1
|
Yang Y, Shi J, Liu C, Liu Q, Yang J, Tong X, Lu J, Wu J. Engineered Polymeric Carbon Nitride for Photocatalytic Diverse Functionalization of Electronic-Rich Alkenes. Angew Chem Int Ed Engl 2025; 64:e202417099. [PMID: 39582385 DOI: 10.1002/anie.202417099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Engineered polymeric carbon nitride represents a promising class of metal-free semiconductor photocatalysts for organic synthesis. Herein, we utilized engineered polymeric carbon nitride nanosheets, which exhibit an increased specific surface area and band gap due to enhanced quantum confinement from vacancy enrichment. These nanosheets serve as a heterogeneous organic semiconductor photocatalyst to facilitate diverse functionalizations of electron-rich alkenes, including arylsulfonylation, aminodifluoroalkylation, and oxytrifluoromethylation. This catalytic system operates under mild conditions, offering excellent functional group compatibility and high yields. Additionally, the catalyst demonstrates outstanding recyclability and efficiency in flow reactors, highlighting its significant potential for industrial applications.
Collapse
Affiliation(s)
- Youqing Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, Huaibei Normal University, Huaibei, Anhui, 235000, P.R. China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Jiwei Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- Tianjin University International Campus of, Tianjin University Binhai New City, Fuzhou, 350207, P. R. China
| | - Chenguang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Qiong Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou, 510070, P. R. China
| | - Jian Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Xiaogang Tong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| |
Collapse
|
2
|
Fu Y, Zhu Z, Chen Y, Liu C, Wang G, Rong Y, Liang K, Mei B, Fang J, Zhao J. Sheets Copper-Cobalt Graphitic Carbon Nitride Dual Single-Atom Catalysts for the Epoxidation of Styrene. Chemistry 2024:e202403624. [PMID: 39714920 DOI: 10.1002/chem.202403624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Dual single-atom catalysts have attracted considerable research interest due to their higher metal atom loading and more flexible active sites compared to single-atom catalysts (SACs). We pioneered the one-step synthesis of sheets copper-cobalt graphitic carbon nitride dual single-atom (S-Cu/Co-g-C3N4) using folding fan-shaped aluminum foil as a template, and used them as catalysts in the epoxidation of styrene respectively. Through XAFS (X-ray Absorption Fine Structure) and other characterizations, it is found that Cu and Co single atoms are stabilized separately on g-C3N4 via coordination with nitrogen (N), hindered the ordered growth of sheets, and formed more pore structures, which not only increased more catalytically active sites, but also effectively prevented the flakes re-aggregate during the catalytic process. And the synergistic effect between Cu and Co changes the energy band structure of the material and facilitates electron transfer during catalysis, hence an excellent catalytic effect of 89 % styrene conversion and 85 % styrene oxide selectivity was achieved when S-Cu/Co-g-C3N4-1 : 1 was applied in the epoxidation of styrene. Furthermore, the mechanisms of the epoxidation of styrene with S-Cu/Co-g-C3N4-1 : 1 was probed by the density functional theory (DFT) based on the slab model.
Collapse
Affiliation(s)
- Yufang Fu
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Ziqian Zhu
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Yunhong Chen
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Chuang Liu
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Ganping Wang
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Youqi Rong
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Kun Liang
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, PR China
| | - Jian Fang
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Jihua Zhao
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
3
|
Sharma K, Kang TS. Ionic liquid-assisted sustainable preparation of photo-catalytically active nanomaterials and their composites with 2D materials. Chem Commun (Camb) 2024; 60:14717-14732. [PMID: 39582434 DOI: 10.1039/d4cc05001k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The preparation of nanomaterials employing ionic liquids (ILs) and surface active ionic liquids (SAILs) in a relatively sustainable manner for different applications is reviewed. ILs offer structure directing and templating effects via inherent bi-continuous structures formed by the segregation of polar and non-polar domains. On the other hand, SAILs offer a structure-directing effect governed by their ability to lower the surface tension, self-assembling nature and interaction with precursors via ionic head groups. Binary mixtures of ILs with other relatively greener solvents or utilization of metal-based ILs (MILs), which act as precursors of metal ions, templates and stabilizing agents propose a new way to prepare a variety of nanomaterials. The introduction of SAILs that exfoliate 2D materials under low-energy bath sonication and also aid in photoreduction and stabilization of photocatalytically active nanomaterials at the surface of 2D materials poses a distinctive perspective in sustainable preparation and utilization of nanomaterials in different photocatalytic applications. The present feature article reviews the employment of distinctive properties of ILs in precise morphological control of nanomaterials, and their after-effects on their catalytic efficiencies.
Collapse
Affiliation(s)
- Kanica Sharma
- Department of Chemistry, UGC Centre for Advanced Studies (CAS-II), Guru Nanak dev University, Amritsar-143005, India.
| | - Tejwant Singh Kang
- Department of Chemistry, UGC Centre for Advanced Studies (CAS-II), Guru Nanak dev University, Amritsar-143005, India.
| |
Collapse
|
4
|
Morant-Giner M, Gentile G, Prato M, Filippini G. Molybdenum Disulfide-Based Catalysts in Organic Synthesis: State of the Art, Open Issues, and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406697. [PMID: 39428828 DOI: 10.1002/smll.202406697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/20/2024] [Indexed: 10/22/2024]
Abstract
In the field of heterogeneous organic catalysis, molybdenum disulfide (MoS2) is gaining increasing attention as a catalytically active material due to its low toxicity, earth abundance, and affordability. Interestingly, the catalytic properties of this metal-based material can be improved by several strategies. In this Perspective, through the analysis of some explicative examples, the main approaches used to prepare highly efficient MoS2-based catalysts in relevant organic reactions are summarized and critically discussed, namely: i) increment of the specific surface area, ii) generation of the metallic 1T phase, iii) introduction of vacancies, iv) preparation of nanostructured hybrids/composites, v) doping with transition metal ions, and vi) partial oxidation of MoS2. Finally, emerging trends in MoS2-based materials catalysis leading to a richer organic synthesis are presented.
Collapse
Affiliation(s)
- Marc Morant-Giner
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Giuseppe Gentile
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
- Center for the Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Basque Foundation for Science, Ikerbasque, Plaza Euskadi 5, Bilbao, 48013, Spain
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| |
Collapse
|
5
|
Bootz P, Frank K, Eichhorn J, Döblinger M, Bagaria T, Nickel B, Feldmann J, Debnath B. S-Scheme Interface Between K-C 3N 4 and FePS 3 Fosters Photocatalytic H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65610-65619. [PMID: 39552308 DOI: 10.1021/acsami.4c15236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
In photocatalysis, photogenerated charge separation is pivotal and can be achieved through various mechanisms. Building heterojunctions is a promising method to enhance charge separation, where effective contact and charge exchange between heterojunction components remains challenging. Mostly used synthesis processes for making heterostructures require high temperatures, difficult processes, or expensive materials. Herein, a heterojunction of potassium intercalated graphitic carbon nitride (K-CN) and nanoflakes of iron phosphor trisulfide (FPS) is designed via a simple mechanical grinding process to boost the hydrogen evolution by a factor of more than 25 compared to pure K-CN. This significant improvement is rarely reached by other combinations of two semiconductors without cocatalysts, such as platinum. It can be attributed to the band alignment and band bending of an S-scheme that is validated via optical and X-ray photoelectron spectroscopy. As a consequence, strong quenching of the photoluminescence and significant H2 evolution occur for this unique heterojunction. Furthermore, the excellent durability of the designed photocatalytic heterostructure is confirmed by monitoring the catalysts' H2-evolution rate and crystal structure after 72 h under light illumination. This study opens up promising and simple pathways for constructing efficient S-scheme heterojunctions for photocatalytic water-splitting.
Collapse
Affiliation(s)
- Philipp Bootz
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Physics Department, Ludwig Maximilians-Universität München, Königinstr. 10, 80539 Munich, Germany
| | - Kilian Frank
- Physics Department and CeNS, Ludwig-Maximilians-Universtität, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Johanna Eichhorn
- Physics Department, TUM School of Natural Sciences, Technische Universität München, 85748 Garching, Germany
| | - Markus Döblinger
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (E), 81377 Munich, Germany
| | - Tanu Bagaria
- Research Institute of Sustainable Energy, TCG-CREST, Salt Lake, Kolkata 700091, India
| | - Bert Nickel
- Physics Department and CeNS, Ludwig-Maximilians-Universtität, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Physics Department, Ludwig Maximilians-Universität München, Königinstr. 10, 80539 Munich, Germany
| | - Bharati Debnath
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Physics Department, Ludwig Maximilians-Universität München, Königinstr. 10, 80539 Munich, Germany
- Research Institute of Sustainable Energy, TCG-CREST, Salt Lake, Kolkata 700091, India
| |
Collapse
|
6
|
Baluchová S, Zoltowska S, Giusto P, Kumru B. Binaphthyl Mediated Low Temperature Synthesis of Carbon Nitride Photocatalyst for Photocatalytic Hydrogen Evolution. CHEMSUSCHEM 2024; 17:e202400618. [PMID: 38837891 PMCID: PMC11587680 DOI: 10.1002/cssc.202400618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Metal-free graphitic carbon nitrides are on the rise as polymer photocatalysts under visible light illumination, taking shares in a range of promising photocatalytic reactions, including water splitting. Their simple synthesis and facile structural modification afford them exceptional tunability, enabling the creation of photocatalysts with distinct properties. While their metal-free nature marks a significant step towards environmental sustainability, the high energy consumption required to produce carbon nitride photocatalysts remains a substantial barrier to their widespread adoption. Furthermore, the process of condensation at approximately 550 °C typically results in solid yields of less than 15 %, significantly challenging their economic viability. Here, we report on lowering manufacturing conditions of carbon nitride photocatalysts whilst enhancing photocatalytic activity by introducing binaphthyl diamine as a structural mediator. At 450 °C in 2 hours, carbon nitride photocatalyst shows a lower bandgap and enables visible light induced hydrogen evolution (194 μmol h-1) comparable to benchmark carbon nitride photocatalysts.
Collapse
Affiliation(s)
- Simona Baluchová
- Department of Analytical ChemistryFaculty of ScienceCharles UniversityAlbertov 6Prague 2CZ 128 00Czech Republic
| | - Sonia Zoltowska
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Paolo Giusto
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Baris Kumru
- Aerospace Structures & Materials DepartmentFaculty of Aerospace EngineeringDelft University of Technology2629HS DelftThe Netherlands
| |
Collapse
|
7
|
Wang C, Shi S, Liu B, Wang G, Jin Z. A novel dual S-scheme Co 9S 8/MnCdS/Co 3O 4 heterojunction for photocatalytic hydrogen evolution under visible light irradiation. NANOSCALE 2024; 16:17009-17023. [PMID: 39189038 DOI: 10.1039/d4nr03195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Rational design and synthesis of a unique heterojunction photocatalyst structure is an important strategy to enhance its performance and structural stability. Herein, Co9S8/MnCdS/Co3O4 photocatalysts with double S-scheme heterojunctions were successfully prepared by coupling Co9S8 and Co3O4 sheet structures with n-type MnCdS nanoparticles through a simple solvothermal and mechanical mixing method. The construction of the dual S-scheme heterostructure offers the possibility to expand the light absorption range, extend the carrier lifetime and maximise the redox capacity. In addition, the mechanism of charge transfer and the reason for the improvement of photocatalytic activity were explored through photoelectrochemical characterization. The lamellar structures of Co9S8 and Co3O4 not only provide excellent dispersion and slow down the agglomeration of MnCdS nanoparticles, but also promote charge transfer, which improves the photocatalytic hydrogen production effect. Under simulated solar irradiation, the evolution rate of H2 after 5 h was as high as 46.44 μmol, which was 3.49 and 1.49 times higher than those of pristine MnCdS and MnCdS/Co3O4, respectively. Meanwhile, it has good stability under 20 h irradiation. This work demonstrates a novel idea for the rational design of double S-scheme photocatalysts with efficient space separation.
Collapse
Affiliation(s)
- Congcong Wang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| | - Suili Shi
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| | - Boya Liu
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| | - Guorong Wang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| |
Collapse
|
8
|
Rahimi FA, Singh A, Jena R, Dey A, Maji TK. GFP Chromophore Integrated Conjugated Microporous Polymers toward Bioinspired Photocatalytic CO 2 Reduction to CO. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43171-43179. [PMID: 39135392 DOI: 10.1021/acsami.4c09906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of highly active, durable, and low-cost metal-free catalysts for the photocatalytic CO2 reduction reaction (CO2RR) is an efficient and environmentally friendly solution to address significant problems like global warming and high energy demand. In the present study, we have demonstrated the design and synthesis of a donor-acceptor based conjugated microporous polymer (CMP), TPA-GFP, by integrating an electron donor, tris(4-ethynylphenyl)amine (TPA), with a green fluorescent protein chromophore analogue (Z)-4-(2-hydroxy-3,5-diiodobenzylidene)-1-(4-iodophenyl)-2-methyl-1H-imidazol-5(4H)-one (o-HBDI-I3) (GFP). In comparison to nondonor 1,3,5-triethynylbenzene (TEB) based TEB-GFP CMP, photocatalytic CO2 reduction using donor-acceptor based TPA-GFP CMP displays a 3-fold increment of CO production yield with a maximum CO yield of 1666 μmol g-1 at 12 h. Further, the CO selectivity increases significantly from a mere 54% in TEB-GFP to an impressive 95% in TPA-GFP. The impressive CO2 reduction efficiency and selectivity for TPA-GFP can be attributed to the efficient light-harvesting capability and facile charge separation and migration through donor-acceptor building units of the CMP. The mechanistic aspect of the photocatalytic CO2 reduction process is explored using in situ DRIFTS and DFT calculation, and a plausible photocatalytic mechanism is proposed.
Collapse
Affiliation(s)
| | | | | | | | - Tapas Kumar Maji
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
9
|
Talebi P, Greco R, Yamamoto T, Zeynali M, Asgharizadeh S, Cao W. Hierarchical nickel carbonate hydroxide nanostructures for photocatalytic hydrogen evolution from water splitting. MATERIALS ADVANCES 2024; 5:2968-2973. [PMID: 38572482 PMCID: PMC10986478 DOI: 10.1039/d3ma00977g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Metal carbonate hydroxides have emerged as novel and promising candidates for water splitting due to their good electrochemical properties and eco-friendly features. In this study, the hierarchical mesoporous structure of nickel carbonate hydroxide hydrate (Ni2(CO3)(OH)2·4H2O) was synthesized by a one-pot facile hydrothermal method. It demonstrated photocatalytic properties for the first time, exhibiting a hydrogen evolution reaction yield of 10 μmol g-1 h-1 under white light irradiation with a nominal power of 0.495 W. This facile synthesis strategy and the good photocatalytic properties indicate that nickel carbonate hydroxide is a promising material for application in photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Parisa Talebi
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| | - Rossella Greco
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| | - Takashi Yamamoto
- Department of Science and Technology, Tokushima University Tokushima 770-8506 Japan
| | - Mahdiyeh Zeynali
- Faculty of Physics, University of Tabriz Tabriz 5166616-471 Iran
| | | | - Wei Cao
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| |
Collapse
|
10
|
Xu J, Xia W, Sheng G, Jiao G, Liu Z, Wang Y, Zhang X. Progress of disinfection catalysts in advanced oxidation processes, mechanisms and synergistic antibiotic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169580. [PMID: 38154648 DOI: 10.1016/j.scitotenv.2023.169580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Human diseases caused by pathogenic microorganisms make people pay more attention to disinfection. Meanwhile, antibiotics can cause microbial resistance and increase the difficulty of disease treatment, resulting in risk of triggering a vicious circle. Advanced oxidation process (AOPs) has been widely studied in the field of synergistic treatment of the two contaminates. This paper reviews the application of catalytic materials and their modification strategies in the context of AOPs for disinfection and antibiotic degradation. It also delves into the mechanisms of disinfection such as the pathways for microbial inactivation and the related influencing factors, which are essential for understanding the pivotal role of catalytic materials in disinfection principles by AOPs. More importantly, the exploratory research on the combined use of AOPs for disinfection and antibiotic degradation is discussed, and the potential and prospects in this field is highlighted. Finally, the limitations and challenges associated with the application of AOPs in disinfection and antibiotic degradation are summarized. It aims to provide a starting point for future research efforts to facilitate the widespread use of advanced oxidation processes in the field of public health.
Collapse
Affiliation(s)
- Jin Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wannan Xia
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guo Sheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guanhao Jiao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenhao Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
11
|
Tai XH, Hung WS, Yang TCK, Lai CW, Lee KM, Chen CY, Juan JC. Fluorinated photoreduced graphene oxide with semi-ionic C-F bonds: An effective carbon based photocatalyst for the removal of volatile organic compounds. CHEMOSPHERE 2024; 349:140890. [PMID: 38072201 DOI: 10.1016/j.chemosphere.2023.140890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
There is much interest in developing metal-free halogenated graphene such as fluorinated graphene for various catalytic applications. In this work, a fluorine-doped graphene oxide photocatalyst was investigated for photocatalytic oxidation (PCO) of a volatile organic compound (VOC), namely gaseous methanol. The fluorination process of graphene oxide (GO) was carried out via a novel and facile solution-based photoirradiation method. The fluorine atoms were doped on the surface of the GO in a semi-ionic C-F bond configuration. This presence of the semi-ionic C-F bonds induced a dramatic 7-fold increment of the hole charge carrier density of the photocatalyst. The fluorinated GO photocatalyst exhibited excellent photodegradation up to 93.5% or 0.493 h-1 according pseudo-first order kinetics for methanol. In addition, 91.7% of methanol was mineralized into harmless carbon dioxide (CO2) under UV-A irradiation. Furthermore, the photocatalyst demonstrated good stability in five cycles of methanol PCO. Besides methanol, other VOCs such as acetone and formaldehyde were also photodegraded. This work reveals the potential of fluorination in producing effective graphene-based photocatalyst for VOC removal.
Collapse
Affiliation(s)
- Xin Hong Tai
- PETRONAS Research Sdn Bhd (PRSB), Jalan Ayer Hitam, Bangi Government and Private Training Centre Area, 43000, Bandar Baru Bangi, Selangor, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia
| | - Wei-Song Hung
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Thomas Chung Kuang Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia
| | - Kian Mun Lee
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia
| | - Chia-Yun Chen
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan; Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia; Faculty of Engineering, Technology and Built Environment, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Didonè L, Shin Y, Silvestri A, Prato M, Park S, Bianco A. Electrochemical impedance spectroscopy, another arrow in the arsenal to study the biodegradability of two-dimensional materials. NANOSCALE 2024; 16:1304-1311. [PMID: 38131206 DOI: 10.1039/d3nr04502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Carbon nitride (C3N4) is an innovative material with a high potential in many applications including energy storage, catalysis, composites, and biomedicine. C3N4 appears remarkably interesting not only for its properties but also because its simple preparation routes involve low-cost starting materials and reagents. However, there is still a lack of information on its degradability. For this reason, in this study, we evaluate the environmental persistence of C3N4 and its oxidized form by applying the photo-Fenton reaction. The morphological and structural changes of both materials were monitored by transmission electron microscopy and Raman spectroscopy respectively. In addition, electrochemical impedance spectroscopy has been used as an original technique to validate the degradation process of C3N4.
Collapse
Affiliation(s)
- Livia Didonè
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France.
| | - Yunseok Shin
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology, Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia, San Sebastián, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology, Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Dipartimento di Scienze Chimiche e Farmaceutiche, INSTM UdR Trieste, University of Trieste Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Sungjin Park
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Alberto Bianco
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
13
|
Botella R, Cao W, Celis J, Fernández-Catalá J, Greco R, Lu L, Pankratova V, Temerov F. Activating two-dimensional semiconductors for photocatalysis: a cross-dimensional strategy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:141501. [PMID: 38086082 DOI: 10.1088/1361-648x/ad14c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
The emerging two-dimensional (2D) semiconductors substantially extend materials bases for versatile applications such as semiconductor photocatalysis demanding semiconductive matrices and large surface areas. The dimensionality, while endowing 2D semiconductors the unique properties to host photocatalytic functionality of pollutant removal and hydrogen evolution, hurdles the activation paths to form heterogenous photocatalysts where the photochemical processes are normally superior over these on the mono-compositional counterparts. In this perspective, we present a cross-dimensional strategy to employ thenD (n= 0-2) clusters or nanomaterials as activation partners to boost the photocatalytic activities of the 2D semiconductors. The formation principles of heterogenous photocatalysts are illustrated specifically for the 2D matrices, followed by selection criteria of them among the vast 2D database. The computer investigations are illustrated in the density functional theory route and machine learning benefitted from the vast samples in the 2D library. Synthetic realizations and characterizations of the 2D heterogenous systems are introduced with an emphasis on chemical methods and advanced techniques to understand materials and mechanistic studies. The perspective outlooks cross-dimensional activation strategies of the 2D materials for other applications such as CO2removal, and materials matrices in other dimensions which may inspire incoming research within these fields.
Collapse
Affiliation(s)
- R Botella
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - W Cao
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - J Celis
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - J Fernández-Catalá
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - R Greco
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - L Lu
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - V Pankratova
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - F Temerov
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| |
Collapse
|
14
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
15
|
Sportelli G, Grando G, Bevilacqua M, Filippini G, Melchionna M, Fornasiero P. Graphitic Carbon Nitride as Photocatalyst for the Direct Formylation of Anilines. Chemistry 2023; 29:e202301718. [PMID: 37439718 DOI: 10.1002/chem.202301718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
The use of graphitic carbon nitride (g-CN) for the photocatalytic radical formylation of anilines, which represents a more sustainable and attractive alternative to the currently used approaches, is reported herein. Our operationally simple method occurs under mild conditions, employing air as an oxidant. In particular, the chemistry is driven by the ability of g-CN to reach an electronically excited state upon visible-light absorption, which has a suitable potential energy to trigger the formation of reactive α-amino radical species from anilines. Mechanistic investigations also proved the key role of the g-CN to form reactive superoxide radicals from O2 via single electron transfer. Importantly, this photocatalytic transformation provides a variety of functionalized formamides (15 examples, up to 89 % yield).
Collapse
Affiliation(s)
- Giuseppe Sportelli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Gaia Grando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Manuela Bevilacqua
- Institute of Chemistry of Organometallic Compounds (ICCOM-CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
- Center for Energy, Environment and, Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Center for Energy, Environment and, Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Center for Energy, Environment and, Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
16
|
Saptal VB, Ruta V, Bajada MA, Vilé G. Single-Atom Catalysis in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202219306. [PMID: 36918356 DOI: 10.1002/anie.202219306] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023]
Abstract
Single-atom catalysts hold the potential to significantly impact the chemical sector, pushing the boundaries of catalysis in new, uncharted directions. These materials, featuring isolated metal species ligated on solid supports, can exist in many coordination environments, all of which have shown important functions in specific transformations. Their emergence has also provided exciting opportunities for mimicking metalloenzymes and bridging the gap between homogeneous and heterogeneous catalysis. This Review outlines the impressive progress made in recent years regarding the use of single-atom catalysts in organic synthesis. We also illustrate potential knowledge gaps in the search for more sustainable, earth-abundant single-atom catalysts for synthetic applications.
Collapse
Affiliation(s)
- Vitthal B Saptal
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Vincenzo Ruta
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Mark A Bajada
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
17
|
Bury D, Jakubczak M, Purbayanto MAK, Wojciechowska A, Moszczyńska D, Jastrzębska AM. Photocatalytic Activity of the Oxidation Stabilized Ti 3 C 2 T x MXene in Decomposing Methylene Blue, Bromocresol Green and Commercial Textile Dye. SMALL METHODS 2023; 7:e2201252. [PMID: 36879487 DOI: 10.1002/smtd.202201252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional MXenes are excellent photocatalysts. However, their low oxidation stability makes controlling photocatalytic processes challenging. For the first time, this work elucidates the influence of the oxidation stabilization of model 2D Ti3 C2 Tx MXene on its optical and photocatalytic properties. The delaminated MXene is synthesized via two well-established approaches: hydrofluoric acid/tetramethylammonium hydroxide (TMAOH-MXene) and minimum intensive layer delamination with hydrochloric acid/lithium fluoride (MILD-MXene) and then stabilized by L-ascorbic acid. Both MXenes at a minimal concentration of 32 mg L-1 show almost 100% effectiveness in the 180-min photocatalytic decomposition of 25 mg L-1 model methylene blue and bromocresol green dyes. Industrial viability is achieved by decomposing a commercial textile dye having 100 times higher concentration than that of model dyes. In such conditions, MILD-MXene is the most efficient due to less wide optical band gap than TMAOH-MXene. The MILD-MXene required only few seconds of UV light, simulated white light, or 500 nm (cyan) light irradiation to fully decompose the dye. The photocatalytic mechanism of action is associated with the interplay between surface dye adsorption and the reactive oxygen species generated by MXene under light irradiation. Importantly, both MXenes are successfully reused and retained approximately 70% of their activity.
Collapse
Affiliation(s)
- Dominika Bury
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| | - Michał Jakubczak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| | | | - Anita Wojciechowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| | - Dorota Moszczyńska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| | - Agnieszka Maria Jastrzębska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| |
Collapse
|
18
|
Rasheed T, Ahmad Hassan A, Ahmad T, Khan S, Sher F. Organic Covalent Interaction-based Frameworks as Emerging Catalysts for Environment and Energy Applications: Current Scenario and Opportunities. Chem Asian J 2023:e202300196. [PMID: 37171867 DOI: 10.1002/asia.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Indexed: 05/13/2023]
Abstract
The term "covalent organic framework" (COF) refers to a class of porous organic polymeric materials made from organic building blocks that have been covalently bonded. The preplanned and predetermined bonding of the monomer linkers allow them to demonstrate directional flexibility in two- or three-dimensional spaces. COFs are modern materials, and the discovery of new synthesis and linking techniques has made it possible to prepare them with a variety of favorable features and use them in a range of applications. Additionally, they can be post-synthetically altered or transformed into other materials of particular interest to produce compounds with enhanced chemical and physical properties. Because of its tunability in different chemical and physical states, post-synthetic modifications, high stability, functionality, high porosity and ordered geometry, COFs are regarded as one of the most promising materials for catalysis and environmental applications. This study highlights the basic advancements in establishing the stable COFs structures and various post-synthetic modification approaches. Further, the photocatalytic applications, such as organic transformations, degradation of emerging pollutants and removal of heavy metals, production of hydrogen and Conversion of carbon dioxide (CO2 ) to useful products have also been presented. Finally, the future research directions and probable outcomes have also been summarized, by focusing their promises for specialists in a variety of research fields.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Adv. Mater., King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Adeel Ahmad Hassan
- Department of Polymer Science and Engineering, Shanghai State Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tauqir Ahmad
- Center for Advanced Specialty Chemicals Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
19
|
Guan K, Zhang Z, Zhang Q, Ling P, Gao F. Rational design of semiconducting polymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(6-{4-ethyl-piperazin-1-yl}-2-phenyl-benzo{de}isoquinoline-1,3-dione)] for highly selective photoelectrochemical assay of p-phenylenediamine. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
20
|
Lou XY, Zhang G, Li MH, Yang YW. Macrocycle-Strutted Coordination Microparticles for Fluorescence-Monitored Photosensitization and Substrate-Selective Photocatalytic Degradation. NANO LETTERS 2023; 23:1961-1969. [PMID: 36794898 DOI: 10.1021/acs.nanolett.3c00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The prosperous advancement of supramolecular chemistry has motivated us to construct supramolecular hybrid materials with integrated functionalities. Herein, we report an innovative type of macrocycle-strutted coordination microparticle (MSCM) using pillararenes as the struts and "pockets", which performs unique activities of fluorescence-monitored photosensitization and substrate-selective photocatalytic degradation. Prepared via a convenient one-step solvothermal method, MSCM showcases the incorporation of supramolecular hybridization and macrocycles, endowed with well-ordered spherical architectures, superior photophysical properties, and photosensitizing capacity, where a self-reporting fluorescence response is exhibited upon photoinduced generation of multiple reactive oxygen species. Importantly, photocatalytic behaviors of MSCM show marked divergence toward three different substrates and reveal pronounced substrate-selective catalytic mechanisms, attributing to the variety in the affinity of substrates toward MSCM surfaces and pillararene cavities. This study brings new insight into the design of supramolecular hybrid systems with integrated properties and further exploration of functional macrocycle-based materials.
Collapse
Affiliation(s)
- Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ge Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Meng-Hao Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
21
|
Anagnostopoulou M, Zindrou A, Cottineau T, Kafizas A, Marchal C, Deligiannakis Y, Keller V, Christoforidis KC. MOF-Derived Defective Co 3O 4 Nanosheets in Carbon Nitride Nanocomposites for CO 2 Photoreduction and H 2 Production. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6817-6830. [PMID: 36719032 DOI: 10.1021/acsami.2c19683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In photocatalysis, especially in CO2 reduction and H2 production, the development of multicomponent nanomaterials provides great opportunities to tune many critical parameters toward increased activity. This work reports the development of tunable organic/inorganic heterojunctions comprised of cobalt oxides (Co3O4) of varying morphology and modified carbon nitride (CN), targeting on optimizing their response under UV-visible irradiation. MOF structures were used as precursors for the synthesis of Co3O4. A facile solvothermal approach allowed the development of ultrathin two-dimensional (2D) Co3O4 nanosheets (Co3O4-NS). The optimized CN and Co3O4 structures were coupled forming heterojunctions, and the content of each part was optimized. Activity was significantly improved in the nanocomposites bearing Co3O4-NS compared with the corresponding bulk Co3O4/CN composites. Transient absorption spectroscopy revealed a 100-fold increase in charge carrier lifetime on Co3O4-NS sites in the composite compared with the bare Co3O4-NS. The improved photocatalytic activity in H2 production and CO2 reduction is linked with (a) the larger interface imposed from the matching 2D structure of Co3O4-NS and the planar surface of CN, (b) improvements in charge carrier lifetime, and (c) the enhanced CO2 adsorption. The study highlights the importance of MOF structures used as precursors in forming advanced materials and the stepwise functionalization of the individual parts in nanocomposites for the development of materials with superior activity.
Collapse
Affiliation(s)
- Maria Anagnostopoulou
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
| | - Areti Zindrou
- Department of Physics, University of Ioannina, Ioannina 45110, Greece
| | - Thomas Cottineau
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
| | - Andreas Kafizas
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City, London W12 0BZ, United Kingdon
| | - Clément Marchal
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
| | | | - Valérie Keller
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
| | - Konstantinos C Christoforidis
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
- Department of Environmental Engineering, Democritus University of Thrace, Xanthi 67100, Greece
| |
Collapse
|
22
|
Tian J, Zhao L, Yang C, Yang C, Guo L, Xia W. Four-Component Synthesis of Spiro-Imidazolidines Enabled by Carbon Nitride Photocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jian Tian
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lulu Zhao
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chuan Yang
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
23
|
Long P, Peng H, Sun B, Lan J, Wan J, Fei Y, Ye X, Qu S, Ye G, He Y, Huang S, Li S, Kang J. Modulation of ZnO Nanostructure for Efficient Photocatalytic Performance. NANOSCALE RESEARCH LETTERS 2022; 17:118. [PMID: 36484877 PMCID: PMC9733757 DOI: 10.1186/s11671-022-03760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Structure has been considered to play an important role in photocatalytic performance of the semiconductors, but the intrinsic factors were rarely revealed. Herein, ZnO nanomaterials in the structures of thin film, nanowire array and nanosheet array were synthesized, and their structural characteristics, optical properties, photocurrent response and photocatalytic efficiency were compared with each other for illustrating the issue. The photoluminescence intensity decreased in the order of nanosheets, thin film and nanowires for improved lifetime of the photoexcited charges. The absorption of the nanosheets and nanowires improved obviously in the visible range with a redshift of the absorption edge than that of the thin film. The nanowires possessed the highest response current of 82.65 μA at a response time of 2.0 ms in a sensitivity of 87.93 at the light frequency of 1 Hz, and gained the largest catalytic efficiency of 2.45 μg/cm2 h for the methylene blue degradation in UV light. Nevertheless, the improvement of catalytic efficiency of the nanosheets (up to 42.4%) was much larger than that of nanowires (5.7%) and thin film (2.6%) for the Au coating. The analysis revealed that the photocatalytic efficiency of the ZnO nanomaterials was modulated by the structure as it contained different surface area, roughness, defect and doping states, vacancies, polar and non-polar crystalline faces, which would provide structural design of semiconductor nanomaterials for the photoelectric and photocatalytic applications.
Collapse
Affiliation(s)
- Peng Long
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China
| | - Hao Peng
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China
| | - Bolin Sun
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China
| | - Jinshen Lan
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China
| | - Jing Wan
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China
| | - Yuchen Fei
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China
| | - Xiaofang Ye
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China
| | - Shanzhi Qu
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China
| | - Gengnan Ye
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China
| | - Yilin He
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China
| | - Shengli Huang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China.
| | - Shuping Li
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China.
| | - Junyong Kang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
24
|
Lee J, An S, Jang M, Jung HM, Lee S. Recyclable and dual active catalyst of copper nanocluster-bound graphitic carbon nitride for the photo-induced synthesis of arylsulfones. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Actis A, Melchionna M, Filippini G, Fornasiero P, Prato M, Salvadori E, Chiesa M. Morphology and Light-Dependent Spatial Distribution of Spin Defects in Carbon Nitride. Angew Chem Int Ed Engl 2022; 61:e202210640. [PMID: 36074040 PMCID: PMC9828381 DOI: 10.1002/anie.202210640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/12/2023]
Abstract
Carbon nitride (CN) is a heterogeneous photocatalyst that combines good structural properties and a broad scope. The photocatalytic efficiency of CN is associated with the presence of defective and radical species. An accurate description of defective states-both at a local and extended level-is key to develop a thorough mechanistic understanding of the photophysics of CN. In turn, this will maximise the generation and usage of photogenerated charge carriers and minimise wasteful charge recombination. Here the influence of morphology and light-excitation on the number and chemical nature of radical defects is assessed. By exploiting the magnetic dipole-dipole coupling, the spatial distribution of native radicals in CN is derived with high precision. From the analysis an average distance in the range 1.99-2.34 nm is determined, which corresponds to pairs of radicals located approximately four tri-s-triazine units apart.
Collapse
Affiliation(s)
- Arianna Actis
- Department of Chemistry and NIS CentreUniversity of TorinoVia Pietro Giuria 710125TorinoItaly
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical, INSTM UdRUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical, INSTM UdRUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical, INSTM UdRUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- ICCOM-CNR URTTriesteItaly
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical, INSTM UdRUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- ICCOM-CNR URTTriesteItaly
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo Miramon 19420014Donostia San SebastiánSpain
- Basque Fdn Sci Ikerbasque48013BilbaoSpain
| | - Enrico Salvadori
- Department of Chemistry and NIS CentreUniversity of TorinoVia Pietro Giuria 710125TorinoItaly
| | - Mario Chiesa
- Department of Chemistry and NIS CentreUniversity of TorinoVia Pietro Giuria 710125TorinoItaly
| |
Collapse
|
26
|
Liu L, Ouyang P, Li Y, Duan Y, Dong F, Lv K. Insight into the mechanism of deep NO photo-oxidation by bismuth tantalate with oxygen vacancies. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129637. [PMID: 35901631 DOI: 10.1016/j.jhazmat.2022.129637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/10/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Deeply photocatalytic oxidation of nitrogen oxides is still difficult to achieve, mainly limited by few intrinsic active sites and inefficient carrier separation of photocatalysts. Accordingly, we develop a simple room temperature tactic to introduce oxygen vacancies (OVs) into Bi3TaO7 (BTO). Based on solid experimental and DFT theoretical supports, we explore the mechanism of NO removal over OVs decorated BTO (OVs-BTO). OVs can not only alter the distribution of local electrons to result in the formation of a fast charge transfer channel between OVs and the adjacent Ta atoms, which improves the transport rate of photogenerated carriers; but also function as active sites to adsorb small molecules (NO, O2 and H2O), which being activated and positively drive the NO oxidation reaction. In order to investigate a possible reaction path, a combination of in-situ DRIFTS and simulated Gibbs free energy reveals that the intermediate products of OVs-BTO are helpful to promote the deep oxidation of NO to NO3-, while pristine BTO is more likely to produce NO2 intermediate toxic by-products, which greatly hinders the deep photocatalytic oxidation of NO. This work provides insights into the role of OVs in photocatalysts, and also points out a guideline for the mechanism of semiconductor photocatalysts in eliminating gaseous pollutants.
Collapse
Affiliation(s)
- Li Liu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ping Ouyang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuhan Li
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Youyu Duan
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fan Dong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China; Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kangle Lv
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
27
|
Marchi M, Gentile G, Rosso C, Melchionna M, Fornasiero P, Filippini G, Prato M. The Nickel Age in Synthetic Dual Photocatalysis: A Bright Trip Toward Materials Science. CHEMSUSCHEM 2022; 15:e202201094. [PMID: 35789214 PMCID: PMC9804426 DOI: 10.1002/cssc.202201094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Indexed: 05/30/2023]
Abstract
Recently, the field of dual photocatalysis has grown rapidly, to become one of the most powerful tools for the functionalization of organic molecules under mild conditions. In particular, the merging of Earth-abundant nickel-based catalytic systems with visible-light-activated photoredox catalysts has allowed the development of a number of unique green synthetic approaches. This goes in the direction of ensuring an effective and sustainable chemical production, while safeguarding human health and environment. Importantly, this relatively new branch of catalysis has inspired an interdisciplinary stream of research that spans from inorganic and organic chemistry to materials science, thus establishing itself as one dominant trend in modern organic synthesis. This Review aims at illustrating the milestones on the timeline evolution of the photocatalytic systems used, with a critical analysis toward novel applications based on the use of photoactive two-dimensional carbon-based nanostructures. Lastly, forward-looking opportunities within this intriguing research field are discussed.
Collapse
Affiliation(s)
- Miriam Marchi
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Giuseppe Gentile
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Cristian Rosso
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Consorzio Interuniversitario Nazionale per laScienza e Tecnologia dei Materiali (INSTM)Unit of Triestevia L. Giorgieri 134127TriesteItaly
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Consorzio Interuniversitario Nazionale per laScienza e Tecnologia dei Materiali (INSTM)Unit of Triestevia L. Giorgieri 134127TriesteItaly
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo Miramón 19420014Donostia San SebastiánSpain
- Basque Fdn Sci, Ikerbasque48013BilbaoSpain
| |
Collapse
|
28
|
Actis A, Melchionna M, Filippini G, Fornasiero P, Prato M, Salvadori E, Chiesa M. Morphology and Light‐Dependent Spatial Distribution of Spin Defects in Carbon Nitride. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Arianna Actis
- University of Turin: Universita degli Studi di Torino Department of Chemistry ITALY
| | - Michele Melchionna
- University of Trieste: Universita degli Studi di Trieste Department of Chemical and Pharmaceutical Sciences ITALY
| | - Giacomo Filippini
- University of Trieste: Universita degli Studi di Trieste Department of Chemical and Pharmaceutical Sciences ITALY
| | - Paolo Fornasiero
- University of Trieste: Universita degli Studi di Trieste Department of Chemical and Pharmaceutical Sciences ITALY
| | - Maurizio Prato
- University of Trieste: Universita degli Studi di Trieste Department of Chemical and Pharmaceutical Sciences ITALY
| | - Enrico Salvadori
- Università degli Studi di Torino Department of Chemistry Via Pietro Giuria, 7 10125 Torino ITALY
| | - Mario Chiesa
- University of Turin: Universita degli Studi di Torino Department of Chemistry ITALY
| |
Collapse
|
29
|
Carbon-based nanostructures for emerging photocatalysis: CO2 reduction, N2 fixation, and organic conversion. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Liu C, Abbaspour S, Rouki M, Tayebee R, Jarrahi M, Shahri EE. Synergistic promotion of the photocatalytic efficacy of CuO nanoparticles by heteropolyacid‐attached melem: Robust photocatalytic efficacy and anticancer performance. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changjiang Liu
- Department of Respiration, Jinan City People’s Hospital Jinan China
| | - Sedighe Abbaspour
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | - Mehdi Rouki
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | - Reza Tayebee
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | - Mahbube Jarrahi
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | | |
Collapse
|
31
|
Kumar Singh A, Das C, Indra A. Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Guo Z, Cheng M, Ren W, Wang Z, Zhang M. Treated activated carbon as a metal-free catalyst for effectively catalytic reduction of toxic hexavalent chromium. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128416. [PMID: 35149503 DOI: 10.1016/j.jhazmat.2022.128416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
In this work, activated carbon treated in N2 atmosphere, as a non-metallic catalyst, exhibits excellent catalytic performance in reduction of Cr (VI) to Cr (III) using HCOOH as the reducing agent at room temperature. A series of characterizations and control experiments were carried out to deduce the possible reaction mechanism. The results showed that the improved catalytic performance can be attributed to the enhanced graphitization degree and basic sites such as pyrone-like, which favor electron transferring and activation of reactant. The reaction rate constant observed herein for the C-800 was 22 and 6 times more than that for C-0 and Pd/C catalyst, respectively. In addition, C-800 showed good recycle performance, and no loss of activity was observed after 5 cycles. This study broadens the application of nonmetallic catalyst and provides an easy-available and cost-effective catalytic material for removing toxic Cr (VI).
Collapse
Affiliation(s)
- Zhenbo Guo
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ming Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Wenqiang Ren
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin 300387, PR China.
| | - Minghui Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
33
|
Galushchinskiy A, González-Gómez R, McCarthy K, Farràs P, Savateev A. Progress in Development of Photocatalytic Processes for Synthesis of Fuels and Organic Compounds under Outdoor Solar Light. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2022; 36:4625-4639. [PMID: 35558990 PMCID: PMC9082502 DOI: 10.1021/acs.energyfuels.2c00178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Indexed: 05/19/2023]
Abstract
With photovoltaics becoming a mature, commercially feasible technology, society is willing to allocate resources for developing and deploying new technologies based on using solar light. Analysis of projects supported by the European Commission in the past decade indicates exponential growth of funding to photocatalytic (PC) and photoelectrocatalytic (PEC) technologies that aim either at technology readiness levels (TRLs) TRL 1-3 or TRL > 3, with more than 75 Mio€ allocated from the year 2019 onward. This review provides a summary of PC and PEC processes for the synthesis of bulk commodities such as solvents and fuels, as well as chemicals for niche applications. An overview of photoreactors for photocatalysis on a larger scale is provided. The review rounds off with the summary of reactions performed at lab scale under natural outdoor solar light to illustrate conceptual opportunities offered by solar-driven chemistry beyond the reduction of CO2 and water splitting. The authors offer their vision of the impact of this area of research on society and the economy.
Collapse
Affiliation(s)
- Alexey Galushchinskiy
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Roberto González-Gómez
- School
of Chemistry, Ryan Institute, National University
of Ireland, Galway H91 CF50, Ireland
| | - Kathryn McCarthy
- School
of Chemistry, Ryan Institute, National University
of Ireland, Galway H91 CF50, Ireland
| | - Pau Farràs
- School
of Chemistry, Ryan Institute, National University
of Ireland, Galway H91 CF50, Ireland
| | - Aleksandr Savateev
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
34
|
Besharat F, Ahmadpoor F, Nezafat Z, Nasrollahzadeh M, Manwar NR, Fornasiero P, Gawande MB. Advances in Carbon Nitride-Based Materials and Their Electrocatalytic Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Farzaneh Besharat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Fatemeh Ahmadpoor
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | | | - Nilesh R. Manwar
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit, ICCOM-CNR Trieste Research Unit, University of Trieste, Via Licio Giorgieri 1, I-34127 Trieste, Italy
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| |
Collapse
|
35
|
Acelas M, Castellanos NJ, Sierra CA. Stability and Performance Enhancement of an Oligo (phenylene vinylene) Photocatalyst via Surface Grafting onto TiO
2
for Visible‐Light Indigo Carmine Degradation. ChemistrySelect 2022. [DOI: 10.1002/slct.202103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mauricio Acelas
- Grupo de Investigación en Macromoléculas Departamento de Química Universidad Nacional de Colombia Bogotá 111321 Colombia
| | - Nelson J. Castellanos
- Estado Sólido y Catálisis Ambiental (ESCA) Departamento de Química Universidad Nacional de Colombia Bogotá 111321 Colombia
| | - César A. Sierra
- Grupo de Investigación en Macromoléculas Departamento de Química Universidad Nacional de Colombia Bogotá 111321 Colombia
| |
Collapse
|
36
|
Gentile G, Rosso C, Criado A, Gombac V, Filippini G, Melchionna M, Fornasiero P, Prato M. New insights into the exploitation of oxidized carbon nitrides as heterogeneous base catalysts. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
37
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
38
|
Zhang J, Low ZX, Shao Y, Jiang H, Chen R. Two-dimensional N-doped Pd/carbon for highly efficient heterogeneous catalysis. Chem Commun (Camb) 2022; 58:1422-1425. [PMID: 35001097 DOI: 10.1039/d1cc06427d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel two-dimensional ZIF-derived Pd@CN material prepared via one-step calcination exhibits outstanding catalytic activity in heterogeneous hydrogenation. Its well-developed porous structure, low dimensions and low density make active sites more accessible. This facile and effective strategy can guide the synthesis of highly active and durable Pd@CN catalysts with specific morphologies.
Collapse
Affiliation(s)
- Jiuxuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China.
| | - Ze-Xian Low
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yanhua Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China.
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China.
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China.
| |
Collapse
|
39
|
Wang C, Zhou X, Li Y. Penta-BCN monolayer: a metal-free photocatalyst with a high carrier mobility for water splitting. Phys Chem Chem Phys 2022; 24:26863-26869. [DOI: 10.1039/d2cp03311a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The penta-BCN monolayer is semiconducting with a considerable band gap and shows appropriate band edge positions for photocatalytic water splitting.
Collapse
Affiliation(s)
- Chun Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaocheng Zhou
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
40
|
Raciti E, Gali SM, Melchionna M, Filippini G, Actis A, Chiesa M, Bevilacqua M, Fornasiero P, Prato M, Beljonne D, Lazzaroni R. Radical defects modulate the photocatalytic response in 2D-graphitic carbon nitride. Chem Sci 2022; 13:9927-9939. [PMID: 36128229 PMCID: PMC9430681 DOI: 10.1039/d2sc03964h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Graphitic carbon nitride (gCN) is an important heterogeneous metal-free catalytic material. Thermally induced post-synthetic modifications, such as amorphization and/or reduction, were recently used to enhance the photocatalytic response of these materials for certain classes of organic transformations, with structural defects possibly playing an important role. The knowledge of how these surface modifications modulate the photocatalytic response of gCN is therefore not only interesting from a fundamental point of view, but also necessary for the development and/or tuning of metal-free gCN systems with superior photo-catalytic properties. Herein, employing density functional theory calculations and combining both the periodic and molecular approaches, in conjunction with experimental EPR measurements, we demonstrate that different structural defects on the gCN surface generate distinctive radical defect states localized within the electronic bandgap, with only those correlated with amorphous and reduced gCN structures being photo-active. To this end, we (i) model defective gCN surfaces containing radical defect states; (ii) assess the interactions of these defects with the radical precursors involved in the photo-driven alkylation of electron-rich aromatic compounds (namely perfluoroalkyl iodides); and (iii) describe the photo-chemical processes triggering the initial step of that reaction at the gCN surface. We provide a coherent structure/photo-catalytic property relationship on defective gCN surfaces, elaborating how only specific defect types act as binding sites for the perfluoroalkyl iodide reagent and can favor a photo-induced charge transfer from the gCN surface to the molecule, thus triggering the perfluoroalkylation reaction. The nature of radical defects governs the photocatalytic activity of graphitic carbon nitride.![]()
Collapse
Affiliation(s)
- Edoardo Raciti
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, Mons 7000, Belgium
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy
| | - Sai Manoj Gali
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, Mons 7000, Belgium
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy
| | - Arianna Actis
- Department of Chemistry, University of Torino, NIS Centre of Excellence, Via Giuria 9, Torino 10125, Italy
| | - Mario Chiesa
- Department of Chemistry, University of Torino, NIS Centre of Excellence, Via Giuria 9, Torino 10125, Italy
| | - Manuela Bevilacqua
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM-CNR), via Madonna del Piano 10, Sesto Fiorentino 50019, Italy
- Center for Energy, Environment and Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy
- Center for Energy, Environment and Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia San Sebastián 20014, Spain
- Basque Foundation for Science, Ikerbasque, Bilbao 48013, Spain
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, Mons 7000, Belgium
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, Mons 7000, Belgium
| |
Collapse
|
41
|
Wu S, Zhang YF, Ding H, Li X, Lang X. Hydrazone-linked 2D porphyrinic covalent organic framework photocatalysis for visible light-driven aerobic oxidation of amines to imines. J Colloid Interface Sci 2021; 610:446-454. [PMID: 34933196 DOI: 10.1016/j.jcis.2021.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 01/27/2023]
Abstract
Covalent organic frameworks (COFs) have recently gained rising consideration for visible light photocatalysis. Their property could be accurately established with specific reactions in which the most investigated one turns out to be the aerobic oxidation of amines. In this contribution, a hydrazone-linked 2D (two-dimensional) porphyrinic COF, Por-DETH-COF, was assembled from 5,10,15,20-tetrakis(4-benzaldehyde)porphyrin (p-Por-CHO) and 2,5-diethoxyterephthalohydrazide (DETH) and its photocatalytic activity was duly appraised with the aerobic oxidation of amines. Thereby, the red light-driven selective oxidation of benzyl amines to imines was obtained in very high conversions and selectivities with ambient air as the oxidant. Importantly, the photocatalytic system exhibited remarkable compatibility of functional groups and extensive scope of benzyl amines. Notably, the Por-DETH-COF photocatalyst displayed outstanding recyclability after five successive cycles. This work suggests that 2D COFs could contribute a unique juncture for selective organic transformations by photocatalysis.
Collapse
Affiliation(s)
- Shujuan Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Fei Zhang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Huimin Ding
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xia Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
42
|
Li X, Ma X, Lang X. Blue light-powered hydroxynaphthoic acid-titanium dioxide photocatalysis for the selective aerobic oxidation of amines. J Colloid Interface Sci 2021; 602:534-543. [PMID: 34144307 DOI: 10.1016/j.jcis.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 01/26/2023]
Abstract
Solar photocatalysis is the key to resolve many environmental challenges but is usually hard to achieve over a metal oxide semiconductor. Therefore, assembling π-conjugated molecules onto semiconductors becomes an efficient approach to solar conversion via ligand-to-metal charge transfer. Here, a rational design of ligands for titanium dioxide (TiO2) is presented to produce robust visible light photocatalysts. Three hydroxynaphthoic acids (HNAs) were selected as ligands by extending an extra benzene ring of salicylic acid (SA) at 3,4 or 4,5 or 5,6 positions. These ligands could regulate the performance of TiO2 in which 2-hydroxy-1-naphthoic acid (2H1NA) endows the best outcome. In detail, blue light-powered cooperative photocatalysis of 2H1NA-TiO2 with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO, 5 mol%) inaugurates the expeditious formation of imines by oxidation of amines with atmospheric oxygen (O2). Interestingly, the increase of the O2 pressure from 1 atm to 0.4 MPa promoted the selective oxidation of benzylamine but thereafter declined with a further boost to 0.6 MPa. Notably, an electron transfer between the oxidatively quenched 2H1NA-TiO2 and TEMPO is established, offering a new pathway for environmental applications. This work presents a strategy in designing cutting-edge visible light photocatalysts via altering semiconductors with surface ligands.
Collapse
Affiliation(s)
- Xia Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoming Ma
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
43
|
Zhang L, Li X, Antonietti M. General, Metal-free Synthesis of Carbon Nanofiber Assemblies from Plant Oils. Angew Chem Int Ed Engl 2021; 60:24257-24265. [PMID: 34480394 PMCID: PMC8596426 DOI: 10.1002/anie.202110725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/07/2022]
Abstract
We designed a metal-free synthesis of carbon nanofiber based on ketene chemistry using phosphorus pentoxide (P2 O5 ) and vegetable oil. Based on the characterization of intermediates, P2 O5 -oil reaction yielded most possibly alkylketenes, which polymerized into poly(ketene) with abundant enol groups. The enol groups further reacted with P2 O5 , forcing the poly(ketene) to assemble into a nano-sized preassembly structure. Moderate heating transforms these structures into carbonaceaus nanofibers. This approach is applicable to other chemicals with similar structure to vegetable oil. The carbon nanofibers with P-O-C functionalization show relatively high graphitization degree and promising textural properties. The C-O-P environment accounts for 66 at % of the total P and creates a superior thermal stability. As a model application, a CDI system built of a carbon-nanofiber-based electrode countered by an activated carbon-based electrode exhibited exceptional performance.
Collapse
Affiliation(s)
- Liyuan Zhang
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Xinzhe Li
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Markus Antonietti
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
44
|
Zhang L, Li X, Antonietti M. General, Metal‐free Synthesis of Carbon Nanofiber Assemblies from Plant Oils. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liyuan Zhang
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Xinzhe Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
45
|
A Novel N-Doped Nanoporous Bio-Graphene Synthesized from Pistacia lentiscus Gum and Its Nanocomposite with WO 3 Nanoparticles: Visible-Light-Driven Photocatalytic Activity. Molecules 2021; 26:molecules26216569. [PMID: 34770977 PMCID: PMC8588091 DOI: 10.3390/molecules26216569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
This paper reports the synthesis of a new nitrogen-doped porous bio-graphene (NPBG) with a specific biomorphic structure, using Pistacia lentiscus as a natural carbon source containing nitrogen that also acts as a bio-template. The obtained NPBG demonstrated the unique feature of doped nitrogen with a 3D nanoporous structure. Next, a WO3/N-doped porous bio-graphene nanocomposite (WO3/NPBG-NC) was synthesized, and the products were characterized using XPS, SEM, TEM, FT-IR, EDX, XRD, and Raman analyses. The presence of nitrogen doped in the structure of the bio-graphene (BG) was confirmed to be pyridinic-N and pyrrolic-N with N1 peaks at 398.3 eV and 400.5 eV, respectively. The photocatalytic degradation of the anionic azo dyes and drugs was investigated, and the results indicated that the obtained NPBG with a high surface area (151.98 m2/g), unique electronic properties, and modified surface improved the adsorption and photocatalytic properties in combination with WO3 nanoparticles (WO3-NPs) as an effective visible-light-driven photocatalyst. The synthesized WO3/NPBG-NC with a surface area of 226.92 m2/g displayed lower bandgap and higher electron transfer compared with blank WO3-NPs, leading to an increase in the photocatalytic performance through the enhancement of the separation of charge and a reduction in the recombination rate. At the optimum conditions of 0.015 g of the nanocomposite, a contact time of 15 min, and 100 mg/L of dyes, the removal percentages were 100%, 99.8%, and 98% for methyl red (MR), Congo red (CR), and methyl orange (MO), respectively. In the case of the drugs, 99% and 87% of tetracycline and acetaminophen, respectively, at a concentration of 10 mg/L, were removed after 20 min.
Collapse
|
46
|
Guo SL, Lai SN, Wu JM. Strain-Induced Ferroelectric Heterostructure Catalysts of Hydrogen Production through Piezophototronic and Piezoelectrocatalytic System. ACS NANO 2021; 15:16106-16117. [PMID: 34543011 DOI: 10.1021/acsnano.1c04774] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we discover a piezoelectrocatalytic system composed of a ferroelectric heterostructure of BaTiO3 (BTO)@MoSe2 nanosheets, which exhibit piezoelectric potential (piezopotential) coupling with electrocatalyzed effects by a strain-induced piezopotential to provide an internal bias to the catalysts' surface; subsequently, the catalytic properties are substantially altered to enable the formation of activity states. The H2 production rate of BTO@MoSe2 for the piezoelectrocatalytic H2 generation is 4533 μmol h-1 g-1, which is 206% that of TiO2@MoSe2 for piezophototronic (referred to as piezophotocatalytic process) H2 generation (∼2195.6 μmol h-1 g-1). BTO@MoSe2 presents a long-term H2 production rate of 21.2 mmol g-1 within 8 h, which is the highest recorded value under piezocatalytic conditions. The theoretical and experimental results indicate that the ferroelectric BTO acts as a strain-induced electric field generator while the few-layered MoSe2 is facilitating piezocatalytic redox reactions on its active sites. This is a promising method for environmental remediation and clean energy development.
Collapse
Affiliation(s)
- Syuan-Lin Guo
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 300, Taiwan
| | - Sz-Nian Lai
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 300, Taiwan
| | - Jyh Ming Wu
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 300, Taiwan
- High Entropy Materials Center, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 300, Taiwan
| |
Collapse
|
47
|
Barman S, Singh A, Rahimi FA, Maji TK. Metal-Free Catalysis: A Redox-Active Donor-Acceptor Conjugated Microporous Polymer for Selective Visible-Light-Driven CO 2 Reduction to CH 4. J Am Chem Soc 2021; 143:16284-16292. [PMID: 34547209 DOI: 10.1021/jacs.1c07916] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Achieving more than a two-electron photochemical CO2 reduction process using a metal-free system is quite exciting and challenging, as it needs proper channeling of electrons. In the present study, we report the rational design and synthesis of a redox-active conjugated microporous polymer (CMP), TPA-PQ, by assimilating an electron donor, tris(4-ethynylphenyl)amine (TPA), with an acceptor, phenanthraquinone (PQ). The TPA-PQ shows intramolecular charge-transfer (ICT)-assisted catalytic activity for visible-light-driven photoreduction of CO2 to CH4 (yield = 32.2 mmol g-1) with an impressive rate (2.15 mmol h-1 g-1) and high selectivity (>97%). Mechanistic analysis based on experimental results, in situ DRIFTS, and computational studies reveals that the potential of TPA-PQ for catalyzing photoreduction of CO2 to CH4 was energetically driven by photoactivated ICT upon surface adsorption of CO2, wherein adjacent keto groups of PQ unit play a pivotal role. The critical role of ICT for stimulating photocatalysis is further illustrated by synthesizing another redox-active CMP (TEB-PQ), bearing triethynylbenzene (TEB) and PQ, that shows 8-fold lesser activity for photoreduction toward CO2 to CH4 (yield = 4.4 mmol g-1) as compared to TPA-PQ. The results demonstrate a novel concept for CO2 photoreduction to CH4 using an efficient, sustainable, and recyclable metal-free robust organic photocatalyst.
Collapse
Affiliation(s)
- Soumitra Barman
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Ashish Singh
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
48
|
Mazzanti S, Manfredi G, Barker AJ, Antonietti M, Savateev A, Giusto P. Carbon Nitride Thin Films as All-In-One Technology for Photocatalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02909] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Stefano Mazzanti
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Giovanni Manfredi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via G. Pascoli 70, Milan 20133, Italy
| | - Alex J. Barker
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via G. Pascoli 70, Milan 20133, Italy
| | - Markus Antonietti
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Aleksandr Savateev
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Paolo Giusto
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, Am Mühlenberg 1, Potsdam 14476, Germany
| |
Collapse
|