1
|
Wang W, Jiang Z, Zhang X, Zheng J, Du H, Zhang Z. A theoretical study of Lifshitz transition for 2H-TaS 2. Phys Chem Chem Phys 2024; 26:15868-15876. [PMID: 38787703 DOI: 10.1039/d4cp00977k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Lifshitz transition was proposed to explain a change of the topology structure in a Fermi surface induced by continuous lattice deformation without symmetry breaking since 1960. It is well known that the anomalies of the kinetic coefficients (the coefficient of heat conduction and electrical conductivity, viscosity, sound absorption, etc.) are usually closely connected with the Lifshitz transition behavior. 2H-TaS2 is a typical representative to study its anomalies of temperature dependence of heat capacity, resistivity, Hall effect, and magnetic susceptibility. Its geometrical structure of the charge density wave (CDW) phase and layer number dependence of carrier-sign alternation upon cooling in the Hall measurements have not been well understood. The geometrical structure (T-Ts) of the CDW phase was predicted through first principles calculations for bulk and mono-layer 2H-TaS2. Driven by electron-lattice coupling, Ta atoms contract to form a partially gapped CDW phase. The CDW phase has a larger average interlayer separation of S-S atoms in the adjacent two layers compared with the metal phase, which results in a weaker chemical bonding among S-S atoms in the adjacent two layers and then a narrower bandwidth of the energy band. The narrower bandwidth of the energy band leads to a larger density of states (DOS) in the out-of-plane direction above the Fermi level for the CDW phase. As the Fermi level continually drops from the DOS region with a negative slope to that with a positive slope on cooling, the reversal of the p → n type carrier and the pocket-vanishing-type Lifshitz transition occur in the bulk 2H-TaS2. However, the Fermi level slightly drops by 6 meV and happens to be at the positions of pseudo band gaps, so the reduction of in-plane DOS and total DOS is responsible for the always p-type carrier in the mono-layer samples. Our CDW vector of the k-space separation between two saddle points is QSP ≈ 0.62 GK and can provide a theoretical support for the "saddle-point" CDW mechanism proposed by Rice and Scott. Our theoretical explanation gives a new understanding of both Lifshitz transition for symmetry breaking and reversal for the p-n carrier sign in the Hall measurements in various two-dimensional transition metal disulfides.
Collapse
Affiliation(s)
- Wenxuan Wang
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710069, China
| | - Zhenyi Jiang
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710069, China
| | - Xiaodong Zhang
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710069, China
| | - Jiming Zheng
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710069, China
| | - Hongwei Du
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710069, China
| | - Zhiyong Zhang
- Stanford Research Computing Center, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Cheng WN, Niu M, Meng Y, Han X, Qiao J, Zhang J, Zhao X. Engineering Charge Density Waves by Stackingtronics in Tantalum Disulfide. NANO LETTERS 2024; 24:6441-6449. [PMID: 38757836 DOI: 10.1021/acs.nanolett.4c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In the realm of condensed matter physics and materials science, charge density waves (CDWs) have emerged as a captivating way to modulate correlated electronic phases and electron oscillations in quantum materials. However, collectively and efficiently tuning CDW order is a formidable challenge. Herein, we introduced a novel way to modulate the CDW order in 1T-TaS2 via stacking engineering. By introducing shear strain during the electrochemical exfoliation, the thermodynamically stable AA-stacked TaS2 consecutively transform into metastable ABC stacking, resulting in unique 3a × 1a CDW order. By decoupling atom coordinates, we atomically deciphered the 3D subtle structural variations in trilayer samples. As suggested by density functional theory (DFT) calculations, the origin of CDWs is presumably due to collective excitations and charge modulation. Therefore, our works shed light on a new avenue to collectively modulate the CDW order via stackingtronics and unveiled novel mechanisms for triggering CDW formation via charge modulation.
Collapse
Affiliation(s)
- Wing Ni Cheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mengmeng Niu
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yuan Meng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jingsi Qiao
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jin Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Wang Y, Li Z, Luo X, Gao J, Han Y, Jiang J, Tang J, Ju H, Li T, Lv R, Cui S, Yang Y, Sun Y, Zhu J, Gao X, Lu W, Sun Z, Xu H, Xiong Y, Cao L. Dualistic insulator states in 1T-TaS 2 crystals. Nat Commun 2024; 15:3425. [PMID: 38653984 DOI: 10.1038/s41467-024-47728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
While the monolayer sheet is well-established as a Mott-insulator with a finite energy gap, the insulating nature of bulk 1T-TaS2 crystals remains ambiguous due to their varying dimensionalities and alterable interlayer coupling. In this study, we present a unique approach to unlock the intertwined two-dimensional Mott-insulator and three-dimensional band-insulator states in bulk 1T-TaS2 crystals by structuring a laddering stack along the out-of-plane direction. Through modulating the interlayer coupling, the insulating nature can be switched between band-insulator and Mott-insulator mechanisms. Our findings demonstrate the duality of insulating nature in 1T-TaS2 crystals. By manipulating the translational degree of freedom in layered crystals, our discovery presents a promising strategy for exploring fascinating physics, independent of their dimensionality, thereby offering a "three-dimensional" control for the era of slidetronics.
Collapse
Affiliation(s)
- Yihao Wang
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Zhihao Li
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China
| | - Xuan Luo
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jingjing Gao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yuyan Han
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jialiang Jiang
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jin Tang
- Department of Physics, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Huanxin Ju
- PHI Analytical Laboratory, ULVAC-PHI Instruments Co., Ltd., Nanjing, 211110, Jiangsu, P. R. China
| | - Tongrui Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Run Lv
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shengtao Cui
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingguo Yang
- State Key Laboratory of Photovoltaic Science and Technology, School of Microelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Yuping Sun
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, P. R. China
| | - Wenjian Lu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
| | - Zhe Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
- Hefei National Laboratory, Hefei, 230028, P. R. China.
| | - Hai Xu
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Yimin Xiong
- Department of Physics, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, 230601, P. R. China.
- Hefei National Laboratory, Hefei, 230028, P. R. China.
| | - Liang Cao
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
| |
Collapse
|
4
|
Won J, Bae J, Kim H, Kim T, Nemati N, Choi S, Jung MC, Kim S, Choi H, Kim B, Jin D, Kim M, Han MJ, Kim JY, Shim W. Polytypic Two-Dimensional FeAs with High Anisotropy. NANO LETTERS 2023. [PMID: 38048278 DOI: 10.1021/acs.nanolett.3c03324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
In the realm of two-dimensional (2D) crystal growth, the chemical composition often determines the thermodynamically favored crystallographic structures. This relationship poses a challenge in synthesizing novel 2D crystals without altering their chemical elements, resulting in the rarity of achieving specific crystallographic symmetries or lattice parameters. We present 2D polymorphic FeAs crystals that completely differ from bulk orthorhombic FeAs (Pnma), differing in the stacking sequence, i.e., polytypes. Preparing polytypic FeAs outlines a strategy for independently controlling each symmetry operator, which includes the mirror plane for 2Q-FeAs (I4/mmm) and the glide plane for 1Q-FeAs (P4/nmm). As such, compared to bulk FeAs, polytypic 2D FeAs shows highly anisotropic properties such as electrical conductivity, Young's modulus, and friction coefficient. This work represents a concept of expanding 2D crystal libraries with a given chemical composition but various crystal symmetries.
Collapse
Affiliation(s)
- Jongbum Won
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Jihong Bae
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Hyesoo Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Taeyoung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Narguess Nemati
- Department of Mechanical and Production Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Sangjin Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Myung-Chul Jung
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sungsoon Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Hong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Bokyeong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Dana Jin
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Minjun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
| | - Myung Joon Han
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jong-Young Kim
- Icheon branch, Korea Institute of Ceramic Engineering and Technology, Icheon 17303, Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
5
|
Lee SH, Cho D. Charge density wave surface reconstruction in a van der Waals layered material. Nat Commun 2023; 14:5735. [PMID: 37714842 PMCID: PMC10504333 DOI: 10.1038/s41467-023-41500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
Surface reconstruction plays a vital role in determining the surface electronic structure and chemistry of semiconductors and metal oxides. However, it has been commonly believed that surface reconstruction does not occur in van der Waals layered materials, as they do not undergo significant bond breaking during surface formation. In this study, we present evidence that charge density wave (CDW) order in these materials can, in fact, cause CDW surface reconstruction through interlayer coupling. Using density functional theory calculations on the 1T-TaS2 surface, we reveal that CDW reconstruction, involving concerted small atomic displacements in the subsurface layer, results in a significant modification of the surface electronic structure, transforming it from a Mott insulator to a band insulator. This new form of surface reconstruction explains several previously unexplained observations on the 1T-TaS2 surface and has important implications for interpreting surface phenomena in CDW-ordered layered materials.
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Applied Physics, Kyung Hee University, Yongin, Republic of Korea.
| | - Doohee Cho
- Department of Physics, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Pasquier D. Comment on "Identification of the Mott Insulating Charge Density Wave State in 1T-TaS_{2}". PHYSICAL REVIEW LETTERS 2023; 131:059601. [PMID: 37595212 DOI: 10.1103/physrevlett.131.059601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/18/2023] [Indexed: 08/20/2023]
Affiliation(s)
- Diego Pasquier
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Kim TJ, Jeong MY, Han MJ. First principles investigation of screened Coulomb interaction and electronic structure of low-temperature phase TaS 2. iScience 2023; 26:106681. [PMID: 37250339 PMCID: PMC10214477 DOI: 10.1016/j.isci.2023.106681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
By means of ab initio computation schemes, we examine the electronic screening, Coulomb interaction strength, and the electronic structure of a quantum spin liquid candidate monolayer TaS2 in its low-temperature commensurate charge-density-wave phase. Not only local (U ) but non-local (V ) correlations are estimated within random phase approximation based on two different screening models. Using GW + EDMFT (GW plus extended dynamical mean-field theory) method, we investigate the detailed electronic structure by increasing the level of non-local approximation from DMFT (V = 0 ) to EDMFT and GW + EDMFT.
Collapse
Affiliation(s)
- Taek Jung Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min Yong Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myung Joon Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Taheri M, Brown J, Rehman A, Sesing N, Kargar F, Salguero TT, Rumyantsev S, Balandin AA. Electrical Gating of the Charge-Density-Wave Phases in Two-Dimensional h-BN/1T-TaS 2 Devices. ACS NANO 2022; 16:18968-18977. [PMID: 36315105 DOI: 10.1021/acsnano.2c07876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report on the electrical gating of the charge-density-wave phases and current in h-BN-capped three-terminal 1T-TaS2 heterostructure devices. It is demonstrated that the application of a gate bias can shift the source-drain current-voltage hysteresis associated with the transition between the nearly commensurate and incommensurate charge-density-wave phases. The evolution of the hysteresis and the presence of abrupt spikes in the current while sweeping the gate voltage suggest that the effect is electrical rather than self-heating. We attribute the gating to an electric-field effect on the commensurate charge-density-wave domains in the atomic planes near the gate dielectric. The transition between the nearly commensurate and incommensurate charge-density-wave phases can be induced by both the source-drain current and the electrostatic gate. Since the charge-density-wave phases are persistent in 1T-TaS2 at room temperature, one can envision memory applications of such devices when scaled down to the dimensions of individual commensurate domains and few-atomic plane thicknesses.
Collapse
Affiliation(s)
- Maedeh Taheri
- Nano-Device Laboratory, Department of Electrical and Computer Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Jonas Brown
- Nano-Device Laboratory, Department of Electrical and Computer Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Adil Rehman
- CENTERA Laboratories, Institute of High-Pressure Physics, Polish Academy of Sciences, Warsaw 01-142, Poland
| | - Nicholas Sesing
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Fariborz Kargar
- Nano-Device Laboratory, Department of Electrical and Computer Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
- Phonon Optimized Engineered Materials Center, Materials Science and Engineering Program, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Tina T Salguero
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Sergey Rumyantsev
- CENTERA Laboratories, Institute of High-Pressure Physics, Polish Academy of Sciences, Warsaw 01-142, Poland
| | - Alexander A Balandin
- Nano-Device Laboratory, Department of Electrical and Computer Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
- Phonon Optimized Engineered Materials Center, Materials Science and Engineering Program, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
9
|
Boix-Constant C, Mañas-Valero S, Ruiz AM, Rybakov A, Konieczny KA, Pillet S, Baldoví JJ, Coronado E. Probing the Spin Dimensionality in Single-Layer CrSBr Van Der Waals Heterostructures by Magneto-Transport Measurements. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204940. [PMID: 36008364 DOI: 10.1002/adma.202204940] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Indexed: 06/15/2023]
Abstract
2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2 Ge2 Te6 , the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air-stable semiconductor formed by antiferromagnetically-coupled ferromagnetic layers (Tc ∼150 K) that can be exfoliated down to the single-layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low-temperature hidden-order below T*∼40 K. Here, the magneto-transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low-dimensional character of the ferromagnetic monolayer, with short-range correlations above Tc and an Ising-type in-plane anisotropy, being the spins spontaneously aligned along the easy axis b below Tc . By applying moderate magnetic fields along a and c axes, a spin-reorientation occurs, leading to a magnetoresistance enhancement below T*. In multilayers, a spin-valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T*. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field-induced phenomena in two-dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices.
Collapse
Affiliation(s)
- Carla Boix-Constant
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Alberto M Ruiz
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Andrey Rybakov
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | | | | | - José J Baldoví
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| |
Collapse
|
10
|
Wang P, Yang Y, Pan E, Liu F, Ajayan PM, Zhou J, Liu Z. Emerging Phases of Layered Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105215. [PMID: 34923740 DOI: 10.1002/smll.202105215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Layered metal chalcogenides, as a "rich" family of 2D materials, have attracted increasing research interest due to the abundant choices of materials with diverse structures and rich electronic characteristics. Although the common metal chalcogenide phases such as 2H and 1T have been intensively studied, many other unusual phases are rarely explored, and some of these show fascinating behaviors including superconductivity, ferroelectrics, ferromagnetism, etc. From this perspective, the unusual phases of metal chalcogenides and their characteristics, as well as potential applications are introduced. First, the unusual phases of metal chalcogenides from different classes, including transition metal dichalcogenides, magnetic element-based chalcogenides, and metal phosphorus chalcogenides, are discussed, respectively. Meanwhile, their excellent properties of different unusual phases are introduced. Then, the methods for producing the unusual phases are discussed, specifically, the stabilization strategies during the chemical vapor deposition process for the unusual phase growth are discussed, followed by an outlook and discussions on how to prepare the unusual phase metal dichalcogenides in terms of synthetic methodology and potential applications.
Collapse
Affiliation(s)
- Ping Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics, and Ultrafine Optoelectronic Systems, and School of Physics, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Yang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics, and Ultrafine Optoelectronic Systems, and School of Physics, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Er Pan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313099, China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313099, China
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX, 77005, USA
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics, and Ultrafine Optoelectronic Systems, and School of Physics, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
11
|
Boix-Constant C, García-López V, Navarro-Moratalla E, Clemente-León M, Zafra JL, Casado J, Guinea F, Mañas-Valero S, Coronado E. Strain Switching in van der Waals Heterostructures Triggered by a Spin-Crossover Metal-Organic Framework. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110027. [PMID: 35032055 DOI: 10.1002/adma.202110027] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Indexed: 05/24/2023]
Abstract
Van der Waals heterostructures (vdWHs) provide the possibility of engineering new materials with emergent functionalities that are not accessible in another way. These heterostructures are formed by assembling layers of different materials used as building blocks. Beyond inorganic 2D crystals, layered molecular materials remain still rather unexplored, with only few examples regarding their isolation as atomically thin layers. Here, the family of van der Waals heterostructures is enlarged by introducing a molecular building block able to produce strain: the so-called spin-crossover (SCO). In these metal-organic materials, a spin transition can be induced by applying external stimuli like light, temperature, pressure, or an electric field. In particular, smart vdWHs are prepared in which the electronic and optical properties of the 2D material (graphene and WSe2 ) are clearly switched by the strain concomitant to the spin transition. These molecular/inorganic vdWHs represent the deterministic incorporation of bistable molecular layers with other 2D crystals of interest in the emergent fields of straintronics and band engineering in low-dimensional materials.
Collapse
Affiliation(s)
- Carla Boix-Constant
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Víctor García-López
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Efrén Navarro-Moratalla
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - José Luis Zafra
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga, 229071, Spain
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga, 229071, Spain
| | - Francisco Guinea
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA- Nanociencia), Calle Farady 9, Cantoblanco, Madrid, 28049, Spain
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, Paterna, 46980, Spain
| |
Collapse
|
12
|
López-Cabrelles J, Mañas-Valero S, Vitórica-Yrezábal IJ, Šiškins M, Lee M, Steeneken PG, van der Zant HSJ, Mínguez Espallargas G, Coronado E. Chemical Design and Magnetic Ordering in Thin Layers of 2D Metal-Organic Frameworks (MOFs). J Am Chem Soc 2021; 143:18502-18510. [PMID: 34723487 PMCID: PMC8587609 DOI: 10.1021/jacs.1c07802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 11/28/2022]
Abstract
Through rational chemical design, and thanks to the hybrid nature of metal-organic frameworks (MOFs), it is possible to prepare molecule-based 2D magnetic materials stable at ambient conditions. Here, we illustrate the versatility of this approach by changing both the metallic nodes and the ligands in a family of layered MOFs that allows the tuning of their magnetic properties. Specifically, the reaction of benzimidazole-type ligands with different metal centers (MII = Fe, Co, Mn, Zn) in a solvent-free synthesis produces a family of crystalline materials, denoted as MUV-1(M), which order antiferromagnetically with critical temperatures that depend on M. Furthermore, the incorporation of additional substituents in the ligand results in a novel system, denoted as MUV-8, formed by covalently bound magnetic double layers interconnected by van der Waals interactions, a topology that is very rare in the field of 2D materials and unprecedented for 2D magnets. These layered materials are robust enough to be mechanically exfoliated down to a few layers with large lateral dimensions. Finally, the robustness and crystallinity of these layered MOFs allow the fabrication of nanomechanical resonators that can be used to detect─through laser interferometry─the magnetic order in thin layers of these 2D molecule-based antiferromagnets.
Collapse
Affiliation(s)
- Javier López-Cabrelles
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| | - Samuel Mañas-Valero
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| | | | - Makars Šiškins
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Martin Lee
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Peter G. Steeneken
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Herre S. J. van der Zant
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Guillermo Mínguez Espallargas
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| | - Eugenio Coronado
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| |
Collapse
|
13
|
Ullah A, Baldoví JJ, Gaita-Ariño A, Coronado E. Insights on the coupling between vibronically active molecular vibrations and lattice phonons in molecular nanomagnets. Dalton Trans 2021; 50:11071-11076. [PMID: 34323911 DOI: 10.1039/d1dt01832a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spin-lattice relaxation is a key open problem to understand the spin dynamics of single-molecule magnets and molecular spin qubits. While modelling the coupling between spin states and local vibrations allows to determine the more relevant molecular vibrations for spin relaxation, this is not sufficient to explain how energy is dissipated towards the thermal bath. Herein, we employ a simple and efficient model to examine the coupling of local vibrational modes with long-wavelength longitudinal and transverse phonons in the clock-like spin qubit [Ho(W5O18)2]9-. We find that in crystals of this polyoxometalate the vibrational mode previously found to be vibronically active at low temperature does not couple significantly to lattice phonons. This means that further intramolecular energy transfer via anharmonic vibrations is necessary for spin relaxation in this system. Finally, we discuss implications for the spin-phonon coupling of [Ho(W5O18)2]9- deposited on a MgO (001) substrate, offering a simple methodology that can be extrapolated to estimate the effects on spin relaxation of different surfaces, including 2D materials.
Collapse
Affiliation(s)
- Aman Ullah
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán Martínez, 2, Paterna 46980, Spain.
| | | | | | | |
Collapse
|