synthesis strategy, we report the significant reduction of the C(sp3)-H activation barrier, which results in the full C(sp3)-H to C(sp2)-H transformation of n-alkanol (octacosan-1-ol) at a mild temperature as low as 350 K on the Cu(110) surface, yielding the conjugated polyenal (octacosa-tridecaenal) as the final product. The reaction mechanism is revealed by the combined scanning tunneling microscope, density functional theory, and synchrotron radiation photoemission spectroscopy.
Collapse
Affiliation(s)
- Zhengming Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Guyue Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Lina Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Xuechao Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Ye Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Chaojie Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Kaifeng Niu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
16
|
Cheng S, Xue Z, Li C, Liu Y, Xiang L, Ke Y, Yan K, Wang S, Yu P. On-surface synthesis of triangulene trimers via dehydration reaction. Nat Commun 2022; 13:1705. [PMID: 35361812 PMCID: PMC8971457 DOI: 10.1038/s41467-022-29371-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Triangulene and its homologues are of considerable interest for molecular spintronics due to their high-spin ground states as well as the potential for constructing high spin frameworks. Realizing triangulene-based high-spin system on surface is challenging but of particular importance for understanding π-electron magnetism. Here, we report two approaches to generate triangulene trimers on Au(111) by using surface-assisted dehydration and alkyne trimerization, respectively. We find that the developed dehydration reaction shows much higher chemoselectivity thus resulting in significant promotion of product yield compared to that using alkyne trimerization approach, through cutting the side reaction path. Combined with spin-polarized density functional theory calculations, scanning tunneling spectroscopy measurements identify the septuple (S = 3) high-spin ground state and quantify the collective ferromagnetic interaction among three triangulene units. Our results demonstrate the approaches to fabricate high-quality triangulene-based high spin systems and understand their magnetic interactions, which are essential for realizing carbon-based spintronic devices.
Collapse
Affiliation(s)
- Suqin Cheng
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Zhijie Xue
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yufeng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Longjun Xiang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Youqi Ke
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Kaking Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
17
|
Berdonces-Layunta A, Schulz F, Aguilar-Galindo F, Lawrence J, Mohammed MSG, Muntwiler M, Lobo-Checa J, Liljeroth P, de Oteyza DG. Order from a Mess: The Growth of 5-Armchair Graphene Nanoribbons. ACS NANO 2021; 15:16552-16561. [PMID: 34633170 DOI: 10.1021/acsnano.1c06226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advent of on-surface chemistry under vacuum has vastly increased our capabilities to synthesize carbon nanomaterials with atomic precision. Among the types of target structures that have been synthesized by these means, graphene nanoribbons (GNRs) have probably attracted the most attention. In this context, the vast majority of GNRs have been synthesized from the same chemical reaction: Ullmann coupling followed by cyclodehydrogenation. Here, we provide a detailed study of the growth process of five-atom-wide armchair GNRs starting from dibromoperylene. Combining scanning probe microscopy with temperature-dependent XPS measurements and theoretical calculations, we show that the GNR growth departs from the conventional reaction scenario. Instead, precursor molecules couple by means of a concerted mechanism whereby two covalent bonds are formed simultaneously, along with a concomitant dehydrogenation. Indeed, this alternative reaction path is responsible for the straight GNR growth in spite of the initial mixture of reactant isomers with irregular metal-organic intermediates that we find. The provided insight will not only help understanding the reaction mechanisms of other reactants but also serve as a guide for the design of other precursor molecules.
Collapse
Affiliation(s)
- Alejandro Berdonces-Layunta
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Física de Materiales, 20018 San Sebastián, Spain
| | - Fabian Schulz
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | | | - James Lawrence
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Física de Materiales, 20018 San Sebastián, Spain
| | - Mohammed S G Mohammed
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Física de Materiales, 20018 San Sebastián, Spain
| | | | - Jorge Lobo-Checa
- Instituto de Nanociencia y Materiales de Aragón, 50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Peter Liljeroth
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Dimas G de Oteyza
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Física de Materiales, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
18
|
Cirera B, Riss A, Mutombo P, Urgel JI, Santos J, Di Giovannantonio M, Widmer R, Stolz S, Sun Q, Bommert M, Fasel R, Jelínek P, Auwärter W, Martín N, Écija D. On-surface synthesis of organocopper metallacycles through activation of inner diacetylene moieties. Chem Sci 2021; 12:12806-12811. [PMID: 34703567 PMCID: PMC8494042 DOI: 10.1039/d1sc03703j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/28/2021] [Indexed: 12/26/2022] Open
Abstract
The design of organometallic complexes is at the heart of modern organic chemistry and catalysis. Recently, on-surface synthesis has emerged as a disruptive paradigm to design previously precluded compounds and nanomaterials. Despite these advances, the field of organometallic chemistry on surfaces is still at its infancy. Here, we introduce a protocol to activate the inner diacetylene moieties of a molecular precursor by copper surface adatoms affording the formation of unprecedented organocopper metallacycles on Cu(111). The chemical structure of the resulting complexes is characterized by scanning probe microscopy and X-ray photoelectron spectroscopy, being complemented by density functional theory calculations and scanning probe microscopy simulations. Our results pave avenues to the engineering of organometallic compounds and steer the development of polyyne chemistry on surfaces. The diacetylene skeletons of DNBD precursors are attacked on Cu(111) by copper adatoms resulting in the synthesis of organocopper metallacycles.![]()
Collapse
Affiliation(s)
- Borja Cirera
- IMDEA Nanoscience C/Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Alexander Riss
- Physics Department E20, Technical University of Munich D-85748 Garching Germany
| | - Pingo Mutombo
- Institute of Physics of the Czech Academy of Science 16253 Praha Czech Republic
| | - José I Urgel
- IMDEA Nanoscience C/Faraday 9, Campus de Cantoblanco 28049 Madrid Spain .,Empa, Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - José Santos
- IMDEA Nanoscience C/Faraday 9, Campus de Cantoblanco 28049 Madrid Spain .,Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Marco Di Giovannantonio
- Empa, Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland.,Istituto di Struttura della Materia - CNR (ISM-CNR) via Fosso del Cavaliere 100 00133 Roma Italy
| | - Roland Widmer
- Empa, Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Samuel Stolz
- Empa, Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland.,Institute of Physics, École Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Qiang Sun
- Empa, Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Max Bommert
- Empa, Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland.,Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern 3012 Bern Switzerland
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science 16253 Praha Czech Republic
| | - Willi Auwärter
- Physics Department E20, Technical University of Munich D-85748 Garching Germany
| | - Nazario Martín
- IMDEA Nanoscience C/Faraday 9, Campus de Cantoblanco 28049 Madrid Spain .,Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - David Écija
- IMDEA Nanoscience C/Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
19
|
Zhang C, Jaculbia RB, Tanaka Y, Kazuma E, Imada H, Hayazawa N, Muranaka A, Uchiyama M, Kim Y. Chemical Identification and Bond Control of π-Skeletons in a Coupling Reaction. J Am Chem Soc 2021; 143:9461-9467. [PMID: 34143618 DOI: 10.1021/jacs.1c02624] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Highly unsaturated π-rich carbon skeletons afford versatile tuning of structural and optoelectronic properties of low-dimensional carbon nanostructures. However, methods allowing more precise chemical identification and controllable integration of target sp-/sp2-carbon skeletons during synthesis are required. Here, using the coupling of terminal alkynes as a model system, we demonstrate a methodology to visualize and identify the generated π-skeletons at the single-chemical-bond level on the surface, thus enabling further precise bond control. The characteristic electronic features together with localized vibrational modes of the carbon skeletons are resolved in real space by a combination of scanning tunneling microscopy/spectroscopy (STM/STS) and tip-enhanced Raman spectroscopy (TERS). Our approach allows single-chemical-bond understanding of unsaturated carbon skeletons, which is crucial for generating low-dimensional carbon nanostructures and nanomaterials with atomic precision.
Collapse
Affiliation(s)
- Chi Zhang
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Rafael B Jaculbia
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Emiko Kazuma
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Imada
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Norihiko Hayazawa
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|