1
|
Wang XX, Wang CY, Yin M, Chen KZ, Qiao SL. Tannic Acid-Enabled Antioxidant and Stretchable MXene/Silk Strain Sensors for Diving Training Healthcare. ACS Sens 2024; 9:5156-5166. [PMID: 39316657 DOI: 10.1021/acssensors.4c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
MXene-based conductive hydrogels hold significant promise as epidermal sensors, yet their susceptibility to oxidation represents a formidable limitation. This study addresses this challenge by incorporating MXene into a tannic acid (TA) cross-linked silk fibroin matrix. The resulting conductive hydrogel (denoted as e-dive) exhibits favorable characteristics such as adjustable mechanical properties, self-healing capabilities (both mechanically and electrically), and strong underwater adhesion. The existence of a percolation network of MXene within the nanocomposites guarantees good electrical conductivity. Importantly, the surface interaction of MXene nanosheets with the hydrophobic moiety from TA substantially reduced moisture and oxygen interactions with MXene, thereby effectively mitigating MXene oxidation within hydrogel matrices. This preservation of the electrical characteristics ensures prolonged functional stability. Furthermore, the e-dive demonstrates inherent antibacterial properties, making it suitable for use in underwater environments where bacterial contamination is a concern. The utilization of this advanced e-dive system extends to the correction of diving postures and the facilitation of underwater healthcare and security alerts. Our study presents a robust methodology for enhancing the stability of MXene-based conductive hydrogel electronics, thereby expanding their scope of potential applications.
Collapse
Affiliation(s)
- Xiao-Xue Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Chen-Yu Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Meng Yin
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| |
Collapse
|
2
|
Zhu M, Xu W, Chen L, Wu D, Wang Z, Hu X, Luo X, Xiong R, Huang C. Ultrathin Self-Healing Nanofibrous Membrane with a Hierarchical Confined Structure for Biomimetic Epidermal Electrodes. ACS NANO 2024; 18:28834-28848. [PMID: 39388302 DOI: 10.1021/acsnano.4c08617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Integrating self-healing capabilities into epidermal electrodes is crucial to improving their reliability and longevity. Self-healing nanofibrous materials are considered an ideal candidate for constructing ultrathin, long-lasting wearable epidermal electrodes due to their lightweight and high breathability. However, due to the strong interaction between fibers, self-healing nanofiber membranes cannot exist stably. Therefore, the development of self-healing and breathable nanofibrous epidermal electrodes still remains a major challenge. Here, a hierarchical confinement strategy that combines molecular and spatial confinement to overcome supramolecular hydrogen bonding between self-healing nanofibers is reported, and an ultrathin self-healing nanofibrous epidermal electrode with a neural net-like structure is developed. It can achieve real-time monitoring of electrophysiological signals through long-term conformal attachment to skin or plants and has no adverse effects on skin health or plant growth. Given the almost imperceptible nature of epidermal electrodes to users and plants, it lays the foundation for the development of biocompatible, self-healing, wearable, flexible electronics.
Collapse
Affiliation(s)
- Miaomiao Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wenxuan Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Long Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Duo Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxue Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xingrong Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ranhua Xiong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chaobo Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Liu L, Pu Y, Fan J, Yan Y, Liu W, Luo K, Wang Y, Zhao G, Chen T, Puiu PD, Huang H. Wearable Sensors, Data Processing, and Artificial Intelligence in Pregnancy Monitoring: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:6426. [PMID: 39409471 PMCID: PMC11479201 DOI: 10.3390/s24196426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Pregnancy monitoring is always essential for pregnant women and fetuses. According to the report of WHO (World Health Organization), there were an estimated 287,000 maternal deaths worldwide in 2020. Regular hospital check-ups, although well established, are a burden for pregnant women because of frequent travelling or hospitalization. Therefore, home-based, long-term, non-invasive health monitoring is one of the hot research areas. In recent years, with the development of wearable sensors and related data-processing technologies, pregnancy monitoring has become increasingly convenient. This article presents a review on recent research in wearable sensors, physiological data processing, and artificial intelligence (AI) for pregnancy monitoring. The wearable sensors mainly focus on physiological signals such as electrocardiogram (ECG), uterine contraction (UC), fetal movement (FM), and multimodal pregnancy-monitoring systems. The data processing involves data transmission, pre-processing, and application of threshold-based and AI-based algorithms. AI proves to be a powerful tool in early detection, smart diagnosis, and lifelong well-being in pregnancy monitoring. In this review, some improvements are proposed for future health monitoring of pregnant women. The rollout of smart wearables and the introduction of AI have shown remarkable potential in pregnancy monitoring despite some challenges in accuracy, data privacy, and user compliance.
Collapse
Affiliation(s)
- Linkun Liu
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yujian Pu
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Junzhe Fan
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu Yan
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenpeng Liu
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kailong Luo
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yiwen Wang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Guanlin Zhao
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tupei Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Poenar Daniel Puiu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hui Huang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| |
Collapse
|
4
|
Liang Y, Lin L, Liang H, Zhong Z. Longevous ionogels with high strength, conductivity, adhesion and thermoplasticity. CHEMICAL ENGINEERING JOURNAL 2024; 497:155047. [DOI: 10.1016/j.cej.2024.155047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
|
5
|
Yang Y, Yang S, Xia X, Hui S, Wang B, Zou B, Zhang Y, Sun J, Xin JH. MXenes for Wearable Physical Sensors toward Smart Healthcare. ACS NANO 2024; 18:24705-24740. [PMID: 39186373 DOI: 10.1021/acsnano.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The gradual rise of personal healthcare awareness is accelerating the deployment of wearable sensors, whose ability of acquiring physiological vital signs depends on sensing materials. MXenes have distinct chemical and physical superiorities over other 2D nanomaterials for wearable sensors. This review presents a comprehensive summary of the latest advancements in MXenes-based materials for wearable physical sensors. It begins with an introduction to special structural features of MXenes for sensing performance, followed by an in-depth exploration of versatile functionalities. A detailed description of different sensing mechanisms is also included to illustrate the contribution of MXenes to the sensing performance and its improvement. In addition, the real-world applications of MXenes-based physical sensors for monitoring different physiological signs are included as well. The remaining challenges of MXenes-based materials for wearable physical sensors and their promising opportunities are finally narrated, in conjunction with a prospective for future development.
Collapse
Affiliation(s)
- Yixuan Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shenglin Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Xiaohu Xia
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shigang Hui
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jianping Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - John H Xin
- Research Institute for Intelligent Wearable Systems School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Ren Z, Guo F, Wen Y, Yang Y, Liu J, Cheng S. Strong and anti-swelling nanofibrous hydrogel composites inspired by biological tissue for amphibious motion sensors. MATERIALS HORIZONS 2024. [PMID: 39229702 DOI: 10.1039/d4mh01025f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Conductive hydrogel-based sensors are increasingly favored for flexible electronics due to their skin-like characteristics. However, conventional hydrogels suffer from significant swelling in humid environments and poor mechanical properties which largely restrict their applications in wearable electronic devices, especially for underwater sensing. Herein, drawing inspiration from the extracellular matrix (ECM) structure, a TPU-PVAc@AgNPs/MXene nanofibrous hydrogel composite (TPAMH) with excellent mechanical robustness and anti-swelling properties is developed. The TPAMH nanofibrous hydrogel composite is created by integrating the silver nanoparticles (AgNPs) and MXene nanosheets into an interwoven network comprising of stiff TPU nanofibers as the fibril scaffold and formic acid-crosslinked PVA hydrogel fibers as the elastic matrix (PVAc). Benefiting from the unique ECM structure, the obtained nanofibrous hydrogel composites exhibit exceptional tensile strength (4.47 MPa), remarkable elongation at break (621%), excellent anti-swelling properties, and high detection sensitivity (maximum gauge factor = 105.02), which are sufficient to monitor body motions in both air and water environments effectively. They can detect large strain movements of fingers, elbows, wrists, and knees, as well as small strain physiological signals such as frown, smile, and pulse beats, with high accuracy. Particularly noteworthy is their ability to accurately identify underwater multidirectional motions and facilitate underwater smart alarms using Morse code.
Collapse
Affiliation(s)
- Zheng Ren
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Fang Guo
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Yong Wen
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Yang Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Jinxin Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Si Cheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
7
|
Li Y, Ren P, Sun Z, Xue R, Ding D, Tian W, Ren F, Jin Y, Chen Z, Zhu G. High-strength, anti-fatigue, cellulose nanofiber reinforced polyvinyl alcohol based ionic conductive hydrogels for flexible strain/pressure sensors and triboelectric nanogenerators. J Colloid Interface Sci 2024; 669:248-257. [PMID: 38718578 DOI: 10.1016/j.jcis.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024]
Abstract
Ionic conductive hydrogels (ICHs) have attracted great attention because of their excellent biocompatibility and structural similarity with biological tissues. However, it is still a huge challenge to prepare a high strength, conductivity and durability hydrogel-based flexible sensor with dual network structure through a simple and environmentally friendly method. In this work, a simple one-pot cycle freezing thawing method was proposed to prepare ICHs by dissolving polyvinyl alcohol (PVA) and ferric chloride (FeCl3) in cellulose nanofiber (CNF) aqueous dispersion. A dual cross-linked network was established in hydrogel through the hydrogen bonds and coordination bonds among PVA, CNF, and FeCl3. This structure endows the as-prepared hydrogel with high sensitivity (pressure sensitivity coefficient (S) = 5.326 in the pressure range of 0-5 kPa), wide response range (4511 kPa), excellent durability (over 3000 cycles), short response time (83 ms) and recovery time (117 ms), which can accurately detect various human activities in real time. Furthermore, the triboelectric nano-generator (TENG) made from PVA@CNF-FeCl3 hydrogel can not only supply power for commercial capacitors and LED lamps, but also be used as a self-powered sensor to detect human motion. This work provides a new approach for the development of the next generation of flexible wearable electronic devices.
Collapse
Affiliation(s)
- Yanhao Li
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Penggang Ren
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - ZhenFeng Sun
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China.
| | - Runzhuo Xue
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Du Ding
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Wenhui Tian
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Fang Ren
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Yanling Jin
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| | - Zhengyan Chen
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Sichuan 610065, China
| | - Guanjun Zhu
- College of Engineering, Xi'an International University, Xi'an 710077, China
| |
Collapse
|
8
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
9
|
Wan Y, Zhang L, Wu T, Tang C, Song H, Cao Q. High-performance and frost-resistance MXene co-ionic liquid conductive hydrogel printed by electrohydrodynamic for flexible strain sensor. J Colloid Interface Sci 2024; 669:688-698. [PMID: 38733880 DOI: 10.1016/j.jcis.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Conductive hydrogels with high performance and frost resistance are essential for flexible electronics, electronic skin, and soft robots. Nonetheless, the preparation of hydrogel-based flexible strain sensors with rapid response, wide strain detection range, and high sensitivity remains a considerable challenge. Furthermore, the inevitable freezing and evaporation of water in sub-zero temperatures and dry environments lead to the loss of flexibility and conductivity in hydrogels, which seriously limits their practical application. In this work, ionic liquids (ILs) and MXene are introduced into gelatin/polyacrylamide (PAM) precursor solution, and a PAM/gelatin/ILs/MXene/glycerol (PGIMG) hydrogel-based flexible strain sensor with MXene co-ILs ion-electron composite conductive network is prepared by combining the electrohydrodynamic (EHD) printing method and in-situ photopolymerization. The introduction of ILs provides an ionic conductive channel for the hydrogel. The introduction of MXene nanosheets forms an interpenetrating network with gelatin and PAM, which not only provides a conductive channel, but also improves the mechanical and sensing properties of the hydrogel-based flexible strain sensor. The prepared PGIMG hydrogel with the MXene co-ILs ion-electron composite conductive network demonstrates a tensile strength of 0.21 MPa at 602.82 % strain, the conductivity of 1.636 × 10-3 S/cm, high sensitivity (Gauge Factor, GF = 4.17), a wide strain detection range (1-600 %), and the response/recovery times (73 ms and 74 ms). In addition, glycerol endows the hydrogel with excellent freezing (-60 °C) and water retention properties. The application of the hydrogel-based flexible strain sensor in the field of human motion detection and information transmission shows the great potential of wearable devices, electronic skin, and information encryption transmission.
Collapse
Affiliation(s)
- Yu Wan
- School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Libing Zhang
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Ting Wu
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Chengli Tang
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haijun Song
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Qianqian Cao
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
10
|
Han D, Wang P, Huang H, Deng J, Chen J, Tang W, Wang T, Li B, Zhang L, Lai L. Super-Elastic and Temperature-Tolerant Hydrogel Electrodes for Supercapacitors via MXene Enhanced Ice-Templating Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400690. [PMID: 39210651 DOI: 10.1002/smll.202400690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Developing flexible energy storage devices with good deformation resistance under extreme operating conditions is highly desirable yet remains very challenging. Super-elastic MXene-enhanced polyvinyl alcohol/polyaniline (AMPH) hydrogel electrodes are designed and synthesized through vertical gradient ice templating-induced polymerization. This approach allows for the unidirectional growth of polyaniline (PANI) and 2D MXene layers along the elongated arrayed ice crystals in a controlled manner. The resulting 3D unidirectional AMPH hydrogel exhibits inherent stretchability and electronic conductivity, with the ability to completely recover its shape even under extreme conditions, such as 500% tensile strain, 50% compressive strain. The presence of MXene in the hydrogel electrode enhances its resilience to mechanical compression and stretching, resulting in less variation in resistance. AMPH has a specific capacitance of 130.68 and 88.02 mF cm-2 at a current density of 0.2 and 2 mA cm-2, respectively, and retains 90% and 70% of its original capacitance at elongation of 100% and 200%, respectively. AMPH-based supercapacitors demonstrate exceptional performance in high salinity environments and wide temperature ranges (-30-80 °C). The high electrochemical activity, temperature tolerance, and mechanical robustness of AMPH-based supercapacitor endow it promising as the power supply for flexible and wearable electronic devices.
Collapse
Affiliation(s)
- Dong Han
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Peng Wang
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Haitao Huang
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Jiahua Deng
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Jiankang Chen
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Weijie Tang
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Tingyi Wang
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Binbin Li
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| | - Lili Zhang
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research, Jurong Island, 627833, Singapore
| | - Linfei Lai
- Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, Nanjing Tech Univ, 5 XinMofan Rd, Nanjing, 210009, P. R. China
| |
Collapse
|
11
|
Di X, Li L, Jin Q, Yang R, Li Y, Wang X, Wu G, Yuan C. Highly Sensitive, Degradable, and Rapid Self-Healing Hydrogel Sensor with Semi-Interpenetrating Network for Recognition of Micro-Expressions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403955. [PMID: 39167262 DOI: 10.1002/smll.202403955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Indexed: 08/23/2024]
Abstract
Flexible conductive hydrogels have revolutionized the lives and are widely applied in health monitoring and wearable electronics as a new generation of sensing materials. However, the inherent low mechanical strength, sensitivity, and lack of rapid self-healing capacity results in their short life, poor detection accuracy, and environmental pollution. Inspired by the molecular structure of bone and its chemical characteristics, a novel fully physically cross-linked conductive hydrogel is fabricated by the introduction of nanohydroxyapatite (HAp) as the dynamic junction points. In detail, the dynamically cross-linked network, including multiple physical interactions, provides it with rapid self-healing ability and excellent mechanical properties (elongation at break (>1200%), tensile strength (174kPa), and resilience (92.61%)). Besides, the ions (Cl-, Li+, Ca2+) that move freely within the system impart outstanding electrical conductivity (2.46 ± 0.15 S m-1), high sensitivity (gauge factor, GF>8), good antifreeze (-40.2 °C), and humidity properties. The assembled sensor can be employed to sensitively detect various large human motions and subtle changes in behavior (facial expressions, speech recognition). Meanwhile, the hydrogel sensor can also degrade in phosphate-buffered saline solution without causing any environmental pollution. Therefore, the designed hydrogels may become a promising candidate material in the future potential applications for smart wearable sensors and electronic skin.
Collapse
Affiliation(s)
- Xiang Di
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071000, P. R. China
| | - Liqi Li
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071000, P. R. China
| | - Qi Jin
- Department of Polymer Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Ran Yang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071000, P. R. China
| | - Yuan Li
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071000, P. R. China
| | - Xiaoliang Wang
- Department of Polymer Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guolin Wu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chungang Yuan
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071000, P. R. China
| |
Collapse
|
12
|
Wang W, Zhou H, Xu Z, Li Z, Zhang L, Wan P. Flexible Conformally Bioadhesive MXene Hydrogel Electronics for Machine Learning-Facilitated Human-Interactive Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401035. [PMID: 38552161 DOI: 10.1002/adma.202401035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Wearable epidermic electronics assembled from conductive hydrogels are attracting various research attention for their seamless integration with human body for conformally real-time health monitoring, clinical diagnostics and medical treatment, and human-interactive sensing. Nevertheless, it remains a tremendous challenge to simultaneously achieve conformally bioadhesive epidermic electronics with remarkable self-adhesiveness, reliable ultraviolet (UV) protection ability, and admirable sensing performance for high-fidelity epidermal electrophysiological signals monitoring, along with timely photothermal therapeutic performances after medical diagnostic sensing, as well as efficient antibacterial activity and reliable hemostatic effect for potential medical therapy. Herein, a conformally bioadhesive hydrogel-based epidermic sensor, featuring superior self-adhesiveness and excellent UV-protection performance, is developed by dexterously assembling conducting MXene nanosheets network with biological hydrogel polymer network for conformally stably attaching onto human skin for high-quality recording of various epidermal electrophysiological signals with high signal-to-noise ratios (SNR) and low interfacial impedance for intelligent medical diagnosis and smart human-machine interface. Moreover, a smart sign language gesture recognition platform based on collected electromyogram (EMG) signals is designed for hassle-free communication with hearing-impaired people with the help of advanced machine learning algorithms. Meanwhile, the bioadhesive MXene hydrogel possesses reliable antibacterial capability, excellent biocompatibility, and effective hemostasis properties for promising bacterial-infected wound bleeding.
Collapse
Affiliation(s)
- Wei Wang
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hailiang Zhou
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhishan Xu
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zehui Li
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liqun Zhang
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengbo Wan
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
13
|
Hu R, Yao B, Geng Y, Zhou S, Li M, Zhong W, Sun F, Zhao H, Wang J, Ge J, Wei R, Liu T, Jin J, Xu J, Fu J. High-Fidelity Bioelectrodes with Bidirectional Ion-Electron Transduction Capability by Integrating Multiple Charge-Transfer Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403111. [PMID: 38934213 DOI: 10.1002/adma.202403111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Bioelectronics is an exciting field that bridges the gap between physiological activities and external electronic devices, striving for high resolution, high conformability, scalability, and ease of integration. One crucial component in bioelectronics is bioelectrodes, designed to convert neural activity into electronic signals or vice versa. Previously reported bioelectrodes have struggled to meet several essential requirements simultaneously: high-fidelity signal transduction, high charge injection capability, strain resistance, and multifunctionality. This work introduces a novel strategy for fabricating superior bioelectrodes by merging multiple charge-transfer processes. The resulting bioelectrodes offer accurate ion-to-electron transduction for capturing electrophysiological signals, dependable charge injection capability for neuromodulation, consistent electrode potential for artifact rejection and biomolecule sensing, and high transparency for seamless integration with optoelectronics. Furthermore, the bioelectrode can be designed to be strain-insensitive by isolating signal transduction from electron transportation. The innovative concept presented in this work holds great promise for extending to other electrode materials and paves the way for the advancement of multimodal bioelectronics.
Collapse
Affiliation(s)
- Rongjian Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Bowen Yao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yuhao Geng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shuai Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Mengfan Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Wei Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fuyao Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Haojie Zhao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jingyu Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Jiahao Ge
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Ran Wei
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, P. R. China
| | - Tong Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajie Jin
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jianhua Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
14
|
Liu J, Nam Y, Choi D, Choi Y, Lee SE, Oh H, Wang G, Lee SH, Liu Y, Hong S. MXene/Hydrogel-based bioelectronic nose for the direct evaluation of food spoilage in both liquid and gas-phase environments. Biosens Bioelectron 2024; 256:116260. [PMID: 38613935 DOI: 10.1016/j.bios.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Various bioelectronic noses have been recently developed for mimicking human olfactory systems. However, achieving direct monitoring of gas-phase molecules remains a challenge for the development of bioelectronic noses due to the instability of receptor and the limitations of its surrounding microenvironment. Here, we report a MXene/hydrogel-based bioelectronic nose for the sensitive detection of liquid and gaseous hexanal, a signature odorant from spoiled food. In this study, a conducting MXene/hydrogel structure was formed on a sensor via physical adsorption. Then, canine olfactory receptor 5269-embedded nanodiscs (cfOR5269NDs) which could selectively recognize hexanal molecules were embedded in the three-dimensional (3D) MXene/hydrogel structures using glutaraldehyde as a linker. Our MXene/hydrogel-based bioelectronic nose exhibited a high selectivity and sensitivity for monitoring hexanal in both liquid and gas phases. The bioelectronic noses could sensitively detect liquid and gaseous hexanal down to 10-18 M and 6.9 ppm, and they had wide detection ranges of 10-18 - 10-6 M and 6.9-32.9 ppm, respectively. Moreover, our bioelectronic nose allowed us to monitor hexanal levels in fish and milk. In this respect, our MXene/hydrogel-based bioelectronic nose could be a practical strategy for versatile applications such as food spoilage assessments in both liquid and gaseous systems.
Collapse
Affiliation(s)
- Jing Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
| | - Youngju Nam
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Danmin Choi
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonji Choi
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Eun Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Honggyu Oh
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Guangxian Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
| | - Seung Hwan Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Seunghun Hong
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
15
|
Jia L, Li Y, Ren A, Xiang T, Zhou S. Degradable and Recyclable Hydrogels for Sustainable Bioelectronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32887-32905. [PMID: 38904545 DOI: 10.1021/acsami.4c05663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hydrogel bioelectronics has been widely used in wearable sensors, electronic skin, human-machine interfaces, and implantable tissue-electrode interfaces, providing great convenience for human health, safety, and education. The generation of electronic waste from bioelectronic devices jeopardizes human health and the natural environment. The development of degradable and recyclable hydrogels is recognized as a paradigm for realizing the next generation of environmentally friendly and sustainable bioelectronics. This review first summarizes the wide range of applications for bioelectronics, including wearable and implantable devices. Then, the employment of natural and synthetic polymers in hydrogel bioelectronics is discussed in terms of degradability and recyclability. Finally, this work provides constructive thoughts and perspectives on the current challenges toward hydrogel bioelectronics, providing valuable insights and guidance for the future evolution of sustainable hydrogel bioelectronics.
Collapse
Affiliation(s)
- Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Aobo Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
16
|
Wang G, Chen Z, Jing X, Yi X, Zou J, Feng P, Zhang H, Liu Y. Ultrastable and supersensitive conductive hydrogels conferred by "sodium alginate stencil" anchoring strategy. Carbohydr Polym 2024; 335:122048. [PMID: 38616087 DOI: 10.1016/j.carbpol.2024.122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Although conductive hydrogels have been widely developed currently, their low sensitivity and poor stability severely limited their practical application in flexible wearable devices. Herein, a green "stencil" anchoring strategy was proposed in this study to engineer an ultra-stable and supersensitive hydrogel by virtue of polydopamine decorating sodium alginate molecular chains as "stencil" to anchor polyaniline as conductive component. The dispersion of polyaniline was significantly improved by the sodium alginate "stencil" in the conductive hydrogel. The developed conductive hydrogel exhibited outstanding properties that outperformed most conventional ones, including extraordinary sensitivity with a gauge factor of 38.2 and excellent stability with negligible shifting upon long-term cyclic stretching. Moreover, the conductive hydrogel displayed great self-adhesion and reliable self-healing performance endowed by its abundant catechol groups, hydrogen bondings and π-π stackings, respectively. Furthermore, the prepared hydrogel was also assembled as flexible strain and self-powered sensors, which displayed excellent sensing performance, indicating great potential in human-machine interactions, information transmission and road transportation.
Collapse
Affiliation(s)
- Gangrong Wang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhuo Chen
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China.
| | - Xijian Yi
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Jian Zou
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Peiyong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
17
|
Wang X, Zheng S, Xiong J, Liu Z, Li Q, Li W, Yan F. Stretch-Induced Conductivity Enhancement in Highly Conductive and Tough Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313845. [PMID: 38452373 DOI: 10.1002/adma.202313845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The resistance of gels and elastomers increases significantly with tensile strain, which reduces conductive stability and restricts their use in stable and reliable electronics. Here, highly conductive tough hydrogels composed of silver nanowires (AgNWs), liquid metal (LM), and poly(vinyl alcohol) (PVA) are fabricated. The stretch-induced orientations of AgNWs, deformable LM, and PVA nanocrystalline create conductive pathways, enhancing the mechanical properties of the hydrogels, including increased ultimate fracture stress (13-33 MPa), strain (3000-5300%), and toughness (390.9-765.1 MJ m-3). Notably, the electrical conductivity of the hydrogels is significantly improved from 4.05 × 10-3 to 24 S m-1 when stretched to 4200% strain, representing a 6000-fold enhancement. The incorporation of PVA nanocrystalline, deformable LM, and AgNWs effectively mitigates stress concentration at the crack tip, thereby conferring crack propagation insensitivity and fatigue resistance to the hydrogels. Moreover, the hydrogels are designed with a reversible crosslinking network, allowing for water-induced recycling.
Collapse
Affiliation(s)
- Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiaofeng Xiong
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| |
Collapse
|
18
|
Qiu C, He M, Xu SF, Ali AM, Shen L, Wang JS. Self-adhesive, conductive, and multifunctional hybrid hydrogel for flexible/wearable electronics based on triboelectric and piezoresistive sensor. Int J Biol Macromol 2024; 269:131825. [PMID: 38679271 DOI: 10.1016/j.ijbiomac.2024.131825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Flexible electronics are highly developed nowadays in human-machine interfaces (HMI). However, challenges such as lack of flexibility, conductivity, and versatility always greatly hindered flexible electronics applications. In this work, a multifunctional hybrid hydrogel (H-hydrogel) was prepared by combining two kinds of 1D polymer chains (polyacrylamide and polydopamine) and two kinds of 2D nanosheets (Ti3C2Tx MXene and graphene oxide nanosheets) as quadruple crosslinkers. The introduced Ti3C2Tx MXene and graphene oxide nanosheets are bonded with the PAM and PDA polymer chains by hydrogen bonds. This unique crosslinking and stable structure endow the H-hydrogel with advantages such as good flexibility, electrical conductivity, self-adhesion, and mechanical robustness. The two kinds of nanosheets not only improved the mechanical strength and conductivity of the H-hydrogel, but also helped to form the double electric layers (DELs) between the nanosheets and the bulk-free water phase inside the H-hydrogel. When utilized as the electrode of a triboelectric nanogenerator (TENG), high electrical output performances were realized due to the dynamic balance of the DELs between the nanosheets and the H-hydrogel's inside water molecules. Moreover, flexible sensors, including triboelectric, and strain/pressure sensors, were achieved for human motion detection at low frequencies. This hydrogel is promising for HMI and e-skin.
Collapse
Affiliation(s)
- Chuang Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shi-Feng Xu
- College of Science, Shenyang Aerospace University, Shenyang, Liaoning 110136, China
| | - Aasi Mohammad Ali
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lin Shen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Jia-Shi Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
19
|
Sha D, Ding D, Tang S, Ma Z, Liu C, Yuan Y. Solvent-Triggered, Ultra-Adhesive, Conductive, and Biocompatible Transition Gels for Wearable Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310731. [PMID: 38247187 DOI: 10.1002/smll.202310731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Indexed: 01/23/2024]
Abstract
The development of robust adhesive, conductive, and flexible materials has garnered significant attention in the realm of human-machine interface and electronic devices. Conventional preparation methods to achieve these exceptional properties rely on incorporating highly polar raw materials, multiple components, or solvents. However, the overexposure of functional groups and the inherent toxicity of organic solvents often render gels non-stick or potentially biocompatible making them unsuitable for human-contact devices. In this study, a straightforward three-step strategy is devised for preparing responsive adhesive gels without complex components. Structurally conductive poly(N-(2-hydroxyethyl)-acrylamide-co-p-styrene sulfonate hydrate) (PHEAA-NaSS) gels are synthesized by integrating ionic and hydrophilic networks with distinct solvent effects. Initially, the in-suit formed PHEAA-NaSS networks are activated by dimethyl sulfoxide, which substantially increases intramolecular hydrogen bonding and enhances the matrix stretchability and interfacial adhesion. Subsequently, ethanol exchange reduced solvent impact and led to a compact network that limited surface exposure of ionic and hydrophilic groups, resulting in nonstick, robust for convenient storage. Finally, upon contacting with water, the network demonstrates rehydration, resulting in favorable adhesion, biocompatibility, and conductivity. The proposed PHEAA-NaSS/W gels can stably and reliably capture joint motion and electrophysiological signals. Furthermore, this uncomplicated gel preparation method is also applicable to other electrolyte monomers.
Collapse
Affiliation(s)
- Dongyong Sha
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ding Ding
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shuaimin Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhen Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
20
|
Tang Y, Zhao R, Yi M, Ge Z, Wang D, Jiang Y, Wang G, Deng X. FeS 2-modified MXene nanocomposite platform for efficient PTT/CDT/TDT integration through enhanced GSH consumption. J Mater Chem B 2024; 12:5194-5206. [PMID: 38690797 DOI: 10.1039/d3tb02612d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Hypoxic microenvironment and glutathione (GSH) accumulation in tumours limit the efficacy of cytotoxic reactive oxygen species (ROS) anti-tumour therapy. To address this challenge, we increased the consumption of GSH and the production of ROS through a novel nanoplatform with the action of inorganic nanoenzymes. In this study, we prepared mesoporous FeS2 using a simple template method, efficiently loaded AIPH, and assembled Ti3C2/FeS2-AIPH@BSA (TFAB) nanocomposites through self-assembly with BSA and 2D Ti3C2. The constructed TFAB nanotherapeutic platform enhanced chemodynamic therapy (CDT) by generating toxic hydroxyl radicals (˙OH) via FeS2, while consuming GSH to reduce the loss of generated ˙OH via glutathione oxidase-like (GSH-OXD). In addition, TFAB is able to stimulate the decomposition of AIPH under 808 nm laser irradiation to produce oxygen-independent biotoxic alkyl radicals (˙R) for thermodynamic therapy (TDT). In conclusion, TFAB represents an innovative nanoplatform that effectively addresses the limitations of free radical-based treatment strategies. Through the synergistic therapeutic strategy of photothermal therapy (PTT), CDT, and TDT within the tumor microenvironment, TFAB nanoplatforms achieve controlled AIPH release, ROS generation, intracellular GSH consumption, and precise temperature elevation, resulting in enhanced intracellular oxidative stress, significant apoptotic cell death, and notable tumor growth inhibition. This comprehensive treatment strategy shows great promise in the field of tumor therapy.
Collapse
Affiliation(s)
- Yunfeng Tang
- Head & Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Renliang Zhao
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Min Yi
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Zilu Ge
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dong Wang
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yu Jiang
- Head & Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiangtian Deng
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Choi JS, Meena JS, Choi SB, Jung SB, Kim JW. Water-Triggered Self-Healing of Ti 3C 2T x MXene Standalone Electrodes: Systematic Examination of Factors Affecting the Healing Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306434. [PMID: 38152953 DOI: 10.1002/smll.202306434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/01/2023] [Indexed: 12/29/2023]
Abstract
MXenes, with their remarkable attributes, stand at the forefront of diverse applications. However, the challenge remains in sustaining their performance, especially concerning Ti3C2Tx MXene electrodes. Current self-healing techniques, although promising, often rely heavily on adjacent organic materials. This study illuminates a pioneering water-initiated self-healing mechanism tailored specifically for standalone MXene electrodes. Here, both water and select organic solvents seamlessly mend impaired regions. Comprehensive evaluations around solvent types, thermal conditions, and substrate nuances underline water's unmatched healing efficacy, attributed to its innate ability to forge enduring hydrogen bonds with MXenes. Optimal healing environments range from ambient conditions to a modest 50 °C. Notably, on substrates rich in hydroxyl groups, the healing efficiency remains consistently high. The proposed healing mechanism encompasses hydrogen bonding formation, capillary action-induced expansion of interlayer spacing, solvent lubrication, Gibbs free energy minimizing MXene nanosheet rearrangement, and solvent evaporation-triggered MXene layer recombination. MXenes' resilience is further showcased by their electrical revival from profound damages, culminating in the crafting of Joule-heated circuits and heaters.
Collapse
Affiliation(s)
- Jun Sang Choi
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jagan Singh Meena
- Research Center for Advanced Materials Technology, Core Research Institute, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Su Bin Choi
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seung-Boo Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jong-Woong Kim
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, 16419, South Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
22
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
23
|
Abdelhamid MAA, Ki MR, Pack SP. Biominerals and Bioinspired Materials in Biosensing: Recent Advancements and Applications. Int J Mol Sci 2024; 25:4678. [PMID: 38731897 PMCID: PMC11083057 DOI: 10.3390/ijms25094678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Inspired by nature's remarkable ability to form intricate minerals, researchers have unlocked transformative strategies for creating next-generation biosensors with exceptional sensitivity, selectivity, and biocompatibility. By mimicking how organisms orchestrate mineral growth, biomimetic and bioinspired materials are significantly impacting biosensor design. Engineered bioinspired materials offer distinct advantages over their natural counterparts, boasting superior tunability, precise controllability, and the ability to integrate specific functionalities for enhanced sensing capabilities. This remarkable versatility enables the construction of various biosensing platforms, including optical sensors, electrochemical sensors, magnetic biosensors, and nucleic acid detection platforms, for diverse applications. Additionally, bioinspired materials facilitate the development of smartphone-assisted biosensing platforms, offering user-friendly and portable diagnostic tools for point-of-care applications. This review comprehensively explores the utilization of naturally occurring and engineered biominerals and materials for diverse biosensing applications. We highlight the fabrication and design strategies that tailor their functionalities to address specific biosensing needs. This in-depth exploration underscores the transformative potential of biominerals and materials in revolutionizing biosensing, paving the way for advancements in healthcare, environmental monitoring, and other critical fields.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
24
|
Quan Q, Zhao T, Luo Z, Li BX, Sun H, Zhao HY, Yu ZZ, Yang D. Antifreezing, Antidrying, and Conductive Hydrogels for Electronic Skin Applications at Ultralow Temperatures. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38593248 DOI: 10.1021/acsami.4c02182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Although conductive hydrogel-based flexible electronic devices have superb flexibility and high conductivities, they tend to malfunction in dry or frigid areas. Herein, an ultralow-temperature tolerant, antidrying, and conductive composite hydrogel is designed for electronic skin applications on the basis of the synergy of double-cross-linked polymer networks, Hofmeister effect, and electrostatic interaction and fabricated by in situ free radical polymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid and acrylic acid in the presence of poly(vinyl alcohol) and conductive MXene sheets, followed by impregnation with LiCl. Thanks to the synergy of LiCl and the charged polar terminal groups of the synthesized polymers, the composite hydrogel can not only bear an ultralow temperature of -80 °C without freezing but also maintain its original mass. Meanwhile, the resultant hydrogel possesses satisfactory self-regeneration ability benefiting from the moisturizing effect of LiCl. The conductive network of MXene sheets greatly improves the ionic conductivity of the hydrogel at low temperatures, exhibiting an ionic conductivity of 1.4 S m-1 at -80 °C. Furthermore, the electronic skin assembled by the multifunctional hydrogel is efficient in monitoring human motions at -80 °C. The antifreezing and antidrying features along with favorable ionic conductivity, high tensile strength, and outstanding flexibility make the composite hydrogel promising for applications in frigid and dry regions.
Collapse
Affiliation(s)
- Qiuyan Quan
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianyu Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuo Luo
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bai-Xue Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao-Yu Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongzhi Yang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
25
|
Chen Z, Zhang R, Zhao S, Li B, Wang S, Lu W, Zhu D. Mechanically Tough and Conductive Hydrogels Based on Gelatin and Z-Gln-Gly Generated by Microbial Transglutaminase. Polymers (Basel) 2024; 16:999. [PMID: 38611257 PMCID: PMC11013726 DOI: 10.3390/polym16070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Gelatin-based hydrogels with excellent mechanical properties and conductivities are desirable, but their fabrication is challenging. In this work, an innovative approach for the preparation of gelatin-based conductive hydrogels is presented that improves the mechanical and conductive properties of hydrogels by integrating Z-Gln-Gly into gelatin polymers via enzymatic crosslinking. In these hydrogels (Gel-TG-ZQG), dynamic π-π stacking interactions are created by the introduction of carbobenzoxy groups, which can increase the elasticity and toughness of the hydrogel and improve the conductivity sensitivity by forming effective electronic pathways. Moreover, the mechanical properties and conductivity of the obtained hydrogel can be controlled by tuning the molar ratio of Z-Gln-Gly to the primary amino groups in gelatin. The hydrogel with the optimal mechanical properties (Gel-TG-ZQG (0.25)) exhibits a high storage modulus, compressive strength, tensile strength, and elongation at break of 7.8 MPa at 10 °C, 0.15 MPa at 80% strain, 0.343 MPa, and 218.30%, respectively. The obtained Gel-TG-ZQG (0.25) strain sensor exhibits a short response/recovery time (260.37 ms/130.02 ms) and high sensitivity (0.138 kPa-1) in small pressure ranges (0-2.3 kPa). The Gel-TG-ZQG (0.25) hydrogel-based sensors can detect full-range human activities, such as swallowing, fist clenching, knee bending and finger pressing, with high sensitivity and stability, yielding highly reproducible and repeatable sensor responses. Additionally, the Gel-TG-ZQG hydrogels are noncytotoxic. All the results demonstrate that the Gel-TG-ZQG hydrogel has potential as a biosensor for wearable devices and health-monitoring systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Deyi Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Z.C.); (R.Z.); (S.Z.); (B.L.); (S.W.); (W.L.)
| |
Collapse
|
26
|
You L, Zheng Z, Xu W, Wang Y, Xiong W, Xiong C, Wang S. Self-healing and adhesive MXene-polypyrrole/silk fibroin/polyvinyl alcohol conductive hydrogels as wearable sensor. Int J Biol Macromol 2024; 263:130439. [PMID: 38423420 DOI: 10.1016/j.ijbiomac.2024.130439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Conductive hydrogels become increasing attractive for flexible electronic devices and biosensors. However, challenges still remain in fabrication of flexible hydrogels with high electrical conductivity, self-healing capability and adhesion property. Herein, a conductive hydrogel (PSDM) was prepared by solution-gel method using MXene and dopamine modified polypyrrole as conductive enhanced materials, polyvinyl alcohol and silk fibroin as gel networks, and borax as cross-linking agent. Notably, the PSDM hydrogels not only showed high permeability (13.82 mg∙cm-2∙h-1), excellent stretch ability (1235 %), high electrical conductivity (11.3 S/m) and long-term stability, but also exhibited high adhesion performance and self-healing properties. PSDM hydrogels displayed outstanding sensing performance and durability for monitoring human activities including writing, finger bending and wrist bending. The PSDM hydrogel was made into wearable flexible electrodes and realized accurate, sensitive and reliable detection of human electromyographic and electrocardiographic signals. The sensor was also applied in human-computer interaction by collecting electromyography signals of different gestures for machine learning and gesture recognition. According to 480 groups of data collected, the recognition accuracy of gestures by the electrodes was close to 100 %, indicating that the PSDM hydrogel electrodes possessed excellent sensing performance for high precision data acquisition and human-computer interaction interface.
Collapse
Affiliation(s)
- Lijun You
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Zhijuan Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenjing Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yang Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Weijie Xiong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Caihua Xiong
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
27
|
Yin H, Liu F, Abdiryim T, Chen J, Liu X. Sodium carboxymethyl cellulose and MXene reinforced multifunctional conductive hydrogels for multimodal sensors and flexible supercapacitors. Carbohydr Polym 2024; 327:121677. [PMID: 38171688 DOI: 10.1016/j.carbpol.2023.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
With the growing demand for eco-friendly materials in wearable smart electronic devices, renewable, biocompatible, and low-cost hydrogels based on natural polymers have attracted much attention. Cellulose, as one of the renewable and degradable natural polymers, shows great potential in wearable smart electronic devices. Multifunctional conductive cellulose-based hydrogels are designed for flexible electronic devices by adding sodium carboxymethyl cellulose and MXene into polyacrylic acid networks. The multifunctional hydrogels possess excellent mechanical property (stress: 310 kPa; strain: 1127 %), toughness (206.67 KJ m-3), conductivity (1.09 ± 0.12 S m-1) and adhesion (82.19 ± 3.65 kPa). The multifunctional conductive hydrogels serve as strain sensors (Gauge Factor (GF) = 5.79, 0-700 % strain; GF = 14.0, 700-900 % strain; GF = 40.36, 900-1000 % strain; response time: 300 ms; recovery time: 200 ms) and temperature sensors (Temperature coefficient of resistance (TCR) = 2.5755 °C-1 at 35 °C- 60 °C). The sensor detects human activities with clear and steady signals. A distributed array of flexible sensors is created to measure the magnitude and distribution of pressure and a hydrogel-based flexible touch keyboard is also fabricated to recognize writing trajectories, pressures and speeds. Furthermore, a flexible hydrogel-based supercapacitor powers the LED and exhibits good cyclic stability over 15,000 charge-discharge cycles.
Collapse
Affiliation(s)
- Hongyan Yin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jiaying Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
28
|
Hu J, Guo J, Zhao J, Chen Z, Kalulu M, Chen G, Fu G. Multifunctional, Degradable Wearable Sensors Prepared with an Initiator and Crosslinker-Free Method. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10671-10681. [PMID: 38359324 DOI: 10.1021/acsami.3c17132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The present zwitterionic hydrogel-based wearable sensor exhibits various limitations, such as limited degradation capacity, unavoidable toxicity resulting from initiators, and poor mechanical properties that cannot satisfy practical demands. Herein, we present an initiator and crosslinker-free approach to prepare polyethylene glycol (PEG)@poly[2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) (PSBMA) interpenetrating polymer network (IPN) hydrogels that are self-polymerized via sunlight-induced and non-covalent crosslinking through electrostatic interaction and hydrogen bonding among polymer chains. The PEG@PSBMA IPN hydrogel possesses tissue-like softness, superior stretchability (∼2344.6% elongation), enhanced fracture strength (∼39.5 kPa), excellent biocompatibility, antibacterial property, reliable adhesion, and ionic conductivity. Furthermore, the sensor based on the IPN hydrogel demonstrates good sensitivity and cyclic stability, enabling effective real-time monitoring of human body activities. Moreover, it is worth noting that the excellent degradability in the saline solution within 8 h makes the prepared hydrogel-based wearable sensor free from the electronic device contamination. We believe that the proposed strategy for preparing physical zwitterionic hydrogels will pave the way for fabricating eco-friendly wearable devices.
Collapse
Affiliation(s)
- Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Jiangping Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Junyan Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zixun Chen
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka 32379, Zambia
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| |
Collapse
|
29
|
Dong B, Yu D, Lu P, Song Z, Chen W, Zhang F, Li B, Wang H, Liu W. TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction. Carbohydr Polym 2024; 326:121621. [PMID: 38142077 DOI: 10.1016/j.carbpol.2023.121621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
Conductive hydrogels have received increasing attention in the field of wearable electronics, but they also face many challenges such as temperature tolerance, biocompatibility, and stability of mechanical properties. In this paper, a double network hydrogel of MXene/TEMPO bacterial cellulose (TOBC) system is proposed. Through solvent replacement, the hydrogel exhibits wide temperature tolerance (-20-60 °C) and stable mechanical properties. A large number of hydrogen bonds, MXene/TOBC dynamic three-dimensional network system, and micellar interactions endow the hydrogel with excellent mechanical properties (elongation at break ~2800 %, strength at break ~420 kPa) and self-healing ability. The introduction of tannic acid prevents the oxidation of MXene and the loss of electrical properties of the hydrogel. In addition, the sensor can also quickly (74 ms) and sensitive (gauge factor = 15.65) wirelessly monitor human motion, and the biocompatibility can well avoid the stimulation when it comes into contact with the human body. This series of research work reveals the fabrication of MXene-like flexible wearable electronic devices based on self-healing, good cell compatibility, high sensitivity, wide temperature tolerance and durability, which can be used in smart wearable, wireless monitoring, human-machine Interaction and other aspects show great application potential.
Collapse
Affiliation(s)
- Baoting Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China.
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wei Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China
| | - Bin Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Huili Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| |
Collapse
|
30
|
Sun S, Yuan R, Ling S, Zhou T, Wu Z, Fu M, He H, Li X, Zhang C. Self-Healable, Self-Adhesive and Degradable MXene-Based Multifunctional Hydrogel for Flexible Epidermal Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7826-7837. [PMID: 38301169 DOI: 10.1021/acsami.3c17605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Conductive hydrogels have garnered significant interest in the realm of wearable flexible sensors due to their close resemblance to human tissue, wearability, and precise signal acquisition capabilities. However, the concurrent attainment of an epidermal hydrogel sensor incorporating reliable self-healing capabilities, biodegradability, robust adhesiveness, and the ability to precisely capture subtle electrophysiological signals poses a daunting and intricate challenge. Herein, an innovative MXene-based composite hydrogel (PBM hydrogel) with exceptional self-healing, self-adhesive, and versatile functionality is engineered through the integration of conductive MXene nanosheets into a well-structured poly(vinyl alcohol) (PVA) and bacterial cellulose (BC) hydrogel three-dimensional (3D) network, utilizing multiple dynamic cross-linking synergistic repeated freeze-thaw strategy. The hydrogel harnesses the presence of dynamically reversible borax ester bonds and multiple hydrogen bonds between its constituents, endowing it with rapid self-healing efficiency (97.8%) and formidable self-adhesive capability. The assembled PBM hydrogel epidermal sensor possesses a rapid response time (10 ms) and exhibits versatility in detecting diverse external stimuli and human movements such as vocalization, handwriting, joint motion, Morse code signals, and even monitoring infusion status. Additionally, the PBM hydrogel sensor offers the added advantage of swift degradation in phosphate-buffered saline solution (within a span of 56 days) and H2O2 solution (in just 53 min), maintaining an eco-friendly profile devoid of any environmental pollution. This work lays the groundwork for possible uses in electronic skins, interactions between humans and machines, and the monitoring of individualized healthcare.
Collapse
Affiliation(s)
- Shuxian Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Ruoxin Yuan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Shangwen Ling
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Tiantian Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Ziqin Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Mengyuan Fu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Hanna He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaolong Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
31
|
Lotfi R, Zandi N, Pourjavadi A, Christiansen JDC, Gurevich L, Mehrali M, Dolatshahi-Pirouz A, Pennisi CP, Tamjid E, Simchi A. Engineering Photo-Cross-Linkable MXene-Based Hydrogels: Durable Conductive Biomaterials for Electroactive Tissues and Interfaces. ACS Biomater Sci Eng 2024; 10:800-813. [PMID: 38159039 DOI: 10.1021/acsbiomaterials.3c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Light-cured conductive hydrogels have attracted immense interest in the regeneration of electroactive tissues and bioelectronic interfaces. Despite the unique properties of MXene (MX), its light-blocking effect in the range of 300-600 nm hinders the efficient cross-linking of photocurable hydrogels. In this study, we investigated the photo-cross-linking process of MX-gelatin methacrylate (GelMa) composites with different types of photoinitiators and MX concentrations to prepare biocompatible, injectable, conductive, and photocurable composite hydrogels. The examined photoinitiators were Eosin Y, Irgacure 2959 (Type I), and lithium phenyl-2,4,6-trimethylbenzoyl phosphinate (Type II). The light-blocking effect of MX strongly affected the thickness, pore structure, swelling ratio, degradation, and mechanical properties of the light-cured hydrogels. Uniform distribution of MX in the hydrogel matrix was achieved at concentrations up to 0.04 wt % but the film thickness and curing times varied depending on the type of photoinitiator. It was feasible to prepare thin films (0.5 mm) by employing Type I photoinitiators under a relatively long light irradiation (4-5 min) while thick films with centimeter sizes could be rapidly cured by using Type II photoinitiator (<60 s). The mechanical properties, including elastic modulus, toughness, and stress to break for the Type II hydrogels were significantly superior (up to 300%) to those of Type I hydrogels depending on the MX concentration. The swelling ratio was also remarkably higher (648-1274%). A conductivity of about 1 mS/cm was attained at 0.1 mg/mL MX for the composite hydrogel cured by the Type I photoinitiator. In vitro cytocompatibility assays determined that the hydrogels promoted cell viability, metabolic activity, and robust proliferation of C2C12 myoblasts, which indicated their potential to support muscle cell growth during myogenesis. The developed photocurable GelMa-MX hydrogels have the potential to serve as bioactive and conductive scaffolds to modulate cellular functions and for tissue-device interfacing.
Collapse
Affiliation(s)
- Roya Lotfi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Nooshin Zandi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran 14588-89694, Iran
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran 14588-89694, Iran
| | | | - Leonid Gurevich
- Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg 9260, Denmark
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14588-89694, Iran
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran 14588-89694, Iran
| |
Collapse
|
32
|
Li R, Ren J, Zhang M, Li M, Li Y, Yang W. Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels. Biomacromolecules 2024; 25:614-625. [PMID: 38241010 DOI: 10.1021/acs.biomac.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Conductive hydrogels integrate the conductive performance and soft nature, which is like that of human skin. Thus, they are more suitable for the preparation of wearable human-motion sensors. Nevertheless, the integration of outstanding multiple functionalities, such as stretchability, toughness, biocompatibility, self-healing, adhesion, strain sensitivity, and durability, by a simple way is still a huge challenge. Herein, we have developed a multifunctional chitosan/oxidized hyaluronic acid/hydroxypropyl methylcellulose/poly(acrylic acid)/tannic acid/Al3+ hydrogel (CS/OHA/HPMC/PAA/TA/Al3+) by using a two-step method with hydroxypropyl methylcellulose (HPMC), acrylic acid (AA), tannic acid (TA), chitosan (CS), oxidized hyaluronic acid (OHA), and aluminum chloride hexahydrate (AlCl3·6H2O). Due to the synergistic effect of dynamic imine bonds between CS and OHA, dynamic metal coordination bonds between Al3+ and -COOH and/or TA as well as reversible hydrogen, the hydrogel showed excellent tensile property (elongation at break of 3168%) and desirable toughness (0.79 MJ/m3). The mechanical self-healing efficiency can reach 95.5% at 30 min, and the conductivity can recover in 5.2 s at room temperature without stimulation. The favorable attribute of high transparency (98.5% transmittance) facilitates the transmission of the optical signal and enables visualization of the sensor. It also shows good adhesiveness to various materials and is easy to peel off without residue. The resistance of the hydrogel-based sensors shows good electrical conductivity (2.33 S m-1), good durability, high sensing sensitivity (GF value of 4.12 under 1600% strain), low detection limit (less than 1%), and short response/recovery time (0.54/0.31 s). It adhered to human skin and monitored human movements such as the bending movements of joints, swallowing, and speaking successfully. Therefore, the obtained multifunctional conductive hydrogel has great potential applications in wearable strain sensors.
Collapse
Affiliation(s)
- Ruirui Li
- Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China
| | - Jie Ren
- Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China
| | - Minmin Zhang
- Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China
| | - Meng Li
- Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China
| | - Yan Li
- Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China
| | - Wu Yang
- Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China
| |
Collapse
|
33
|
Xu J, Huang H, Sun C, Yu J, Wang M, Dong T, Wang S, Chen X, Cui T, Li J. Flexible Accelerated-Wound-Healing Antibacterial Hydrogel-Nanofiber Scaffold for Intelligent Wearable Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5438-5450. [PMID: 38112719 DOI: 10.1021/acsami.3c14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Flexible epidermal sensors hold significant potential in personalized healthcare and multifunctional electronic skins. Nonetheless, achieving both robust sensing performance and efficient antibacterial protection, especially in medical paradigms involving electrophysiological signals for wound healing and intelligent health monitoring, remains a substantial challenge. Herein, we introduce a novel flexible accelerated-wound-healing biomaterial based on a hydrogel-nanofiber scaffold (HNFS) via electrostatic spinning and gel cross-linking. We effectively engineer a multifunctional tissue nanoengineered skin scaffold for wound treatment and health monitoring. Key features of HNFS include high tensile strength (24.06 MPa) and elasticity (214.67%), flexibility, biodegradability, and antibacterial properties, enabling assembly into versatile sensors for monitoring human motion and electrophysiological signals. Moreover, in vitro and in vivo experiments demonstrate that HNFS significantly enhances cell proliferation and skin wound healing, provide a comprehensive therapeutic strategy for smart sensing and tissue repair, and guide the development of high-performance "wound healing-health monitoring" bioelectronic skin scaffolds. Therefore, this study provides insights into crafting flexible and repairable skin sensors, holding potential for multifunctional health diagnostics and intelligent medical applications in intelligent wearable health monitoring and next-generation artificial skin fields.
Collapse
Affiliation(s)
- Jieyan Xu
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Hui Huang
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Cheng Sun
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Jiafei Yu
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Mingming Wang
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Ting Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P.R. China
| | - Shiheng Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Xinhao Chen
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| | - Tingting Cui
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211106, P.R. China
| |
Collapse
|
34
|
Li T, Qi H, Zhao Y, Kumar P, Zhao C, Li Z, Dong X, Guo X, Zhao M, Li X, Wang X, Ritchie RO, Zhai W. Robust and sensitive conductive nanocomposite hydrogel with bridge cross-linking-dominated hierarchical structural design. SCIENCE ADVANCES 2024; 10:eadk6643. [PMID: 38306426 PMCID: PMC10836727 DOI: 10.1126/sciadv.adk6643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024]
Abstract
Conductive hydrogels have a remarkable potential for applications in soft electronics and robotics, owing to their noteworthy attributes, including electrical conductivity, stretchability, biocompatibility, etc. However, the limited strength and toughness of these hydrogels have traditionally impeded their practical implementation. Inspired by the hierarchical architecture of high-performance biological composites found in nature, we successfully fabricate a robust and sensitive conductive nanocomposite hydrogel through self-assembly-induced bridge cross-linking of MgB2 nanosheets and polyvinyl alcohol hydrogels. By combining the hierarchical lamellar microstructure with robust molecular B─O─C covalent bonds, the resulting conductive hydrogel exhibits an exceptional strength and toughness. Moreover, the hydrogel demonstrates exceptional sensitivity (response/relaxation time, 20 milliseconds; detection lower limit, ~1 Pascal) under external deformation. Such characteristics enable the conductive hydrogel to exhibit superior performance in soft sensing applications. This study introduces a high-performance conductive hydrogel and opens up exciting possibilities for the development of soft electronics.
Collapse
Affiliation(s)
- Tian Li
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Punit Kumar
- Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cancan Zhao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhenming Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xinyu Dong
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xiao Guo
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Miao Zhao
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xinwei Li
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Robert O Ritchie
- Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
35
|
Wang Q, Qiao J, Xiong Y, Dong F, Xiong Y. A novel ZIF-8@IL-MXene/poly (N-isopropylacrylamide) nanocomposite hydrogel toward multifunctional adsorption. ENVIRONMENTAL RESEARCH 2024; 242:117568. [PMID: 37979930 DOI: 10.1016/j.envres.2023.117568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 11/20/2023]
Abstract
Phenols, dyes, and metal ions present in industrial wastewater can adversely affect the environment and leach biological carcinogens. Given that the current research focuses only on the removal of one or two of those categories. Herein, this work reports a novel ZIF-8@IL-MXene/Poly(N-isopropylacrylamide) (NIPAM) nanocomposite hydrogel that can efficiently and conveniently absorb and separate multiple pollutants from industrial wastewater. Ionic liquid (IL) was grafted onto MXene surfaces using a one-step method, and then incorporated into NIPAM monomer solutions to obtain the IL-MXene/PNIPAM composite hydrogel via in-situ polymerization. ZIF-8@IL-MXene/PNIPAM nanocomposite hydrogels were obtained by in-situ growth of ZIF-8 on the pore walls of composite hydrogels. As-prepared nanocomposite hydrogel showed excellent mechanical properties and can withstand ten repeated compressions without any damage, the specific surface area increased by 100 times, and the maximum adsorption capacities for p-nitrophenol (4-NP), crystal violet (CV), and copper ion (Cu2+) were 198.40, 325.03, and 285.65 mg g-1, respectively, at room temperature. The VPTTs of all hydrogels ranged from 33 to 35 °C, so the desorption process can be achieved in deionized water at 35-40 °C, and its adsorption capacities after five adsorption-desorption cycles decreased to 79%, 91%, and 29% for 4-NP, CV, and Cu2+, respectively. The adsorption data fitting results follow pseudo-second-order kinetics and Freundlich models, which is based on multiple interactions between the functional groups contained in hydrogels and adsorbent molecules. The hydrogel is the first to realize the high-efficiency adsorption of phenols, dyes and metal ions in industrial wastewater simultaneously, and the preparation process of hydrogels is environmentally friendly. Also, giving hydrogel multifunctional adsorption is beneficial to promote the development of multifunctional adsorption materials.
Collapse
Affiliation(s)
- Qian Wang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jing Qiao
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Yukun Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
36
|
Zuo L, Yang Y, Zhang H, Ma Z, Xin Q, Ding C, Li J. Bioinspired Multiscale Mineralization: From Fundamentals to Potential Applications. Macromol Biosci 2024; 24:e2300348. [PMID: 37689995 DOI: 10.1002/mabi.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The wondrous and imaginative designs of nature have always been an inexhaustible treasure trove for material scientists. Throughout the long evolutionary process, biominerals with hierarchical structures possess some specific advantages such as outstanding mechanical properties, biological functions, and sensing performances, the formation of which (biomineralization) is delicately regulated by organic component. Provoked by the subtle structures and profound principles of nature, bioinspired functional minerals can be designed with the participation of organic molecules. Because of the designable morphology and functions, multiscale mineralization has attracted more and more attention in the areas of medicine, chemistry, biology, and material science. This review provides a summary of current advancements in this extending topic. The mechanisms underlying mineralization is first concisely elucidated. Next, several types of minerals are categorized according to their structural characteristic, as well as the different potential applications of these materials. At last, a comprehensive overview of future developments for bioinspired multiscale mineralization is given. Concentrating on the mechanism of fabrication and broad application prospects of multiscale mineralization, the hope is to provide inspirations for the design of other functional materials.
Collapse
Affiliation(s)
- Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
37
|
Amani AM, Tayebi L, Abbasi M, Vaez A, Kamyab H, Chelliapan S, Vafa E. The Need for Smart Materials in an Expanding Smart World: MXene-Based Wearable Electronics and Their Advantageous Applications. ACS OMEGA 2024; 9:3123-3142. [PMID: 38284011 PMCID: PMC10809375 DOI: 10.1021/acsomega.3c06590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
As a result of the transformation of inflexible electronic structures into flexible and stretchy devices, wearable electronics now provide great advantages in a variety of fields, including mobile healthcare sensing and monitoring, human-machine interfaces, portable energy storage and harvesting, and more. Because of their enriched surface functionalities, large surface area, and high electrical conductivity, transition metal nitrides and carbides (also known as MXenes) have recently come to be extensively considered as a group of functioning two-dimensional nanomaterials as well as exceptional fundamental elements for forming flexible electronics devices. This Review discusses the most recent advancements that have been made in the field of MXene-enabled flexible electronics for wearable electronics. The emphasis is placed on extensively established nonstructural features in order to highlight some MXene-enabled electrical devices that were constructed on a nanometric scale. These attributes include devices configured in three dimensions: printed materials, bioinspired structures, and textile and planar substrates. In addition, sample applications in electromagnetic interference (EMI) shielding, energy, healthcare, and humanoid control of machinery illustrate the exceptional development of these nanodevices. The increasing potential of MXene nanoparticles as a new area in next-generation wearable electronic technologies is projected in this Review. The design challenges associated with these electronic devices are also discussed, and possible solutions are presented.
Collapse
Affiliation(s)
- Ali Mohammad Amani
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz 71348, Iran
| | - Lobat Tayebi
- School
of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Milad Abbasi
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz 71348, Iran
| | - Ahmad Vaez
- Department
of Tissue Engineering and Applied Cell Sciences, School of Advanced
Medical Sciences and Technologies, Shiraz
University of Medical Sciences, Shiraz 71348, Iran
| | - Hesam Kamyab
- Malaysia-Japan
International Institute of Technology, Universiti
Teknologi Malaysia, Jalan
Sultan Yahya Petra,54100 Kuala Lumpur, Malaysia
- Facultad
de Arquitectura y Urbanismo, Universidad
UTE, Calle Rumipamba
S/N y Bourgeois, Quito 170147, Ecuador
- Department
of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - Shreeshivadasan Chelliapan
- Engineering
Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Ehsan Vafa
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz 71348, Iran
| |
Collapse
|
38
|
Zhang Y, Tang Q, Zhou J, Zhao C, Li J, Wang H. Conductive and Eco-friendly Biomaterials-based Hydrogels for Noninvasive Epidermal Sensors: A Review. ACS Biomater Sci Eng 2024; 10:191-218. [PMID: 38052003 DOI: 10.1021/acsbiomaterials.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
As noninvasive wearable electronic devices, epidermal sensors enable continuous, real-time, and remote monitoring of various human physiological parameters. Conductive biomaterials-based hydrogels as sensor matrix materials have good biocompatibility, biodegradability, and efficient stimulus response capabilities and are widely applied in motion monitoring, healthcare, and human-machine interaction. However, biomass hydrogel-based epidermal sensing devices still need excellent mechanical properties, prolonged stability, multifunctionality, and extensive practicality. Therefore, this paper reviews the common biomass hydrogel materials for epidermal sensing (proteins, polysaccharides, polyphenols, etc.) and the various types of noninvasive sensing devices (strain/pressure sensors, temperature sensors, glucose sensors, electrocardiograms, etc.). Moreover, this review focuses on the strategies of scholars to enhance sensor properties, such as strength, conductivity, stability, adhesion, and self-healing ability. This work will guide the preparation and optimization of high-performance biomaterials-based hydrogel epidermal sensors.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Qianhui Tang
- School of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian, Liaoning 116023, P. R. China
| | - Junyang Zhou
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenghao Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Jingpeng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Haiting Wang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
39
|
Lu Y, Li Z, Li Z, Zhou S, Zhang N, Zhang J, Zong L. Fabrication of a tough, long-lasting adhesive hydrogel patch via the synergy of interfacial entanglement and adhesion group densification. NANOSCALE 2024; 16:645-656. [PMID: 38088254 DOI: 10.1039/d3nr05049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Adhesive hydrogels (AHs) are considered ideal materials for flexible sensors. However, the lack of effective energy dissipation networks and sparse surface polar groups in AHs lead to poor mechanical properties and interfacial adhesion, which limit their practical application. Herein, a tough, long-lasting adhesive and highly conductive nanocomposite hydrogel (PACPH) was fabricated via the synergy of interfacial entanglement and adhesion group densification. PACPH was obtained by the in situ polymerization of highly carboxylated cellulose nanocrystals (SCNCPA, surface pre-grafted polyacrylic acid chains, C-COOH = 11.5 mmol g-1) with the acrylic acid precursor. The unique tacticity of SCNCPA provides strong interface entanglement and multiple hydrogen bonds with the PACPH network, which further increases the energy dissipated during SCNCPA displacements, and enhances the mechanical properties of PACPH (tensile strength = 1.45 MPa, modulus = 332 kPa, and fracture toughness = 13.2 MJ m-3). Meanwhile, SCNCPA increases the density of surface polar groups in PAPCH and also acts as an anchor point to improve the adhesion strength (>2-3 times) of PACPH on various substrates. The combination of excellent mechanical, adhesive, and conductive properties of the PAPCH-integrated patches enables long-term monitoring of human daily activities and electrocardiogram (ECG) signals, verifying that PAPCH is a promising material platform for the further development of flexible sensors and other health management devices.
Collapse
Affiliation(s)
- Yunjie Lu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| | - Zhaohui Li
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| | - Zewei Li
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| | - Shihao Zhou
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| | - Ning Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| | - Lu Zong
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City 266042, People's Republic of China.
| |
Collapse
|
40
|
Zhang J, Wang Y, Wei Q, Li M, Chen X. 3D printable, stretchable, anti-freezing and rapid self-healing organogel-based sensors for human motion detection. J Colloid Interface Sci 2024; 653:1514-1525. [PMID: 37804619 DOI: 10.1016/j.jcis.2023.09.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Self-healing hydrogels have promising applications in sensors and wearable devices. However, self-healing hydrogels prepared with water as the dispersion medium inevitably freeze at sub-zero temperature, resulting in a loss of the self-healing and sensing ability. The black phosphorene / ethylene glycol / polyvinyl alcohol / sodium tetraborate / sodium alginate (BP/EG-SPB) organogels were prepared by 3D printing technology and solvent displacement method. The organogel exhibits high stretchability (1900 % strain), excellent self-healing property (25 s) and outstanding anti-freezing property (lower than -120 °C freezing point). Furthermore, the organogel can rapidly self-healed (150 s) at a low temperature (-80 °C) without any external stimulation. Additionally, this organogel-based flexible sensor possesses excellent sensitivity (gauge factor: 28.66 at 1900 % strain) and fast response capability, allowing for effective detection of human motion. This work provides a novel method for preparing multifunctional organogel-based sensors for use in harsh climates.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaohu Chen
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
41
|
Yu H, Gao R, Liu Y, Fu L, Zhou J, Li L. Stimulus-Responsive Hydrogels as Drug Delivery Systems for Inflammation Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306152. [PMID: 37985923 PMCID: PMC10767459 DOI: 10.1002/advs.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Deregulated inflammations induced by various factors are one of the most common diseases in people's daily life, while severe inflammation can even lead to death. Thus, the efficient treatment of inflammation has always been the hot topic in the research of medicine. In the past decades, as a potential biomaterial, stimuli-responsive hydrogels have been a focus of attention for the inflammation treatment due to their excellent biocompatibility and design flexibility. Recently, thanks to the rapid development of nanotechnology and material science, more and more efforts have been made to develop safer, more personal and more effective hydrogels for the therapy of some frequent but tough inflammations such as sepsis, rheumatoid arthritis, osteoarthritis, periodontitis, and ulcerative colitis. Herein, from recent studies and articles, the conventional and emerging hydrogels in the delivery of anti-inflammatory drugs and the therapy for various inflammations are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Haoyu Yu
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| | - Rongyao Gao
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Yuxin Liu
- Department of Biomolecular SystemsMax‐Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Limin Fu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Jing Zhou
- Department of ChemistryCapital Normal UniversityBeijing100048P. R. China
| | - Luoyuan Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| |
Collapse
|
42
|
Li C, Qiu T, Li C, Cheng B, Jin M, Zhou G, Giersig M, Wang X, Gao J, Akinoglu EM. Highly Flexible and Acid-Alkali Resistant TiN Nanomesh Transparent Electrodes for Next-Generation Optoelectronic Devices. ACS NANO 2023; 17:24763-24772. [PMID: 37901960 DOI: 10.1021/acsnano.3c05211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Transparent electrodes are vital for optoelectronic devices, but their development has been constrained by the limitations of existing materials such as indium tin oxide (ITO) and newer alternatives. All face issues of robustness, flexibility, conductivity, and stability in harsh environments. Addressing this challenge, we developed a flexible, low-cost titanium nitride (TiN) nanomesh transparent electrode showcasing exceptional acid-alkali resistance. The TiN nanomesh electrode, created by depositing a TiN coating on a naturally cracked gel film substrate via a sputtering method, maintains a stable electrical performance through thousands of bending cycles. It exhibits outstanding chemical stability, resisting strong acid and alkali corrosion, which is a key hurdle for current electrodes when in contact with acidic/alkaline materials and solvents during device fabrication. This, coupled with superior light transmission and conductivity (88% at 550 nm with a sheet resistance of ∼200 Ω/sq), challenges the reliance on conventional materials. Our TiN nanomesh electrode, successfully applied in electric heaters and electrically controlled thermochromic devices, offers broad potential beyond harsh environment applications. It enables alternative possibilities for the design and fabrication of future optoelectronics for advancements in this pivotal field.
Collapse
Affiliation(s)
- Caitao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526238, Guangdong, People's Republic of China
| | - Tengfei Qiu
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Cong Li
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006, People's Republic of China
| | - Baoyuan Cheng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526238, Guangdong, People's Republic of China
| | - Mingliang Jin
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526238, Guangdong, People's Republic of China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526238, Guangdong, People's Republic of China
| | - Michael Giersig
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526238, Guangdong, People's Republic of China
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526238, Guangdong, People's Republic of China
| | - Jinwei Gao
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006, People's Republic of China
| | - Eser Metin Akinoglu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526238, Guangdong, People's Republic of China
| |
Collapse
|
43
|
Qin C, Qi Z, Pan S, Xia P, Kong W, Sun B, Du H, Zhang R, Zhu L, Zhou D, Yang X. Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration. Int J Nanomedicine 2023; 18:7305-7333. [PMID: 38084124 PMCID: PMC10710813 DOI: 10.2147/ijn.s436111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury (SCI) treatment represents a major challenge in clinical practice. In recent years, the rapid development of neural tissue engineering technology has provided a new therapeutic approach for spinal cord injury repair. Implanting functionalized electroconductive hydrogels (ECH) in the injury area has been shown to promote axonal regeneration and facilitate the generation of neuronal circuits by reshaping the microenvironment of SCI. ECH not only facilitate intercellular electrical signaling but, when combined with electrical stimulation, enable the transmission of electrical signals to electroactive tissue and activate bioelectric signaling pathways, thereby promoting neural tissue repair. Therefore, the implantation of ECH into damaged tissues can effectively restore physiological functions related to electrical conduction. This article focuses on the dynamic pathophysiological changes in the SCI microenvironment and discusses the mechanisms of electrical stimulation/signal in the process of SCI repair. By examining electrical activity during nerve repair, we provide insights into the mechanisms behind electrical stimulation and signaling during SCI repair. We classify conductive biomaterials, and offer an overview of the current applications and research progress of conductive hydrogels in spinal cord repair and regeneration, aiming to provide a reference for future explorations and developments in spinal cord regeneration strategies.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Zhiping Qi
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Su Pan
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Peng Xia
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Weijian Kong
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Bin Sun
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Haorui Du
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Renfeng Zhang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Longchuan Zhu
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Dinghai Zhou
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| |
Collapse
|
44
|
Hou Z, Gao T, Liu X, Guo W, Bai L, Wang W, Yang L, Yang H, Wei D. Dual detection of human motion and glucose in sweat with polydopamine and glucose oxidase doped self-healing nanocomposite hydrogels. Int J Biol Macromol 2023; 252:126473. [PMID: 37619684 DOI: 10.1016/j.ijbiomac.2023.126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The detection of human motion and sweat composition are important for human health or sports training, so it is necessary to develop flexible sensors for monitoring exercise processes and sweat detection. Mussel secretion of adhesion proteins enables self-healing of byssus and adhesion to surfaces. We prepared Au nanoparticles@polydopamine (AuNPs@PDA) nanomaterials based on mussel-inspired chemistry and compounded them with polyvinyl alcohol (PVA) hydrogels to obtain PVA/AuNPs@PDA self-healing nanocomposite hydrogels. Dopamine (DA) was coated on the surface of AuNPs to obtain AuNPs based composite (AuNPs@PDA) and the AuNPs@PDA was implanted into the PVA hydrogels to obtain nanocomposite hydrogel through facile freeze-thaw cycle. Glucose oxidase (GOD) was added to the hydrogel matrix to achieve specific detection of glucose in sweat. The obtained hydrogels exhibit high deformability (573.7 %), excellent mechanical strength (550.3 KPa) and self-healing properties (85.1 %). The PVA/AuNPs@PDA hydrogel sensors exhibit quick response time (185.0 ms), wide strain sensing range (0-500 %), superior stability and anti-fatigue properties in motion detection. The detection of glucose had wide concentration detection range (1.0 μmol/L-200.0 μmol/L), low detection limits (0.9 μmol/L) and high sensitivity (24.4 μA/mM). This work proposes a reference method in dual detection of human exercise and sweat composition analysis.
Collapse
Affiliation(s)
- Zehua Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Teng Gao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Xinyue Liu
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Wenzhe Guo
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|
45
|
Chen Y, Zhou Y, Hu Z, Lu W, Li Z, Gao N, Liu N, Li Y, He J, Gao Q, Xie Z, Li J, He Y. Gelatin-Based Metamaterial Hydrogel Films with High Conformality for Ultra-Soft Tissue Monitoring. NANO-MICRO LETTERS 2023; 16:34. [PMID: 38019305 PMCID: PMC10686972 DOI: 10.1007/s40820-023-01225-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/24/2023] [Indexed: 11/30/2023]
Abstract
Implantable hydrogel-based bioelectronics (IHB) can precisely monitor human health and diagnose diseases. However, achieving biodegradability, biocompatibility, and high conformality with soft tissues poses significant challenges for IHB. Gelatin is the most suitable candidate for IHB since it is a collagen hydrolysate and a substantial part of the extracellular matrix found naturally in most tissues. This study used 3D printing ultrafine fiber networks with metamaterial design to embed into ultra-low elastic modulus hydrogel to create a novel gelatin-based conductive film (GCF) with mechanical programmability. The regulation of GCF nearly covers soft tissue mechanics, an elastic modulus from 20 to 420 kPa, and a Poisson's ratio from - 0.25 to 0.52. The negative Poisson's ratio promotes conformality with soft tissues to improve the efficiency of biological interfaces. The GCF can monitor heartbeat signals and respiratory rate by determining cardiac deformation due to its high conformability. Notably, the gelatin characteristics of the biodegradable GCF enable the sensor to monitor and support tissue restoration. The GCF metamaterial design offers a unique idea for bioelectronics to develop implantable sensors that integrate monitoring and tissue repair and a customized method for endowing implanted sensors to be highly conformal with soft tissues.
Collapse
Affiliation(s)
- Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Weiying Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Zhuang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Ning Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Nian Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China.
| | - Jiachun Li
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
46
|
Xu H, Zheng W, Zhang Y, Zhao D, Wang L, Zhao Y, Wang W, Yuan Y, Zhang J, Huo Z, Wang Y, Zhao N, Qin Y, Liu K, Xi R, Chen G, Zhang H, Tang C, Yan J, Ge Q, Cheng H, Lu Y, Gao L. A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation. Nat Commun 2023; 14:7769. [PMID: 38012169 PMCID: PMC10682047 DOI: 10.1038/s41467-023-43664-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Post-surgical treatments of the human throat often require continuous monitoring of diverse vital and muscle activities. However, wireless, continuous monitoring and analysis of these activities directly from the throat skin have not been developed. Here, we report the design and validation of a fully integrated standalone stretchable device platform that provides wireless measurements and machine learning-based analysis of diverse vibrations and muscle electrical activities from the throat. We demonstrate that the modified composite hydrogel with low contact impedance and reduced adhesion provides high-quality long-term monitoring of local muscle electrical signals. We show that the integrated triaxial broad-band accelerometer also measures large body movements and subtle physiological activities/vibrations. We find that the combined data processed by a 2D-like sequential feature extractor with fully connected neurons facilitates the classification of various motion/speech features at a high accuracy of over 90%, which adapts to the data with noise from motion artifacts or the data from new human subjects. The resulting standalone stretchable device with wireless monitoring and machine learning-based processing capabilities paves the way to design and apply wearable skin-interfaced systems for the remote monitoring and treatment evaluation of various diseases.
Collapse
Affiliation(s)
- Hongcheng Xu
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Weihao Zheng
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Yang Zhang
- Department of Medical Electronics, School of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China
| | - Daqing Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Lu Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China.
| | - Yangbo Yuan
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Ji Zhang
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Zimin Huo
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Yuejiao Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Ningjuan Zhao
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Yuxin Qin
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Ke Liu
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Ruida Xi
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Gang Chen
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Haiyan Zhang
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Junyu Yan
- School of Mechano-Electronic Engineering, Xidian University, Xian, 710071, China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, Hong Kong SAR.
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
47
|
Mousavi A, Rahimnejad M, Azimzadeh M, Akbari M, Savoji H. Recent advances in smart wearable sensors as electronic skin. J Mater Chem B 2023; 11:10332-10354. [PMID: 37909384 DOI: 10.1039/d3tb01373a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Flexible and multifunctional electronic devices and soft robots inspired by human organs, such as skin, have many applications. However, the emergence of electronic skins (e-skins) or textiles in biomedical engineering has made a great revolution in a myriad of people's lives who suffer from different types of diseases and problems in which their skin and muscles lose their appropriate functions. In this review, recent advances in the sensory function of the e-skins are described. Furthermore, we have categorized them from the sensory function perspective and highlighted their advantages and limitations. The categories are tactile sensors (including capacitive, piezoresistive, piezoelectric, triboelectric, and optical), temperature, and multi-sensors. In addition, we summarized the most recent advancements in sensors and their particular features. The role of material selection and structure in sensory function and other features of the e-skins are also discussed. Finally, current challenges and future prospects of these systems towards advanced biomedical applications are elaborated.
Collapse
Affiliation(s)
- Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Research Center, Sainte-Justine University Hospital, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Mostafa Azimzadeh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Research Center, Sainte-Justine University Hospital, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
48
|
Xu K, Deng S, Zhu Y, Yang W, Chen W, Huang L, Zhang C, Li M, Ao L, Jiang Y, Wang X, Zhang Q. Platelet Rich Plasma Loaded Multifunctional Hydrogel Accelerates Diabetic Wound Healing via Regulating the Continuously Abnormal Microenvironments. Adv Healthc Mater 2023; 12:e2301370. [PMID: 37437207 DOI: 10.1002/adhm.202301370] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Continuous oxidative stress and cellular dysfunction caused by hyperglycemia are distinguishing features of diabetic wounds. It has been a great challenge to develop a smart dressing that can accelerate diabetic wound healing through regulating abnormal microenvironments. In this study, a platelet rich plasma (PRP) loaded multifunctional hydrogel with reactive oxygen species (ROS) and glucose dual-responsive property is reported. It can be conveniently prepared with PRP, dopamine (DA) grafted alginate (Alg-DA), and 6-aminobenzo[c][1,2]oxaborol-1(3H)-ol (ABO) conjugated hyaluronic acid (HA-ABO) through ionic crosslinks, hydrogen-bond interactions, and boronate ester bonds. The hydrogel possesses injectability, moldability, tissue adhesion, self-healing, low hemolysis, and hemostasis performances. Its excellent antioxidant property can create a low oxidative stress microenvironment for other biological events. Under an oxidative stress and/or hyperglycemia state, the hydrogel can degrade at an accelerated rate to release a variety of cytokines derived from activated blood platelets. The result is a series of positive changes that are favorable for diabetic wound healing, including fast anti-inflammation, activated macrophage polarization toward M2 phenotype, promoted migration and proliferation of fibroblasts, as well as expedited angiogenesis. This work provides an efficient strategy for chronic diabetic wound management and offers an alternative for developing a new-type PRP-based bioactive wound dressing.
Collapse
Affiliation(s)
- Kui Xu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P. R. China
- Institute of Biomedical Engineering, the Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong, 518020, P. R. China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China
| | - Sijie Deng
- Institute of Biomedical Engineering, the Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong, 518020, P. R. China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Wei Yang
- Institute of Biomedical Engineering, the Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong, 518020, P. R. China
| | - Weizhen Chen
- Center of Clinical Laboratory & the Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Chi Zhang
- Medical Research Center, Ningbo City First Hospital, Ningbo, Zhejiang, 315010, P. R. China
| | - Ming Li
- Joint Surgery Department, Ningbo No. 6 Hospital, Ningbo, Zhejiang, 315040, P. R. China
| | - Lijiao Ao
- Institute of Biomedical Engineering, the Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong, 518020, P. R. China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China
| | - Yibo Jiang
- Institute of Biomedical Engineering, the Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong, 518020, P. R. China
| | - Xiangyu Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China
| | - Qiqing Zhang
- Institute of Biomedical Engineering, the Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong, 518020, P. R. China
| |
Collapse
|
49
|
Shen S, Zhang J, Han Y, Pu C, Duan Q, Huang J, Yan B, You X, Lin R, Shen X, Qiu X, Hou H. A Core-Shell Nanoreinforced Ion-Conductive Implantable Hydrogel Bioelectronic Patch with High Sensitivity and Bioactivity for Real-Time Synchronous Heart Monitoring and Repairing. Adv Healthc Mater 2023; 12:e2301990. [PMID: 37467758 DOI: 10.1002/adhm.202301990] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
To achieve synchronous repair and real-time monitoring the infarcted myocardium based on an integrated ion-conductive hydrogel patch is challenging yet intriguing. Herein, a novel synthetic strategy is reported based on core-shell-structured curcumin-nanocomposite-reinforced ion-conductive hydrogel for synchronous heart electrophysiological signal monitoring and infarcted heart repair. The nanoreinforcement and multisite cross-linking of bioactive curcumin nanoparticles enable well elasticity with negligible hysteresis, implantability, ultrahigh mechanoelectrical sensitivity (37 ms), and reliable sensing capacity (over 3000 cycles) for the nanoreinforced hydrogel. Results of in vitro and in vivo experiments demonstrate that such solely physical microenvironment of electrophysiological and biomechanical characteristics combining with the role of bioactive curcumin exert the synchronous benefit of regulating inflammatory microenvironment, promoting angiogenesis, and reducing myocardial fibrosis for effective myocardial infarction (MI) repair. Especially, the hydrogel sensors offer the access for achieving accurate acquisition of cardiac signals, thus monitoring the whole MI healing process. This novel bioactive and electrophysiological-sensing ion-conductive hydrogel cardiac patch highlights a versatile strategy promising for synchronous integration of in vivo real-time monitoring the MI status and excellent MI repair performance.
Collapse
Affiliation(s)
- Si Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yanni Han
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Chunyi Pu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Qixiang Duan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jianxing Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Bing Yan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoxi Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
50
|
Weng G, Yang X, Wang Z, Xu Y, Liu R. Hydrogel Electrolyte Enabled High-Performance Flexible Aqueous Zinc Ion Energy Storage Systems toward Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303949. [PMID: 37530198 DOI: 10.1002/smll.202303949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/14/2023] [Indexed: 08/03/2023]
Abstract
To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi-solid substances, are the appropriate and burgeoning electrolytes that enable high-performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte-based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high-performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte-based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.
Collapse
Affiliation(s)
- Gao Weng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Xianzhong Yang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Zhiqi Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Yan Xu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|