1
|
Liu H, Lei X, Zhu L, Chen L, Ding L. Rational design and construction of a mesoporous silica-supported ratiometric fluorescent probe for the sensitive detection of nicosulfuron. Talanta 2025; 286:127542. [PMID: 39793177 DOI: 10.1016/j.talanta.2025.127542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
The excessive use of pesticides is an urgent issue facing environmental sustainability and human health. In this study, a uniform dispersion size, good fluorescence performance and mesoporous structure of a ratiometric fluorescent probe were constructed for nicosulfuron detection. A solvent-free in situ solid-phase synthesis method was used to encapsulate biomass carbon dots within mesoporous silica (CDs@mSiO₂), followed by the modification of l-cysteine-modified manganese-doped zinc sulfide quantum dots (ZnS:Mn QDs), to construct a ratiometric fluorescent probe for highly sensitive and selective detection of nicosulfuron. This design effectively prevents the aggregation of CDs and reduces interference between the two fluorescent signals. Nicosulfuron detection had a low detection limit of 0.082 μM. Density functional theory calculations were carried out to uncover the specific interactions between nicosulfuron and ZnS:Mn QDs. The process of fluorescence quenching is ascribed to photoinduced electron transfer. This work offers a special strategy to produce a ratiometric fluorescent probe and illustrate the mechanism, which is crucial for sensing and environmental engineering.
Collapse
Affiliation(s)
- Haochi Liu
- College of Chemistry, Jilin University, Changchun, 130012, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiangmin Lei
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lin Zhu
- Beijing Locomotive Depot of China Railway Beijing Group Co.Ltd, Beijing, 100080, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Lan Ding
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Qin Z, Xu J, Cao Y, Liao C, Shi S. Carboxyl and carbonyl groups of carbon dots co-coordinated assembly with Al 3+ to emission-enhanced aggregates for sensitive sensing and efficient removal. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125688. [PMID: 39756128 DOI: 10.1016/j.saa.2024.125688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
It is very challenging to prepare carbon dots (CDs) with aggregation-induced emission (AIE) property for simultaneous sensitive sensing and efficient removal. Herein, blue-emission CDs were facilely prepared by one-step solvothermal treatment of vine tea. Optical characterizations demonstrated that AIE phenomenon of CDs came from the restricted intramolecular motion. Through selected chemical modifications for structure-property relationship analysis, carboxyl and carbonyl groups on CDs were demonstrated as co-coordination active sites to bind with Al3+ for turn-on sensing process. Fluorescence enhancement of CDs by Al3+ chelation could be attributed to synergistic mechanism of AIE and chelation-enhanced fluorescence. Thus, the prepared CDs has been used as a selective, sensitive, and effective fluorescent probe for fast Al3+ sensing (response time, 5 min; linear range, 0.5-30.0 μM; limit of detection, 0.31 μM). More interestingly, high binding affinity between CDs and Al3+ made them assembly into large aggregates via flocculation for Al3+ removal (removal efficiency, 97.5 %) with extraordinary adsorption behavior (adsorption capacity, 1316 mg/g). Furthermore, the proposed CDs were successfully applied in detecting Al3+ in real wastewater samples with acceptable recoveries (98.7-103.0 %) and superior precision (relative standard deviations, less than 3.82 %), and removing Al3+ in spiked samples with satisfactory results. The work thus gives a demonstration of the potential fabrication of CDs with AIE property, and a better understanding of sensing and removal mechanisms for more rational design of CDs with application values.
Collapse
Affiliation(s)
- Ziyi Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jinju Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China
| | - Chunhui Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China; Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China.
| |
Collapse
|
3
|
Li C, Ren Y, Busscher HJ, Zhang Z, van der Mei HC. Chemical and functional inheritance of carbon quantum dots hydrothermally-derived from chitosan. J Colloid Interface Sci 2025; 682:680-689. [PMID: 39642553 DOI: 10.1016/j.jcis.2024.11.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Owing to their extremely small size, carbon-quantum-dots (CQDs) can cross biological barriers, which makes them attractive for many biomedical and other applications. CQDs can retain key-chemical features and associated functionalities of the molecular sources they are derived from, provided a suitable synthesis method is used at relative mild carbonization temperatures. Here we demonstrate that CQDs hydrothermally-derived from chitosan or 2-hydroxypropyltrimethyl ammonium-chloride (HAC)-chitosan under pressurized conditions at 180 °C have a comparable elemental and molecular composition, as determined using X-ray photoelectron spectroscopy and Fourier-transform-infrared spectroscopy. In addition, both types of CQDs generated reactive-oxygen-species as an added functionality alien to their molecular carbon sources. As a result, CQDs exhibited stronger antibacterial properties against a Gram-positive Staphylococcus aureus and a Gram-negative Escherichia coli strain, while both molecular HAC-chitosan as well as CQDs derived from it had stronger antibacterial properties than molecular chitosan and chitosan CQDs due to the possession of quaternary ammonium groups in HAC-chitosan. Therewith, carbonization of chitosan and HAC-chitosan yields enhanced properties that can be beneficial in a high variety of different applications, including promotion of healing and bacterial infection control, preservation of food and beverages, pesticide control in agriculture and horticulture, water treatment and in many cosmetics and personal care products.
Collapse
Affiliation(s)
- Cong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, PR China; University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Rd, Suzhou 215123, Jiangsu, PR China.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
4
|
Zhang B, Liu Z, Qian D, Sun J, Wang JJ, Qin C, Dai L, Chen G. Application of polyamide 56 nanofiber membrane loaded with coffee grounds carbon dots in Fe 3+ detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125440. [PMID: 39579724 DOI: 10.1016/j.saa.2024.125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
One novel nanofiber membrane was fabricated which could detect Fe3+ with the help of either fluorescence spectrometer or smartphone. Coffee grounds carbon dots (CCDs) were prepared by the solvent-thermal method, followed by the fabrication of CCDs/polyamide 56 (PA56) composite nanofiber membrane through electrospinning process. The 4 % CCDs/PA56 composite nanofiber membrane (FNM4) maintained good fluorescence performance (λem = 554 nm, λex = 470 nm) even after 5-runs quenching-recovery cycles. Its fluorescence could be quenched by Fe3+ with the limit of detection (LOD) of 0.74 μM when the fluorescence spectrometer was used. In addition, FNM4 could also detect Fe3+ by reading its RGB values using one smartphone and the lowest LOD was 4.31 μM when one Apple smartphone was used. The second method is portable to operate and eliminates the constraints of bulky laboratory equipment.
Collapse
Affiliation(s)
- Baichuan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhaoxuan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dongliang Qian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian-Jun Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chuanxiang Qin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Lixing Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Wang S, Zheng X, Yang Y, Zheng L, Xiao D, Ai B, Sheng Z. Emerging technologies in reducing dietary advanced glycation end products in ultra-processed foods: Formation, health risks, and innovative mitigation strategies. Compr Rev Food Sci Food Saf 2025; 24:e70130. [PMID: 39970012 DOI: 10.1111/1541-4337.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
The widespread consumption of ultra-processed foods (UPFs) results from industrialization and globalization, with their elevated content of sugar, fat, salt, and additives, alongside the formation of dietary advanced glycation end products (AGEs), generating considerable health risks. These risks include an increased incidence of diabetes, cardiovascular diseases, and neurodegenerative disorders. This review explores the mechanisms of AGE formation in UPFs and evaluates emerging technologies and additives aimed at mitigating these risks. Both thermal methods (air frying, low-temperature vacuum heating, microwave heating, and infrared heating) and non-thermal techniques (high-pressure processing, pulsed electric fields, ultrasound, and cold plasma) are discussed for their potential in AGE reduction. Additionally, the review evaluates the efficacy of exogenous additives, including amino acids, polysaccharides, phenolic compounds, and nanomaterials, in inhibiting AGE formation, though results may vary depending on the specific additive and food matrix. The findings demonstrate the promise of these technologies and additives for reducing AGEs, potentially contributing to healthier food processing practices and the promotion of improved public health outcomes.
Collapse
Affiliation(s)
- Shenwan Wang
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhanwu Sheng
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
6
|
Zhang A, Wang Y, Sui X, Xie T, Zhang J, Huang Y, Men Y, Zhang P, Chen J. Renal-Clearable Biomass-Derived Carbon Dots with Red Fluorescence for Masked Cryptic Kidney Injury Imaging. ACS APPLIED BIO MATERIALS 2025; 8:1148-1156. [PMID: 39815848 DOI: 10.1021/acsabm.4c01481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Masked cryptic kidney injury (MCKI), an early stage of acute kidney injury (AKI), is challenging to detect and diagnose, especially in the modern context where toxic substances, such as surfactants, are increasingly misused. Consequently, there is an urgent need for methods for the visual diagnosis of MCKI. In this study, we synthesized environmentally friendly spirulina-derived carbon dots (SpiCDs) using spirulina as a biobased raw material through a simple hydrothermal process. These SpiCDs, with their ultrasmall size, enable efficient renal clearance. In cellular experiments, SpiCDs rapidly entered SDS-damaged cells, facilitating dynamic monitoring of the cell membrane damage process. In vivo animal experiments demonstrated that SpiCDs were efficiently excreted through the kidneys and began to accumulate in the bladder within 10 min after tail vein injection. The detection of red fluorescence in excreted urine confirmed the renal metabolic pathway of the SpiCDs. Furthermore, in an MCKI model induced by SDS, SpiCDs showed accelerated excretion and earlier accumulation in the bladder, indicating an increased sensitivity to kidney injury. These results suggest that SpiCDs provide a promising approach for the early diagnosis of MCKI, offering insights into its visual detection and monitoring.
Collapse
Affiliation(s)
- Aisha Zhang
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, Shenzhen 518101, China
| | - Yuanyuan Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaolu Sui
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, Shenzhen 518101, China
| | - Tingfei Xie
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, Shenzhen 518101, China
| | - Jinxin Zhang
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, Shenzhen 518101, China
| | - Yaodong Huang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yongfan Men
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jihong Chen
- Department of Nephrology, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, Shenzhen 518101, China
| |
Collapse
|
7
|
Zhang Z, Wu C, Hu J, Li C, Liu Y, Lei B, Zheng M. Recent Advances of Carbon Dots: Synthesis, Plants Applications, Prospects, and Challenges. ACS APPLIED BIO MATERIALS 2025; 8:935-961. [PMID: 39808927 DOI: 10.1021/acsabm.4c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Nanomaterials and nanotechnology have garnered significant attention in the realm of agricultural production. Carbon dots (CDs), as a class of nanomaterials, play a crucial role in the field of plant growth due to their excellent properties. This review aims to summarize recent achievements on CDs, focusing on their methods of preparation and applications in plants systems. The effects of CDs on seed germination, growth, photosynthesis, nutritional quality, and stress resistance were studied. It has been demonstrated that CDs can promote seed germination and growth, as well as improve photosynthetic efficiency, ultimately leading to increase plants yield. The nutritional quality of the plants treated with CDs was significantly improved. Specifically, the levels of essential mineral elements, vitamins, amino acids, and other constituents that are beneficial to human health increased notably. Additionally, CDs show positive effects on augmenting plant resistance against environmental stresses, such as drought conditions, heavy metal toxicity, and high salinity. Finally, the prospects and challenges of the application of CDs in plant systems are also discussed, which provide a scientific basis for the future application of CDs in agricultural production.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Caijuan Wu
- Maoming Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Maoming 525000, China
| | - Juan Hu
- Gaozhou Shenli Agricultural Technology Co., Ltd., Maoming 525254, China
| | - Chen Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Maoming 525000, China
| | - Mingtao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
8
|
Huang Z, Ren L. Large Scale Synthesis of Carbon Dots and Their Applications: A Review. Molecules 2025; 30:774. [PMID: 40005085 PMCID: PMC11857885 DOI: 10.3390/molecules30040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Carbon dots (CDs), a versatile class of fluorescent carbon-based nanomaterials, have attracted widespread attention due to their exceptional optical properties, biocompatibility, and cost-effectiveness. Their applications span biomedicine, optoelectronics, and smart food packaging, yet large-scale synthesis remains a significant challenge. This review categorizes large-scale synthesis methods into liquid-phase (hydrothermal/solvothermal, microwave-assisted, magnetic hyperthermia, aldol condensation polymerization), gas-phase (plasma synthesis), solid-phase (pyrolysis, oxidation/carbonization, ball milling), and emerging techniques (microfluidic, ultrasonic, molten-salt). Notably, microwave-assisted and solid-state synthesis methods show promise for industrial production due to their scalability and efficiency. Despite these advances, challenges persist in optimizing synthesis reproducibility, reducing energy consumption, and developing purification methods and quality control strategies. Addressing these issues will be critical for transitioning CDs from laboratory research to real-world applications.
Collapse
Affiliation(s)
| | - Lili Ren
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
9
|
Liu Y, Ge G, Liu H, Wang Y, Zhou P, Li B, Zhu G. Fast and eco-friendly synthesis of carbon dots from pinecone for highly effective detection of 2,4,6-trinitrophenol in environmental samples. ENVIRONMENTAL TECHNOLOGY 2025; 46:719-730. [PMID: 38887014 DOI: 10.1080/09593330.2024.2367725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
2,4,6-Trinitrophenol (TNP) has high explosive risks and biological toxicity, and there has been considerable concern over the determination of TNP. In the present work, fluorescent carbon dots (CDs) stemmed from a green carbon source of pinecone by the facile hydrothermal approach. A novel environment- friendly fluorescent probe was developed to efficiently detect TNP by using the obtained CDs with remarkable fluorescence stability. The fluorescent CDs exhibited obvious excitation dependence with the highest peaks for excitation and emission occurring at 321 and 411 nm, respectively. The fluorescence intensity is significantly reduced by TNP owing to the inner filter effect with the CDs. The probe exhibited good linearity with TNP concentrations in the range of 0.025-20 μg mL-1, and the limit of detection was as low as 8.5 ng mL-1. Additionally, the probe proved successful in sensing TNP quantitatively in actual environmental samples with satisfied recoveries of 95.6-99.6%. The developed fluorescent probe offered an environment-friendly, efficient, rapid, and reliable platform for detecting trace TNP in the environmental field.Highlights Novel carbon dots were synthesised from green precursors of pineal powder.The highly effective quenching process was put down to the inner filter effect.The as-constructed fluorescent probe was successfully utilised for sensing 2,4,6-trinitrophenol in environmental samples.The proposed method was simple, rapid, efficient, economical, and eco-friendly.
Collapse
Affiliation(s)
- Yongli Liu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Guobei Ge
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Huanjia Liu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Yuxin Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Penghui Zhou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Bin Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Guifen Zhu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| |
Collapse
|
10
|
Nunes PJ, Pereira RFP, Nunes SC, Correia SFH, Fu L, Ferreira RAS, Fernandes M, Bermudez VDZ. POE-Mediated Tunable Quantum Yield of Carbon Dots-Derived From Agapanthus Africanus (L.) Hoffmann Leaves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404717. [PMID: 39359048 DOI: 10.1002/smll.202404717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/17/2024] [Indexed: 10/04/2024]
Abstract
The green synthesis of carbon dots (CDs) from natural sources is a challenging goal. Herein CDs are produced from Agapanthus africanus (L.) Hoffmann leaves by carbonization at 200/300 °C for 2/3 h. Samples are named CZ-X-Y, where Z, X, and Y represent carbonization, temperature, and time, respectively. CZ-200-3, CZ-300-2, and CZ-300-3 CDs have average sizes of 3.7 ± 0.7, 5.3 ± 1.2, and 5.1 ± 1.6 nm, respectively. Their surface, devoid of chlorophyll, contains ─OH, ─C═O, and ─C(═O)OH groups and sylvite. Isolated CZ-300-3 emits at 400 nm (excited at 260 nm) and exhibits an emission quantum yield (QY) value of 2 ± 1%. Embedding in the d-U(600)/d-(900) di-ureasil matrices resulted in transparent films with emission intensity maxima at 420/450 nm (360 nm), and QY values of 7 ± 1/16 ± 2% (400 nm). The enhancement of the QY value of the bare CDs agrees with an efficient passivation provided by the hybrid host. The hydrophilic CZ-300-3 CDs also exerted a marked surface modifying role, changing the surface roughness and the wettability of the hybrid films.
Collapse
Affiliation(s)
- Paulo J Nunes
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
| | - Rui F P Pereira
- Centre of Chemistry, University of Minho, Braga, 4710-057, Portugal
| | - S C Nunes
- Chemistry Department and FibEnTech - Fiber Materials and Environmental Technologies, University of Beira Interior, Covilhã, 6201-001, Portugal
| | - Sandra F H Correia
- Instituto de Telecomunicações and University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Lianshe Fu
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Rute A S Ferreira
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Mariana Fernandes
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
- Chemistry Department, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
| | - Verónica de Zea Bermudez
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
- Chemistry Department, University of Trás-os-Montes e Alto Douro, Vila Real, 5000-801, Portugal
| |
Collapse
|
11
|
Li J, Wu S, Shi X, Cao Y, Hao H, Wang J, Han Q. Machine Learning-Assisted Biomass-Derived Carbon Dots as Fluorescent Sensor Array for Discrimination of Warfarin and Its Metabolites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1694-1702. [PMID: 39797801 DOI: 10.1021/acs.langmuir.4c03945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Warfarin (WAR), an effective oral anticoagulant, is of utmost importance in treating many diseases. Despite its significance, rapid and precise discrimination of WAR remains a formidable challenge, especially facing its structural analogs of metabolites. Here, three kinds of herb-derived N-doped carbon dots (NCDs) were greenly synthesized via a fast and simple microwave-assisted method. Three NCDs showcased respectable blue fluorescent (FL) properties and sensing capabilities for the discrimination of WAR and its metabolites. To improve accuracy in identifying WAR and its metabolites, a sensor array composed of three unique herb-derived NCDs was meticulously designed. Combined with the machine learning model, the sensor array displayed a strong immunity to interference in the discrimination of the WAR, even in unknown samples. Meanwhile, the FL sensing mechanism is deeply expounded. The methodology proffers broad prospects for biomass-derived nanomaterials and provides an effective and feasible project for pharmaceutical analysis by capitalizing on machine learning.
Collapse
Affiliation(s)
- Jiajun Li
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Sihui Wu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xueran Shi
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yingbo Cao
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Han Hao
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Qian Han
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
12
|
Xu KF, Wang Z, Cui M, Jiang Y, Li C, Wang ZX, Li LY, Jia C, Zhang L, Wu FG. Turning Waste into Treasure: Functionalized Biomass-Derived Carbon Dots for Superselective Visualization and Eradication of Gram-Positive Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411084. [PMID: 39853875 DOI: 10.1002/advs.202411084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Indexed: 01/26/2025]
Abstract
Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria. Subsequently, fluorescein isothiocyanate (FITC) molecules are grafted onto BCDs to yield FITC-labeled BCDs (termed CDFs), which can selectively and rapidly (≤5 min) stain bacterial cell wall and particularly target the peptidoglycan component. Strikingly, CDFs achieve superselective visualization of Gram-positive bacteria even in the presence of mammalian cells and Gram-negative bacteria. Furthermore, protoporphyrin (PpIX) molecules are conjugated onto BCDs to yield PpIX-modified BCDs (termed CDPs), which can induce bacterial aggregation and in situ generate singlet oxygen for realizing enhanced antibacterial photodynamic therapy (PDT). At the minimum bactericidal concentration of CDPs (PpIX: 5 µg mL-1), CDP-mediated PDT disrupts bacterial structure and metabolism pathways, thereby affecting bacterial interactions to eradicate biofilms. Importantly, CDP-mediated PDT efficiently modulates antiinflammatory responses to promote wound healing in the bacteria-infected mice. This study underscores the significance of harnessing renewable and cost-effective biomass resources for preparing Gram-positive bacteria-targeting theranostic agents, which may find potential clinical applications in the future.
Collapse
Affiliation(s)
- Ke-Fei Xu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Zihao Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Macheng Cui
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Yuhan Jiang
- Mudi Meng Honors College, China Pharmaceutical University, Longmian Dadao Road, Nanjing, 211189, P. R. China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Ling-Yi Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Chenyang Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Lijie Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
- Department of Obstetrics and Gynecology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P. R. China
| |
Collapse
|
13
|
Chen C, Teng G, Shen W, Lu Y, Jin Y, Yuan X, Chen K, Yuan Y, Wu Z, Zhang J. Green Carbon Dots/CaCO 3/Abamectin Colloidal Pesticide Formulation for Safer and More Effective Pest Management. ACS NANO 2025; 19:1007-1025. [PMID: 39707989 DOI: 10.1021/acsnano.4c12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
An ideal green leaf-deposited pesticide formulation should offer advantages such as good water dispersibility, strong foliar affinity, sustained or controlled release of active ingredients, photostability and rain-fastness, minimal nontarget toxicity, use of nontoxic organic solvents, and degradable adjuvants. In line with this objective, we present green preparation of a colloidal pesticide formulation using optimized lysine-derived carbon dots (LysCDs)-modified CaCO3 (LysCDs/CaCO3) particles as the carrier and abamectin (Abm) as the active ingredient. The loading capacity of abamectin in this colloidal pesticide (LysCDs/CaCO3/Abm) is 1.7 to 2.1 times higher than that of its counterpart (CaCO3/Abm) prepared without LysCDs, which is attributed to the increased specific surface area and pore volume of LysCDs/CaCO3 particles. Due to the acid-induced degradation of CaCO3, the release of abamectin for LysCDs/CaCO3/Abm is accelerated under weakly acidic conditions, which is accompanied by the release of Ca2+ ions and the fluorescence changes of LysCDs. The incorporation of LysCDs enhances the photostability and foliar adhesiveness of this colloidal pesticide, resulting in the highest degree of foliar retention when exposed to ultraviolet (UV) light or rainfall, compared to free-form abamectin and CaCO3/Abm. This results in the best performance of pest control on Plutella xylostella for LysCDs/CaCO3/Abm in both indoor and outdoor tests. Nontarget biocompatibility evaluations show that LysCDs/CaCO3/Abm exhibits lower acute toxicity to zebrafish and earthworms than free-form abamectin. In addition, this colloidal pesticide is favored by the minimal residue of the adjuvant material after abamectin release, which is converted into harmless Ca2+ ions, CO2, and LysCDs. Therefore, this work designs a safer and more effective colloidal pesticide formulation to deliver abamectin with minimal adjuvant residue, realizing its trajectory as basically "circular and green".
Collapse
Affiliation(s)
- Chuang Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Guopeng Teng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Weicheng Shen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yijun Lu
- Key Laboratory of Medical Physics and Technology of Anhui Province, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yuwei Jin
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China
| | - Xue Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Kang Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yue Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhengyan Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Jia Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039, P. R. China
| |
Collapse
|
14
|
Song J, Kang M, Ji S, Ye S, Guo J. Research on Red/Near-Infrared Fluorescent Carbon Dots Based on Different Carbon Sources and Solvents: Fluorescence Mechanism and Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:81. [PMID: 39852696 PMCID: PMC11767825 DOI: 10.3390/nano15020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025]
Abstract
Fluorescent carbon dots, especially red/near-infrared-emitting CDs, are becoming increasingly important in the field of biomedicine. This article reviews the synthesis, fluorescence mechanisms, and biological applications of R/NIR-CDs, emphasizing the importance of carbon source and solvent selection in controlling their optical properties. The formation process of CDs is classified, and the fluorescence mechanisms of CDs are summarized, involving carbon core states, surface states, molecular states, and cross-linking enhanced emission effects. This article also highlights the applications of R/NIR-CDs in bioimaging, biosensing, phototherapy, and drug delivery. The final section discusses challenges and prospects.
Collapse
Affiliation(s)
- Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830011, China
| | - Minghao Kang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
| | - Shujian Ji
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
| | - Shuai Ye
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830011, China
| | - Jiaqing Guo
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (M.K.); (S.J.)
| |
Collapse
|
15
|
Zhang P, Gao S, Xu L, Xu C. Application of biomass carbon dots in food packaging. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1710-1733. [PMID: 39755862 DOI: 10.1007/s11356-024-35818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/15/2024] [Indexed: 01/06/2025]
Abstract
Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties. From this perspective, eco-friendly biomass and its derivatives are perfect carbon precursors for CDs because they contain the heteroatoms needed to modify CDs, and their complex chemical composition gives CDs a wide variety of surface functional groups. Besides, converting biomass waste into high-value-added CDs is also an innovation in biomass waste treatment. Therefore, this paper focuses on the carbon precursors of biomass CDs. At the same time, food packaging occupies an essential position in the industry, and fluorescent CDs with good fluorescence properties, high chemical stability, and good photobleaching properties have great application potential in packaging innovation techniques that have emerged in recent years, but relevant reports are scarce and scattered. Considering that the surface morphology, chemical structure, and optical and electrical properties of biomass CDs are primarily affected by the carbon precursors' chemical structure and preparation method, this paper also focuses on the synthesis method of biomass CDs and its application in anti-counterfeiting packaging, intelligent packaging, antioxidant packaging, and antibacterial packaging.
Collapse
Affiliation(s)
- Peipei Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shiyu Gao
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Li Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Changyan Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
16
|
Xin M, Chen X, Zhang L, Yang H, Guo D, Hu Y. Calcination-Controlled Synthesis of Carbon Dots@MgF 2 Composites with Yellow, White, and Ultraviolet-Blue Thermally Activated Delayed Fluorescence for Multilevel Information Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407170. [PMID: 39478674 DOI: 10.1002/smll.202407170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/05/2024] [Indexed: 01/11/2025]
Abstract
It is attractive but challenging to develop carbon dot (CD) based materials with tunable thermally activated delayed fluorescence (TADF), especially in the long wavelength region. Here, by simply calcinating the mixture of m-phenylenediamine and MgF2 at 300-500 °C, a series of CDs@MgF2 composites exhibiting yellow, white, and ultraviolet-blue TADF with high photoluminescence quantum yields of up to 37.6% are prepared. Photophysical studies reveal that the yellow TADF with long lifetimes of 810-1106 ms originates from the surface emission centers of CDs, while the ultraviolet-blue TADF with short lifetimes of 266-379 ms is related to the carbon core emission centers. The combination of yellow and ultraviolet-blue TADF in a single material triggers dynamic afterglow with time-dependent colors from white to yellow. The MgF2 matrix offers multiple confinement of CDs through a rigid network, strong space constraint, and robust covalent/hydrogen bonding, thus preventing the triplet excitations from non-radiative transitions. The electron-withdrawing fluorine atoms induce substantial spin-orbit coupling and reduce the singlet-triplet energy gap, consequently facilitating the reverse intersystem crossing to enhance TADF efficiency. Importantly, the CDs@MgF2 composites possess outstanding optical stability against water, organic solvents, strong acids, bases, and oxidants. The fascinating TADF features enable the successful demonstration of multilevel information encryption using CDs@MgF2.
Collapse
Affiliation(s)
- Mingyu Xin
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xipao Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Longyue Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Hailiang Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Dongying Guo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yaoping Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
17
|
Zhang XT, Lin S, Wang XY, Guo HL, Cong YY, He X, Zhang CF, Yuan CS. Construction of a one-stop N-doped negatively charged carbon dot nanoplatform with antibacterial and anti-inflammatory dual activities for wound infection based on biocompatibility. J Colloid Interface Sci 2025; 677:1061-1074. [PMID: 39180841 DOI: 10.1016/j.jcis.2024.08.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The development of bacterial resistance significantly contributes to the persistence of infections. Although previous studies have highlighted the benefits of metal-doped positive carbon nanodots in managing bacterial wound infections, their mechanism of action is relatively simple and they may pose potential hazards to human cells. Therefore, it is essential to develop a one-stop carbon dot nanoplatform that offers high biocompatibility, antibacterial properties, and anti-inflammatory activities for wound infection management. This study explores the antibacterial efficacy, without detectable resistance, and wound-healing potential of nitrogen-doped (N-doped) negatively charged carbon dots (TPP-CDs). These carbon dots are synthesized using tannic acid (TA), polyethylene polyamine, and polyethylene glycol (PEG) as precursors, with a focus on their biocompatibility. Numerous systematic studies have shown that TPP-CDs can effectively destroy bacterial biofilms and deoxyribonucleic acid (DNA), while also inducing oxidative stress, leading to a potent antimicrobial effect. TPP-CDs also demonstrate the ability to scavenge excess free radicals, promote cellular proliferation, and inhibit inflammatory factors, all of which contribute to improved wound healing. TPP-CDs also demonstrate favorable cell imaging capabilities. These findings suggest that N-doped negatively charged TPP-CDs hold significant potential for treating bacterial infections and offer practical insights for their application in the medical field.
Collapse
Affiliation(s)
- Xiao-Tong Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuai Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yan Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hui-Ling Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Yuan Cong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Mo Y, Zou Z, Chen E. [Research progress on ferroptosis regulation in tumor immunity of hepatocellular carcinoma]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:715-725. [PMID: 39694527 PMCID: PMC11726010 DOI: 10.3724/zdxbyxb-2024-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/30/2024] [Indexed: 12/20/2024]
Abstract
Ferroptosis is a form of regulated cell death, which is dependent on iron metabolism imbalance and characterized by lipid peroxidation. Ferroptosis plays a crucial role in various pathological processes. Studies have shown that the occurrence of ferroptosis is closely associated with the progression of hepatocellular carcinoma (HCC). Ferroptosis is involved in regulating the lipid metabolism, iron homeostasis, mitochondrial metabolism, and redox processes in HCC. Additionally, ferroptosis plays a key role in HCC tumor immunity by modulating the phenotype and function of various immune cells in the tumor microenvironment, affecting tumor immune escape and progression. Ferroptosis-induced lipid peroxidation and oxidative stress can promote the polarization of M1 macrophages and enhance the pro-inflammatory response in tumors, inhibiting immune suppressive cells such as myeloid-derived suppressor cells and regulatory T cells to disrupt their immune suppression function. The regulation of expression of ferroptosis-related molecules such as GPX4 and SLC7A11 not only affects the sensitivity of tumor cells to immunotherapy but also directly influences the activity and survival of effector cells such as T cells and dendritic cells, further enhancing or weakening host antitumor immune response. Targeting ferroptosis has demonstrated significant clinical potential in HCC treatment. Induction of ferroptosis by nanomedicines and molecular targeting strategies can directly kill tumor cells or enhance antitumor immune responses. The integration of multimodal therapies with immunotherapy further expands the application of ferroptosis targeting as a cancer therapy. This article reviews the relationship between ferroptosis and antitumor immune responses and the role of ferroptosis in HCC progression from the perspective of tumor immune microenvironment, to provide insights for the development of antitumor immune therapies targeting ferroptosis.
Collapse
Affiliation(s)
- Yuqian Mo
- School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China.
| | - Zhilin Zou
- School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Erbao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China.
| |
Collapse
|
19
|
Qi X, Xiong X, Cai H, Zhang X, Ma Q, Tan H, Guo X, Lv H. Carbon dots-loaded cellulose nanofibrils hydrogel incorporating Bi 2O 3/BiOCOOH for effective adsorption and photocatalytic degradation of lignin. Carbohydr Polym 2024; 346:122601. [PMID: 39245520 DOI: 10.1016/j.carbpol.2024.122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
A novel photocatalytic adsorbent, a cellulose nanofibrils based hydrogel incorporating carbon dots and Bi2O3/BiOCOOH (designated as CCHBi), was developed to address lignin pollution. CCHBi exhibited an adsorption capacity of 435.0 mg/g, 8.9 times greater than that of commercial activated carbon. This enhanced adsorption performance was attributed to the 3D porous structure constructed using cellulose nanofibrils (CNs), which increased the specific surface area and provided additional sorption sites. Adsorption and photocatalytic experiments showed that CCHBi had a photocatalytic degradation rate constant of 0.0140 min-1, 3.1 times higher than that of Bi2O3/BiOCOOH. The superior photocatalytic performance of CCHBi was due to the Z-scheme photocatalytic system constructed by carbon dots-loaded cellulose nanofibrils and Bi2O3/BiOCOOH, which facilitated the separation of photoinduced charge carriers. Additionally, the stability of CCHBi was confirmed through consecutive cycles of adsorption and photocatalysis, maintaining a removal efficiency of 85 % after ten cycles. The enhanced stability was due to the 3D porous structure constructed by CNs, which safeguarded the Bi2O3/BiOCOOH. This study validates the potential of CCHBi for high-performance lignin removal and promotes the application of CNs in developing new photocatalytic adsorbents.
Collapse
Affiliation(s)
- Xinmiao Qi
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiang Xiong
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haoxuan Cai
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuefeng Zhang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiang Ma
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xin Guo
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Huiying Lv
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
20
|
Chen D, Guo X, Sun X, Feng X, Chen K, Zhang J, Zhu Z, Zhang X, Liu X, Liu M, Li L, Xu W. High-yield upcycling of feather wastes into solid-state ultra-long phosphorescence carbon dots for advanced anticounterfeiting and information encryption. EXPLORATION (BEIJING, CHINA) 2024; 4:20230166. [PMID: 39713209 PMCID: PMC11655309 DOI: 10.1002/exp.20230166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/12/2024] [Indexed: 12/24/2024]
Abstract
Recently, biomass-derived carbon dots (CDs) have attracted considerable attention in high-technology fields due to their prominent merits, including brilliant luminescence, superior biocompatibility, and low toxicity. However, most of the biomass-derived CDs only show bright fluorescence in diluted solution because of aggregation-induced quenching effect, hence cannot exhibit solid-state long-lived room-temperature phosphorescence (RTP) in ambient conditions. Herein, matrix-free solid-state RTP with an average lifetime of 0.50 s is realized in the CDs synthesized by one-pot hydrothermal treatment of duck feather waste powder. To further enhance RTP lifetime, hydrogen bonding is introduced by employing polyols like polyvinyl alcohol (PVA) and phytic acid (PA), and a bimodal luminescent CDs/PVA/PA ink is exploited by mixing the CDs and polyols. Astonishingly, the CDs/PVA/PA ink screen-printed onto cellulosic substrates exhibits unprecedented green RTP with average lifetime of up to 1.97 s, and the afterglow lasts for more than 14 s after removing UV lamp. Such improvement on RTP is proposed to the populated excited triplet excitons stabilized by rigid chains. Furthermore, the CDs/PVA/PA ink demonstrates excellent potential in anticounterfeiting and information encryption. To the best of the authors' knowledge, this work is the first successful attempt to fabricate matrix-free ultra-long RTP CDs by reclamation of the feather wastes for environmental sustainability.
Collapse
Affiliation(s)
- Dongzhi Chen
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
- School of Materials Science and EngineeringWuhan Textile UniversityWuhanHubeiP. R. China
| | - Xin Guo
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
| | - Xuening Sun
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
| | - Xiang Feng
- School of Materials Science and EngineeringWuhan Textile UniversityWuhanHubeiP. R. China
| | - Kailong Chen
- School of Materials Science and EngineeringWuhan Textile UniversityWuhanHubeiP. R. China
| | - Jinfeng Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
| | - Zece Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
| | - Xiaofang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
| | - Xin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
- School of Materials Science and EngineeringWuhan Textile UniversityWuhanHubeiP. R. China
| | - Min Liu
- Institute of Super‐Microstructure and Ultrafast Process in Advanced MaterialsSchool of Physics and ElectronicsCentral South UniversityChangshaHunanP. R. China
| | - Li Li
- School of Textiles and ClothingThe Hong Kong Polytechnic UniversityHong KongP. R. China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
| |
Collapse
|
21
|
Kurosu S, Kaizuka Y, Zhou K, Yokota H, Hashimoto R, Yanagisawa K, Shimoshigé H, Tanuma Y, Morimoto H, Maekawa T. Precursor-free synthesis of carbon quantum dots and carbon microparticles in supercritical acetone. Commun Chem 2024; 7:283. [PMID: 39616236 PMCID: PMC11608273 DOI: 10.1038/s42004-024-01367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024] Open
Abstract
Carbon quantum dots (CQDs) have recently received a lot of attention due to their unique physical properties, and their environmentally friendly features such as low toxicity and high biocompatibility. Supercritical fluids, which possess unusual properties such as high solubility, high diffusivity, low viscosity and zero surface tension, are now commonly used particularly in the fields of electronic, chemical and materials science and engineering. Here, we synthesise carbon nano/microparticles in supercritical acetone, in which neither external molecules nor starting materials are dissolved/dispersed. We find that carbon microparticles and nano structures such as graphene quantum dots (GQDs), carbon nano onions (CNOs) and elongated carbon nano onions (eCNOs) are self-assembled via thermal decomposition of acetone under its supercritical conditions. We also find that the carbon microparticles are in fact formed by GQDs, CNOs and eCNOs, the microparticles being physically resolved into GQDs, CNOs and eCNOs with sonication. The fluorescence features of the carbon nano structures are clarified, noting that no photobleaching was observed for at least one month. The present result may well lead to the development of facile bottom-up methodologies for synthesising nano materials in solvents under their supercritical conditions without using any external precursors/starting materials.
Collapse
Affiliation(s)
- Shunji Kurosu
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe, Japan
| | - Yuma Kaizuka
- Graduate School of Health and Sports Sciences, Toyo University, 1-7-11, Akabanedai, Kita-ku, Tokyo, Japan
| | - Kang Zhou
- Faculty of Science and Engineering, Toyo University, 2100, Kujirai, Kawagoe, Japan
| | - Haruki Yokota
- Faculty of Science and Engineering, Toyo University, 2100, Kujirai, Kawagoe, Japan
| | - Ryusuké Hashimoto
- Faculty of Science and Engineering, Toyo University, 2100, Kujirai, Kawagoe, Japan
| | - Keiichi Yanagisawa
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Japan
| | - Hirokazu Shimoshigé
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Japan
| | - Yuri Tanuma
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Japan
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Hisao Morimoto
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe, Japan
- Faculty of Science and Engineering, Toyo University, 2100, Kujirai, Kawagoe, Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Japan.
- Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe, Japan.
- Faculty of Science and Engineering, Toyo University, 2100, Kujirai, Kawagoe, Japan.
| |
Collapse
|
22
|
Zhou L, Yang Y, Li T, Zhao Y, Yuan J, He C, Huang Y, Ma J, Zhang Y, Lu F, Wu J, Li Z, Kong H, Zhao Y, Qu H. Green carbon dots derived from Zingiberis Rhizoma Carbonisatum alleviate ovalbumin-induced allergic rhinitis. Front Immunol 2024; 15:1492181. [PMID: 39669585 PMCID: PMC11634691 DOI: 10.3389/fimmu.2024.1492181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Background Allergic rhinitis (AR) affects up to 40% of the population, leading to significant healthcare expenditures. Current mainstream treatments, while effective, can lead to side effects and do not address the underlying immunological imbalances. Zingiberis Rhizoma Carbonisatum (ZRC), the partially charred product of Zingiberis Rhizoma (ZR), has been widely used clinically in China since ancient times to treat respiratory disorders. Methods Inspired by the similarity between high-temperature pyrolysis and carbonization processing of herbal medicine, ZRC derived CDs (ZRC-CDs) were extracted and purified through several procedures. Then, the physicochemical characteristics of CDs were delineated through a suite of characterization methods. Moreover, our investigation zeroed in on elucidating the ameliorative impacts of CDs on ovalbumin-induced rat models alongside their underlying mechanisms. Results ZRC-CDs with particle sizes ranging from 1.0 to 3.5 nm and rich surface functional groups. Additionally, we observed that ZRC-CDs significantly attenuated nasal symptoms and pathological damage in ovalbumin-induced AR rats, and modulated lipid metabolism and type 2 inflammatory responses. They also inhibit PI3K/AKT and JAK/STAT pathways, which are associated with metabolism and inflammation. Importantly, ZRC-CDs demonstrated high biocompatibility, underscoring their potential as a novel therapeutic agent. Conclusion ZRC-CDs offer a promising alternative for AR treatment and could help facilitate broader clinical use of the ZRC. In addition, the exploration of the inherent bioactivity of CDs can help to broaden their biological applications.
Collapse
Affiliation(s)
- Long Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yingxin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingjie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinye Yuan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chenxin He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyu Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaze Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zijian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Ren H, Qi F, Feng X, Liu J, Zhao Y. Facile Synthesis of Fluorescent Carbon Quantum Dots with High Product Yield Using a Solid-Phase Strategy. Molecules 2024; 29:5317. [PMID: 39598706 PMCID: PMC11596220 DOI: 10.3390/molecules29225317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
The liquid-phase method is the most commonly utilized strategy for synthesizing fluorescent carbon quantum dots (CQDs). However, the liquid-phase synthesis of CQDs faces challenges such as low yield, complex purification, and the use of toxic solvents, which limit large-scale production and practical applications. In this study, fluorescent CQDs with a high product yield of 78% were synthesized using glucose as a carbon source through a green and facile one-step solid-phase approach, without solvents or post-treatment. A systematic study of the structure and fluorescence properties of the synthesized CQDs was conducted using various characterization techniques. The results indicated that the mean size of obtained CQDs was 4.1 nm, and that their surface had abundant oxygen-containing functional groups, resulting in favorable water solubility. The synthesized CQDs exhibited excitation-dependent fluorescence, with optimal excitation and emission wavelengths at 358 and 455 nm, respectively. Additionally, the CQDs solution showed bright blue fluorescence under 365 nm UV light, with a quantum yield of 6.21% and a fluorescence lifetime of 3.02 ns. This study offers valuable insights into the green and efficient synthesis of fluorescent CQDs powder.
Collapse
Affiliation(s)
- Haitao Ren
- Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi’an 710123, China
| | - Fan Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Xiangbo Feng
- Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi’an 710123, China
| | - Jiaxiang Liu
- Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi’an 710123, China
| | - Yuzhen Zhao
- Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi’an 710123, China
| |
Collapse
|
24
|
Pei J, Li H, Chen F, Chen Z, Yuan X, Han Z, Chen D, Yu D, Zhang D. Lanthanide Functionalized Carbon Quantum Dots for White Light Emission, pH Sensing, and Co (II) Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60819-60827. [PMID: 39441125 DOI: 10.1021/acsami.4c12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Carbon quantum dots (CQDs) with fluorescence emission have been widely studied for versatile applications, but facile tunability of the spectral properties of CQDs by doping remains to be further explored. Herein, employing lanthanide ion Eu3+ as a dopant and activator, a simple and efficient synthesis route for pure CQDs and Eu-CQDs was demonstrated using N, N-dimethylformamide, oleic acid, and oleylamine as precursors for carbon sources. In comparison, with the popular citric acid precursor, the as-prepared CQDs and Eu-CQDs exhibited an obviously smaller particle size (1.72 ± 0.29 nm) and a more uniform distribution. Through systematic optimization of Eu3+ doping for the Eu-CQD system, colorful light emissions in the visible range were first realized under excitation of ultraviolet (UV) ∼360 nm for promising application of UV-triggered light-emitting diodes. Most interestingly, this Eu-CQD solution with UV-excited colorful light emissions was utilized as a visual pH sensor, experimentally featuring good repeatabilities and stabilities (pH values switching between 7 and 14). Besides, the Eu-CQD solution exhibited highly sensitive detection characteristics for Co (II) ions. Due to the spectral overlapping, the quenching efficiency is as high as 96.3%, and the detection limit is obtained as 0.139 μM, which is much lower than the maximum concentration of Co (II) in the drinking water permitted by WHO. All of these relevant results significantly demonstrate the great potential of lanthanide doping in the multifunctionalization of CQDs for certain emerging applications like lighting, sensing, and detection.
Collapse
Affiliation(s)
- Junxiang Pei
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haofeng Li
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fayi Chen
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zitao Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaodong Yuan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhaoxia Han
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Daqin Chen
- College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 350117, P. R. China
| | - Dechao Yu
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
25
|
Dinger N, Russo C, Fusco S, Netti PA, Sirignano M, Panzetta V. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure. Nanotoxicology 2024; 18:618-644. [PMID: 39484725 DOI: 10.1080/17435390.2024.2419418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Carbon nanomaterials have been widely applied for cutting edge therapeutic applications as they offer tunable physio-chemical properties with economic scale-up options. Nuclear delivery of cancer drugs has been of prime focus since it controls important cellular signaling functions leading to greater anti-cancer drug efficacies. Better cellular drug uptake per unit drug injection drastically reduces severe side-effects of cancer therapies. Similarly, carbon dots (CDs) uptaken by the nucleus can also be used to set-up cutting edge nano delivery systems. In an earlier paper, we showed the cellular uptake and plasma membrane impact of combustion generated yellow luminescing CDs produced by our group from fuel rich combustion reactors in a one-step tunable production. In this paper, we aim to specifically study the nucleus by establishing the uptake kinetics of these combustion-generated yellow luminescing CDs. At sub-lethal doses, after crossing the plasma membrane, they impact the actin and microtubule mesh, affecting cell adhesion and migration; enter nucleus by diffusion processes; modify the overall appearance of the nucleus in terms of morphology; and alter chromatin condensation. We thus establish how this one-step produced, cost and bulk production friendly carbon dots from fuel rich combustion flames can be innovatively repurposed as potential nano delivery agents in cancer cells.
Collapse
Affiliation(s)
- Nikita Dinger
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilita Sostenibili- CNR - P.le V. Tecchio, Napoli, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| | - Paolo A Netti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Mariano Sirignano
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Panzetta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
26
|
Pan Z, Zang H, Li Y, Wang X, Xia N, Liu C, Li Z, Han Y, Tang Z, Sun J. Foliar application of carbon dots enhances nitrogen uptake and assimilation through CEPD1-dependent signaling in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109229. [PMID: 39471756 DOI: 10.1016/j.plaphy.2024.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The use of nitrogen (N) fertilizers increases crop yield, but the accumulation of residual N in agricultural soils poses significant environmental risks. Improving the N use efficiency (NUE) of crops can help reduce N pollution. While nanomaterials have been shown to enhance crop agronomic traits, more research is needed to clarify the regulatory mechanisms involved. In this study, foliar spraying of carbon dots (CDs, 1 mg mL-1) derived from Salvia miltiorrhiza increased the activity of plasma membrane H+-ATPase in Arabidopsis thaliana roots, promoting the uptake, transport, and assimilation of NO3- and NH4+. The upregulation of N metabolism-related genes, such as AtAMTs and AtNRTs, was also observed in A. thaliana roots. Transcriptome analysis suggested that this regulatory effect is mediated by the shoot-to-root mobile polypeptide CEPD1 (C-terminally encoded peptide DOWNSTREAM 1) signaling pathway. Additionally, foliar application of CDs increased the NUE of sweetpotato (Ipomoea batatas (L.) Lam.) from 2.5% to 8.1%. The upregulation of genes such as CEPD1 in leaves was observed following CDs application under different N conditions. Finally, foliar spraying of CDs significantly increased field yield and enhanced tolerance to low N stress in sweetpotato. Overall, this study demonstrated that foliar application of CDs improved NUE in plants through CEPD1-dependent signaling.
Collapse
Affiliation(s)
- Zhiyuan Pan
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Huihui Zang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yanjuan Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiao Wang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Nan Xia
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chong Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yonghua Han
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zhonghou Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221122, China.
| | - Jian Sun
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
27
|
Dong Z, Du F, Hanif S, Tian Y, Xu G. Development of chemiluminescent systems and devices for analytical applications. Chem Commun (Camb) 2024; 60:11837-11848. [PMID: 39318260 DOI: 10.1039/d4cc04414b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Chemiluminescence (CL) refers to the light-emitting phenomenon resulting from chemical reactions. Due to its simplicity in terms of instrumentation and high sensitivity, CL plays a critical role in analytical chemistry and has developed rapidly in recent years. In this review, we discuss the efforts made by our group in the field of CL. This includes exploring new luminophores that function under neutral pH conditions, developing oxidant- and reactive oxygen species-based coreactants (e.g. artemisinin and thiourea dioxide) for luminol and lucigenin CL, utilizing nanomaterial-based CL signal amplification and employing innovative ultrasound devices for CL and their analytical applications. We discussed the CL amplification mechanisms of these systems in detail. Finally, we summarize the challenges and prospects for the future development of CL.
Collapse
Affiliation(s)
- Zhiyong Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of Science and Technology of China, Hefei 230026, China.
| | - Fangxin Du
- School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Saima Hanif
- Department of Biological Sciences, National University of Medical Sciences, The Mall Road, Rawalpindi, Punjab 46000, Pakistan
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of Science and Technology of China, Hefei 230026, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
- University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
28
|
Mate N, Nabeela K, Preethikumar G, Pillai S, Mobin SM. A lignin-derived carbon dot-upgraded bacterial cellulose membrane as an all-in-one interfacial evaporator for solar-driven water purification. MATERIALS HORIZONS 2024; 11:5114-5122. [PMID: 39120441 DOI: 10.1039/d4mh00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Solar-driven interfacial evaporation has emerged as an efficient approach for wastewater treatment and seawater desalination. New trends demand adaptive technology to develop photothermal membranes with multifunctional features. Herein, we report a robust multi-purpose near-infrared (NIR)-active hydrogel composite (c-BC@N-LCD) from broad-spectrum active nitrogen-doped lignin-derived carbon dots (N-LCDs) covalently cross-linked with a bacterial cellulose (BC) matrix. BC provides adequate porosity and hydrophilicity required for easy water transport while managing heat loss. A commendable evaporation rate (ER) of 2.2 kg m-2 h-1 under one sun (1 kW m-2) is achieved by c-BC@N-LCD. The developed hydrogel system is also found to be efficient for desalination (∼2.1 kg m-2 h-1) and for remediating various pollutants (heavy metal ions, dyes, and pharmaceuticals) from feed water. The efficacy of the membrane remains unaltered by different grades of water, and hence can be adoptable for economically stressed communities living in water-polluted regions as well as those residing in coastal areas.
Collapse
Affiliation(s)
- Nirmiti Mate
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Kallayi Nabeela
- Centre for Advanced Electronics (CAE), Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Gopika Preethikumar
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India.
| | - Saju Pillai
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695 019, India.
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
- Centre for Advanced Electronics (CAE), Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
29
|
Wang L, Fu R, Qi X, Xu J, Li C, Chen C, Wang K. Deashing Strategy on Biomass Carbon for Achieving High-Performance Full-Supercapacitor Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52663-52673. [PMID: 39305227 DOI: 10.1021/acsami.4c11778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The porous carbon materials, namely, MC700/800, PC700/800, and SC700/800, have been prepared using several biomasses (mushroom dreg, Chinese parasol leaves, and Siraitia grosvenorii leaves) as individual precursors at 700 and 800 °C activation temperatures. Among these carbon-negative electrodes, SC700 exhibits an impressive specific capacitance, nearly 2-fold that of commercial activated carbon (169.5 F g-1). When assembled with a Ni(OH)2 positive electrode in asymmetric supercapacitors, the SC700//Ni(OH)2 device can achieve a specific capacitance of 80 F g-1 and an energy density of 32.16 Wh kg-1 at 1700 W kg-1. In contrast, the MC700 electrode can display inferior performance potentially attributed to the high ash content in the biomass. To further optimize the activated process of the MC700 product, three deashing carbon negative electrodes (denoted as MC(H2O), MC(HF), and MC(Mix)) were prepared by deashing treatment using H2O, HF, and mixed acid, and then a modified composite positive electrode (MC700@MnO2(MCM)) has been prepared by doping with MnO2. Electrochemical testing demonstrates that the deashing strategy achieves a significant capacitance enhancement compared to the primary carbon material while maintaining excellent cyclic stability. The asymmetric supercapacitors, assembled from these decorated electrode materials, exhibited a maximum energy density of 21.08 Wh kg-1 and a power density of 1150 W kg-1 under a high-voltage window of 2.2 V. Additionally, this type of full device can power 28 LEDs for approximately 5 min.
Collapse
Affiliation(s)
- Lianchao Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruiying Fu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xinyu Qi
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jiangyan Xu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chao Li
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin 644000, P. R. China
| | - Changyun Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, P. R. China
| | - Kuaibing Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
30
|
Tang G, Wang J, Xiao J, Liu Y, Huang Y, Zhou Z, Zhang X, Hu G, Yan W, Cao Y. Amphiphilic Cationic Carbon Dots for Efficient Delivery of Light-Dependent Herbicide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406523. [PMID: 39166413 PMCID: PMC11496981 DOI: 10.1002/advs.202406523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Indexed: 08/22/2024]
Abstract
The inefficient delivery of herbicides causes unpleasant side effects on the ecological environment. Protoporphyrinogen oxidase (PPO)-inhibiting herbicides rely on the presence of external light to exert the activities and thus their performance in the field is extremely susceptible to the light environment. Here, taking acifluorfen (ACI) as a model PPO-inhibiting herbicide to enhance efficacy by boosting the utilization rate of sunlight, amphiphilic cationic CDs (CPC-CDs) from cetylpyridinium chloride (CPC) as a precursor, is first prepared as a supplementary light source generator, and subsequently co-assembled with ACI through non-covalent bond interactions to obtain the stable fluorescent nanoparticles (ACI@CPC-CDs). ACI@CPC-CDs with fascinating physicochemical properties can penetrate the leaves of weeds through the stomata and undergo a long-distance transport in the cell intervals. Under low light intensity, CPC-CDs can be applied as the internal light source to promote the formation of more singlet oxygen to damage the leaf cell membrane, consequently improving the herbicidal activity of ACI. Moreover, the safety evaluation of ACI@CPC-CDs demonstrates no risk to non-target organisms and the environment. Therefore, this work offers a promising strategy for the efficient delivery of light-dependent PPO-inhibiting herbicides and opens new insights into the application of CDs in the development of sustainable agriculture.
Collapse
Affiliation(s)
- Gang Tang
- College of Plant ProtectionChina Agricultural UniversityNO. 2 Yuanmingyuan West RoadBeijing100193China
| | - Jialu Wang
- College of Plant ProtectionChina Agricultural UniversityNO. 2 Yuanmingyuan West RoadBeijing100193China
| | - Jianhua Xiao
- College of Plant ProtectionChina Agricultural UniversityNO. 2 Yuanmingyuan West RoadBeijing100193China
| | - Yulu Liu
- College of Plant ProtectionChina Agricultural UniversityNO. 2 Yuanmingyuan West RoadBeijing100193China
| | - Yuqi Huang
- College of Plant ProtectionChina Agricultural UniversityNO. 2 Yuanmingyuan West RoadBeijing100193China
| | - Zhiyuan Zhou
- College of Plant ProtectionChina Agricultural UniversityNO. 2 Yuanmingyuan West RoadBeijing100193China
| | - Xiaohong Zhang
- College of Plant ProtectionChina Agricultural UniversityNO. 2 Yuanmingyuan West RoadBeijing100193China
| | - Gaohua Hu
- College of Plant ProtectionChina Agricultural UniversityNO. 2 Yuanmingyuan West RoadBeijing100193China
| | - Weiyao Yan
- College of Plant ProtectionChina Agricultural UniversityNO. 2 Yuanmingyuan West RoadBeijing100193China
| | - Yongsong Cao
- College of Plant ProtectionChina Agricultural UniversityNO. 2 Yuanmingyuan West RoadBeijing100193China
| |
Collapse
|
31
|
Osorio HM, Castillo-Solís F, Barragán SY, Rodríguez-Pólit C, Gonzalez-Pastor R. Graphene Quantum Dots from Natural Carbon Sources for Drug and Gene Delivery in Cancer Treatment. Int J Mol Sci 2024; 25:10539. [PMID: 39408866 PMCID: PMC11476599 DOI: 10.3390/ijms251910539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapy is constantly evolving, with a growing emphasis on targeted and efficient treatment options. In this context, graphene quantum dots (GQDs) have emerged as promising agents for precise drug and gene delivery due to their unique attributes, such as high surface area, photoluminescence, up-conversion photoluminescence, and biocompatibility. GQDs can damage cancer cells and exhibit intrinsic photothermal conversion and singlet oxygen generation efficiency under specific light irradiation, enhancing their effectiveness. They serve as direct therapeutic agents and versatile drug delivery platforms capable of being easily functionalized with various targeting molecules and therapeutic agents. However, challenges such as achieving uniform size and morphology, precise bandgap engineering, and scalability, along with minimizing cytotoxicity and the environmental impact of their production, must be addressed. Additionally, there is a need for a more comprehensive understanding of cellular mechanisms and drug release processes, as well as improved purification methods. Integrating GQDs into existing drug delivery systems enhances the efficacy of traditional treatments, offering more efficient and less invasive options for cancer patients. This review highlights the transformative potential of GQDs in cancer therapy while acknowledging the challenges that researchers must overcome for broader application.
Collapse
Affiliation(s)
- Henrry M. Osorio
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Fabián Castillo-Solís
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| | - Selena Y. Barragán
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
- Escuela de Salud Pública, Universidad San Francisco de Quito USFQ, Quito 170527, Ecuador
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito 170403, Ecuador
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| |
Collapse
|
32
|
Li J, Li X, Kah M, Yue L, Cheng B, Wang C, Wang Z, Xing B. Unlocking the potential of carbon dots in agriculture using data-driven approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173605. [PMID: 38879020 DOI: 10.1016/j.scitotenv.2024.173605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
The utilization of carbon dots (CDs) in agriculture to enhance plant growth has gained significant attention, but the data remains fractionated. Systematically integrating existing data is needed to identify the factors driving the interactions between CDs and plants and strategically guide future research. Articles reporting on CDs and their effects on plants were searched based on inclusion and exclusion criteria, resulting in the collection of 71 articles comprising a total of 2564 data points. The meta-analysis reveals that the soil and foliar application of red-emitting bio-derived CDs at a low concentration (<10 ppm) leads to the most beneficial effects on plant growth. Random forest and gradient boosting algorithms revealed that the size and dose of CDs were important factors in predicting plant responses across multiple aspects (CDs properties, plant properties, environmental factors, and experimental conditions). Specifically, smaller sizes are more favorable to growth indicators (GI) below 6 nm, nutrient and quality (NuQ) at 3-6 nm, photosynthesis (PSN) below 7 nm, and antioxidant responses (AR) below 5 nm. Overall, our analysis of existing data suggests that CDs applications can significantly improve plant responses (GI, NuQ, PSN, and AR) by 10-39 %. To unlock the full potential of CDs, customized synthesis techniques should be employed to meet the specific requirements of different crops and climate condition. For example, we recommend the synthesis of small CDs (<7 nm) with emission peak values falling within the range of 405-475 and 610-670 nm to enhance plant growth. The global prediction of plant responses to CDs application in future scenarios have shown significant improvements ranging from 17 to 58 %, suggesting that CDs have widespread applicability. This novel understanding of the impact of CDs on plant response provides valuable insights for optimizing the application of these nanomaterials in agriculture.
Collapse
Affiliation(s)
- Jing Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Melanie Kah
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
33
|
Chen Z, Zhang Y, Feng X, Cui X, Xiao H, Yang A, Xie M, Xiong R, Cheng W, Huang C. Biomass based nanofiber membrane composite with xylan derived carbon dots for fluorescence detection nitrite in food real samples. Int J Biol Macromol 2024; 280:135693. [PMID: 39284475 DOI: 10.1016/j.ijbiomac.2024.135693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024]
Abstract
In our latest research endeavor, we are proud to present an innovative approach to the synthesis of carbon dots (CDs) derived from the biomass xylan, which we have termed P-CDs. These P-CDs are meticulously integrated with a state-of-the-art biomass nanofiber membrane composed of polycaprolactone (PCL) and polylactic acid (PLA), resulting in the creation of a novel solid-state fluorescent sensor, designated as NFP-CDs. This cutting-edge sensor has been meticulously engineered for the highly sensitive and specific detection of nitrite ions (NO2-), a critical parameter in various fields. The NFP-CDs sensor stands out for its user-friendly design, cost-effective production, and portable nature, making it an ideal choice for rapid and visible nitrite ion detection. It exhibits an extraordinary response time of less than 1 s, which is a testament to its high sensitivity. Furthermore, the sensor demonstrates exceptional selectivity and specificity, with a remarkably low detection threshold of 0.36 μM. This is achieved through a sophisticated dual detection mechanism that synergistically combines colorimetric and spectral analyses, ensuring accurate and reliable results. In addition to its impressive technical specifications, the NFP-CDs sensor has been rigorously tested and validated for its efficacy in detecting nitrite ions in real-world samples. These samples include a diverse range of food products such as rock sugar, preserved mustard, kimchi, and canned fish. The sensor has demonstrated a remarkable recovery rate, which varies from 99 % to 106 %, highlighting its potential for practical application in nitrite ion detection. This research not only offers a robust and effective strategy for the detection of nitrite ions but also carries profound implications for enhancing food safety and bolstering environmental monitoring efforts. The development of the NFP-CDs sensor represents a significant step forward in the field of sensor technology, providing a powerful tool for the detection of nitrite ions and contributing to the broader goals of public health and environmental stewardship.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Xiuyuan Feng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xiaoci Cui
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| | - Anquan Yang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, China
| | - Min Xie
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210037, China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|
34
|
Vadia FY, Malek NI, Kailasa SK. Synthesis of Carbon Dots from Peltophorum Pterocarpum Flowers for Selective Fluorescence Detection of Carbendazim. J Fluoresc 2024:10.1007/s10895-024-03919-y. [PMID: 39227544 DOI: 10.1007/s10895-024-03919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
In this study, carbon dots (CDs) were synthesized from Peltophorum pterocarpum flowers as the precursor material using the hydrothermal method. The fluorescence emission spectra of the resulting Peltophorum pterocarpum CDs (PP-CDs) exhibited excitation-independent behavior, showing the fluorescence emission peak at 410 nm when excited at 330 nm. This method is simple, rapid and well consistent with the green chemistry and sustainable analytical method development. The as-synthesized PP-CDs acted as a promising fluorescent probe for detecting carbendazim (CBZ) via aggregation-induced emission mechanism, showing a linear response to CBZ concentrations ranging from 1 to 30 μM, with a detection limit of 5.41 nM. This method was successfully applied to quantify CBZ in food samples, achieving excellent recoveries of 99% with a relative standard deviation (RSD) of less than 2%.
Collapse
Affiliation(s)
- Foziya Yusuf Vadia
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India
| | - Naved I Malek
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India.
| |
Collapse
|
35
|
Cheng M, Liu Y, You Q, Lei Z, Ji J, Zhang F, Dong WF, Li L. Metal-Doping Strategy for Carbon-Based Sonosensitizer in Sonodynamic Therapy of Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404230. [PMID: 38984451 PMCID: PMC11425966 DOI: 10.1002/advs.202404230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor and known for its challenging prognosis. Sonodynamic therapy (SDT) is an innovative therapeutic approach that shows promise in tumor elimination by activating sonosensitizers with low-intensity ultrasound. In this study, a novel sonosensitizer is synthesized using Cu-doped carbon dots (Cu-CDs) for the sonodynamic treatment of GBM. Doping with copper transforms the carbon dots into a p-n type semiconductor having a bandgap of 1.58 eV, a prolonged lifespan of 10.7 µs, and an improved electron- and hole-separation efficiency. The sonodynamic effect is efficiency enhanced. Western blot analysis reveals that the Cu-CDs induces a biological response leading to cell death, termed as cuproptosis. Specifically, Cu-CDs upregulate dihydrosulfanyl transacetylase expression, thereby establishing a synergistic therapeutic effect against tumor cell death when combined with SDT. Furthermore, Cu-CDs exhibit excellent permeability through the blood-brain barrier and potent anti-tumor activity. Importantly, the Cu-CDs effectively impede the growth of glioblastoma tumors and prolong the survival of mice bearing these tumors. This study provides support for the application of carbon-based nanomaterials as sonosensitizers in tumor therapy.
Collapse
Affiliation(s)
- Mingming Cheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Yan Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Qiannan You
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Zhubing Lei
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Jiajian Ji
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Fan Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| |
Collapse
|
36
|
Ma G, Li X, Cai J, Wang X. Carbon dots-based fluorescent probe for detection of foodborne pathogens and its potential with microfluidics. Food Chem 2024; 451:139385. [PMID: 38663242 DOI: 10.1016/j.foodchem.2024.139385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/26/2024]
Abstract
Concern about food safety triggers demand on rapid, accurate and on-site detection of foodborne pathogens. Among various fluorescent probes for detection, carbon dots (CDs) prepared by carbonization of carbon-rich raw materials show extraordinary performance for their excellent and tailorable photoluminescence property, as well as their facilely gained specificity by surface customization and modification. CDs-based fluorescent probes play a crucial role in many pathogenic bacteria sensing systems. In addition, microfluidic technology with characteristics of portability and functional integration is expected to combine with CDs-based fluorescent probes for point-of-care testing (POCT), which can further enhance the detection property of CDs-based fluorescent probes. Here, this paper reviews CDs-based bacterial detection methods and systems, including the structural modulation of fluorescent probes and pathogenic bacteria detection mechanisms, and describes the potential of combining CDs with microfluidic technology, providing reference for the development of novel rapid detection technology for pathogenic bacteria in food.
Collapse
Affiliation(s)
- Guozhi Ma
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Jihai Cai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
37
|
Chu K, Wang C, Cui X. Europium (III)-modified sunflower-derived carbon dots for fluorescent anti-counterfeiting inks and photocatalysis. LUMINESCENCE 2024; 39:e4872. [PMID: 39245989 DOI: 10.1002/bio.4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
A highly water-soluble and fluorescent N,S-doped carbon dots/europium (N,S-CDs/Eu) was successfully synthesized via a secondary hydrothermal method. This involved surface modification of N,S-CDs derived from sunflower stem pith (SSP) with europium ions (Eu3+) doping. When excited within the range of 400-470 nm, N,S-CDs/Eu exhibited a stable and broad optimal emission wavelength ranging from 505 to 540 nm. Notably, the photoluminescence quantum yield (PLQY) of N,S-CDs/Eu is 31.4%, significantly higher than the 19.5% observed for N,S-CDs. Additionally, by dissolving N,S-CDs/Eu into polyvinyl alcohol (PVA), a uniform fluorescent anti-counterfeiting ink can be prepared. The N,S-CDs/Eu/TiO2 composite demonstrates excellent photocatalytic degradation ability towards the organic dye methylene blue (MB). N,S-CDs/Eu has potential in the field of fluorescent inks and photocatalysis due to its simple and efficient preparation and excellent properties.
Collapse
Affiliation(s)
- Kunyu Chu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Congling Wang
- School of Material Science and Engineering, Hunan University, Changsha, China
| | - Xuemin Cui
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| |
Collapse
|
38
|
Yin K, Bao Q, Li J, Wang M, Wang F, Sun B, Gong Y, Lian F. Molecular mechanisms of growth promotion and selenium enrichment in tomato plants by novel selenium-doped carbon quantum dots. CHEMOSPHERE 2024; 364:143175. [PMID: 39181469 DOI: 10.1016/j.chemosphere.2024.143175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Selenium (Se)-doped nanoparticles as novel Se fertilizers have a promising potential in the agricultural application. Here, the effects of two novel Se-doped carbon quantum dots (Se-CQDs1 and Se-CQDs2, prepared using co-cracking and adsorption-reduction methods, respectively) on the growth and Se enrichment of tomato plants were studied, where the promoting molecular mechanisms were explored in terms of the related genes expression and soil microbial composition. The results indicated that the soil application of 2.5 mg kg-1 Se-CQDs1 more significantly increased the root growth, plant biomass, and fruit yield than that of Se-CQDs2 and Na2SeO3 treatments (control). Specifically, Se-CQDs1 treatment was more effective to up-regulate the expressions of aquaporin gene (i.e., PIP) and growth hormone synthesis gene (i.e., NIT) than Se-CQDs1 and Na2SeO3 treatments. The expressions of Se methyltransferase gene (smt) and methionine methyltransferase gene (mmt) induced by Se-CQDs1 were 1.45 and 1.18 times higher than that by Se-CQDs2 as well as 1.82 and 2.17 times higher than that by Na2SeO3. Also, Se-CQDs1 more greatly increased the diversity and relative abundance of soil bacterial communities, especially the Actinobacteria phylum, which was beneficial to increase plant growth-promoting substances. These outstanding promoting effects of Se-CQDs1 were mainly ascribed to its higher hydrophilicity and content of the stable doped-Se. The overall results demonstrated that Se-CQDs would be a promising candidate for nano-fertilizer to increase crop growth and development (e.g., tomato plants), where the synthesis modes of Se-CQDs play a critical role in regulating the utilization efficiency of Se.
Collapse
Affiliation(s)
- Kaiyue Yin
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qiongli Bao
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiaqi Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Meiyan Wang
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fei Wang
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Binbin Sun
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yan Gong
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fei Lian
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
39
|
Jia Z, Hu J, Lu P, Wang Y. Carbon quantum dots from carbohydrate-rich residue of birch obtained following lignin-first strategy. BIORESOURCE TECHNOLOGY 2024; 408:131206. [PMID: 39097241 DOI: 10.1016/j.biortech.2024.131206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Carbon quantum dots (CQDs) were successfully synthesized from carbohydrate-rich residue of birch obtained following the lignin-first strategy. The optical and physicochemical properties of the CQDs were studied, along with their potential for photocatalytic pollutant degradation. By combining solvothermal and chemical oxidation methods, the product yield of CQDs from carbohydrate-rich residue reached 8.1 wt%. Doping nitrogen enhances the graphitization of CQDs and introduces abundant amino groups to the surface, thereby boosted the quantum yield significantly from 8.9 % to 18.7 %-19.3 %. Nitrogen-doped CQDs exhibited efficient photocatalytic degradation of methylene blue, reaching 37 % within 60 min, with a kinetic degradation rate of 0.00725 min-1. This study demonstrates that carbohydrate-rich residue obtained from lignin-first strategy are ideal precursors for synthesizing CQD with high mass yield and quantum yield by combining solvothermal treatment and chemical oxidation methods, offering a novel approach for the utilization of whole biomass components following the lignin-first strategy.
Collapse
Affiliation(s)
- Ziyu Jia
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jun Hu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Ping Lu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yunjun Wang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
40
|
Ren J, Opoku H, Tang S, Edman L, Wang J. Carbon Dots: A Review with Focus on Sustainability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405472. [PMID: 39023174 PMCID: PMC11425242 DOI: 10.1002/advs.202405472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Carbon dots (CDs) are an emerging class of nanomaterials with attractive optical properties, which promise to enable a variety of applications. An important and timely question is whether CDs can become a functional and sustainable alternative to incumbent optical nanomaterials, notably inorganic quantum dots. Herein, the current CD literature is comprehensively reviewed as regards to their synthesis and function, with a focus on sustainability aspects. The study quantifies why it is attractive that CDs can be synthesized with biomass as the sole starting material and be free from toxic and precious metals and critical raw materials. It further describes and analyzes employed pretreatment, chemical-conversion, purification, and processing procedures, and highlights current issues with the usage of solvents, the energy and material efficiency, and the safety and waste management. It is specially shown that many reported synthesis and processing methods are concerningly wasteful with the utilization of non-sustainable solvents and energy. It is finally recommended that future studies should explicitly consider and discuss the environmental influence of the selected starting material, solvents, and generated byproducts, and that quantitative information on the required amounts of solvents, consumables, and energy should be provided to enable an evaluation of the presented methods in an upscaled sustainability context.
Collapse
Affiliation(s)
- Junkai Ren
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Henry Opoku
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Shi Tang
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
- LunaLEC ABUmeå UniversityUmeåSE‐90187Sweden
| | - Ludvig Edman
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
- LunaLEC ABUmeå UniversityUmeåSE‐90187Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Jia Wang
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| |
Collapse
|
41
|
Wang Y, Li T, Lin L, Wang D, Feng L. Copper-doped cherry blossom carbon dots with peroxidase-like activity for antibacterial applications. RSC Adv 2024; 14:27873-27882. [PMID: 39224643 PMCID: PMC11367405 DOI: 10.1039/d4ra04614e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Safety concerns arising from bacteria present a significant threat to human health, underscoring the pressing need for the exploration of novel antimicrobial materials. Nanozymes, as a new type of nanoscale material, have attracted widespread attention for antibacterial applications owing to their ability to mimic the catalytic activity of natural enzymes. In this work, we have constructed copper-doped cherry blossom carbon dots (Cu-CDs) with excellent peroxidase-like (POD) activity using a one-pot hydrothermal method. The utilization of cherry blossom as a natural material precursor significantly enhances its biocompatibility. Furthermore, the incorporation of copper ions initiates Fenton-like reaction-triggered POD-like catalytic activity, effectively eradicating bacteria by converting hydrogen peroxide (H2O2) into hydroxyl radicals (·OH). The antibacterial test results demonstrate that Cu-CDs exhibit a bactericidal efficacy of over 90% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). This study presents a novel environmentally friendly nanozyme material derived from natural sources, exhibiting significant antimicrobial properties and offering innovative insights for the advancement of antimicrobial materials.
Collapse
Affiliation(s)
- Yitong Wang
- QianWeichang College, Shanghai University Shanghai 200444 China
| | - Tianliang Li
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
| | - Lixing Lin
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
| | - Dong Wang
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
| | - Lingyan Feng
- QianWeichang College, Shanghai University Shanghai 200444 China
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education Shanghai 200444 China
| |
Collapse
|
42
|
Wu T, Bai X, Zhang Y, Dai E, Ma J, Yu C, He C, Li Q, Yang Y, Kong H, Qu H, Zhao Y. Natural medicines-derived carbon dots as novel oral antioxidant administration strategy for ulcerative colitis therapy. J Nanobiotechnology 2024; 22:511. [PMID: 39187876 PMCID: PMC11348712 DOI: 10.1186/s12951-024-02702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic intestinal inflammation, resulting in a global healthcare challenge with no real specific medicine. Natural medicines are recognized as a potential clinical alternative therapy, but their applications are limited by poor solubility and low bioavailability. RESULTS In this work, inspired by the natural medicines of ancient China, novel functional carbon dots derived from Magnetite and Medicated Leaven (MML-CDs) were synthesized by hydrothermal method, and confirmed their ultrasmall nano-size (3.2 ± 0.6 nm) and Fe doped surface structure, thereby with excellent gastrointestinal stability, remarkable capabilities in eliminating ROS, and highly biocompatibility. With no external stimuli, the oral administration of MML-CDs demonstrated obvious alleviation to UC. Further experiments pointed that MML-CDs could improve hemostasis capability, suppress inflammation reactions and oxidative stress, and up-regulate the expression of tight junction proteins. Furthermore, MML-CDs also showed well regulation in the dysbiosis of intestinal flora. CONCLUSION Overall, above evidence reveals that green-synthesized MML-CDs can significantly alleviate intestinal bleeding, inhibit colon inflammation, and repair colonic barrier damage, further regulating intestinal flora and intestinal inflammation microenvironment. Our findings provide an efficient oral administration of MML-CDs as a novel therapy strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ertong Dai
- Qingdao Eighth People's Hospital, Qingdao, 266100, China
| | - Jinyu Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cai Yu
- Department of Endocrine, Beijing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, 100163, China
| | - Chenxin He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiannan Li
- Department of Traditional Chinese Medicine, Beijing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, 100163, China
| | - Yingxin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
43
|
Chen C, Yu L, Li X, Yu Z, Song D, Wang S, Li F, Jiang S, Chen Y, Xu J, Fan J, Li B, Li L. Reducing Oxidative Stress Levels and Inhibiting Aging by l-Cysteine-Derived Carbon Dots with Highly Efficient Broad-Spectrum UV Absorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43189-43198. [PMID: 39121011 DOI: 10.1021/acsami.4c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Ultraviolet (UV) exposure causes damage to human skin and mucous membranes, resulting in oxidative stress, and can also lead to inflammation of human skin, skin aging, and even diseases such as squamous cell carcinoma and melanoma of the skin. The main means of protection against UV radiation is physical shielding and the use of sunscreen products. Carbon dots as a novel nanomaterial provide a new option for UV protection. In this article, we introduced sulfhydryl groups to synthesize l-cysteine-derived carbon dots (GLCDs) with UV resistance. GLCDs exhibit high-efficiency and excellent UV absorption, achieving 200-400 nm UV absorption (99% UVC, 97% UVB, and 86% UVA) at a low concentration of 0.5 mg/mL. Meanwhile, GLCDs can reduce apoptosis and UVB-induced oxidative damage, increase collagen type I gene expression, and inhibit skin aging in zebrafish. It also inhibits senescence caused by the senescence inducer 2,2'-azobis(2-methylpropionamidine) dihydrochloride and reduces oxidative damage. The above studies show that GLCDs possess efficient broad-spectrum UV absorption, antiphotoaging, and antiaging capabilities, which will have a broad application prospect in UV protection.
Collapse
Affiliation(s)
- Ce Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Lidong Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Xueting Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Zewen Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Danjie Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Siqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Fangshun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Shanshan Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Yajie Chen
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, PR China
| | - Jucai Xu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jianglin Fan
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, PR China
| | - Bingsheng Li
- Key Laboratory of UV Light Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, PR China
| | - Li Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| |
Collapse
|
44
|
Wang L, Zheng S, Liu Y, Ji Y, Liu X, Wang F, Li C. A nanozyme multifunctional platform based on iron doped carbon dots derived from Tibetan Ganoderma lucidum waste for glucose sensing, anti-counterfeiting applications, and anticancer cell effect. Talanta 2024; 276:126262. [PMID: 38761660 DOI: 10.1016/j.talanta.2024.126262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Implementing the concept of turning waste into treasure, the conversion of biomass waste into high-value carbon materials, especially carbon dots (CDs), has pointed out a new direction for disease diagnosis, tumor treatment, and other aspects. In this work, we have reported the GL-CDs(Fe) via a simple synthesis route exploiting Ganoderma lucidum waste as the precursor. Thanks to their excellent optical property and peroxidase mimetic activity, a novel GL-CDs(Fe)-based ratio fluorescence/colorimetric/smartphone triple mode sensing platform is cleverly fabricated for glucose determination with the LOD of 0.28, 0.37, and 0.52 μΜ separately. Especially, this triple mode biosensor is successfully utilized for glucose detection in serum samples with the relative error of less than ±8 % compared with clinical reports. Surprisingly, the GL-CDs(Fe) also presents immense application prospects in high-level anti-counterfeiting aspects due to their excellent luminescent properties, high water-solubility, and easy availability. Furthermore, GL-CDs(Fe) can catalyze excessive H2O2 inside tumor cells to produce massive hydroxyl radicals (·OH) which break down the redox levels of cancer cells and thereby eliminate tumor cells. Thus, this integrated "Three-in-One" multifunctional platform based on GL-CDs(Fe) unveils enormous research and application prospects for bio-sensing, anti-counterfeiting, cancer treatment.
Collapse
Affiliation(s)
- Linjie Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Shujun Zheng
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Yan Liu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Yang Ji
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Xiaoya Liu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Fei Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| | - Caolong Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| |
Collapse
|
45
|
Wang S, Li S, He Y, Wang S, Cheng Q, Li Y. Full-color biomass carbon dots for high-level information encryption and multi-color light emitting diode applications. Mikrochim Acta 2024; 191:538. [PMID: 39145785 DOI: 10.1007/s00604-024-06614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Six biomass carbon dots (BCDs) with adjustable emission from 450 to 680 nm under a single wavelength excitation were successfully synthesized from spinach via solvent control strategy. The obtained BCDs show blue, green, yellow, violet, pink, and red emission with high photoluminescence quantum yield (PLQY = 12.68 ~ 30.77%). Detailed characterizations disclose that the tunable-emission mechanism is caused by the synergistic effect of carbon conjugate and surface oxidation degree. Meanwhile, full-color photoluminescence BCDs/PVP powder and BCDs/PVP/PVA films were fabricated by utilizing the prepared BCDs combined with polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA), respectively, which presented excellent high-level information encryption application. Importantly, multi-color and white light-emitting diode (LED) with Commission Internationale de L' Eclairage (CIE) of blue (0.25, 0.29); green (0.25, 0.31); yellow (0.42, 0.45); red (0.52, 0.31); and white (0.32, 0.31) were achieved by only using our prepared BCDs. This work provides a valuable strategy of preparing multi-color BCDs using readily available biomass materials and paves a way for high-level information encryption and LED applications.
Collapse
Affiliation(s)
- Shipeng Wang
- Key Laboratory of Bio-based Materials Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Shenghui Li
- Key Laboratory of Bio-based Materials Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Yuxuan He
- Key Laboratory of Bio-based Materials Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Shanrong Wang
- Heilongjiang Red Cross Sengong General Hospital, Harbin, 150040, China
| | - Qian Cheng
- Key Laboratory of Bio-based Materials Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
| | - Yu Li
- College of Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
46
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
47
|
Ma Y, Mao L, Cui C, Hu Y, Chen Z, Zhan Y, Zhang Y. Nitrogen-doped carbon dots as fluorescent probes for sensitive and selective determination of Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124347. [PMID: 38678843 DOI: 10.1016/j.saa.2024.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
At present, the contamination of water resources by heavy metal ions has posed a significant threat to human survival. Therefore, it is particularly critical to develop low-cost, easy-to-use, and highly efficient heavy metal detection technologies. In this work, a fast and cost-effective fluorescent probe for nitrogen-doped carbon dots (N-CDs) was prepared using one-step hydrothermal method with citric acid (CA) as carbon source, and melamine as nitrogen source. The structural and optical characterizations of the resulting N-CDs were investigated in details. The results showed that the quantum yield of the prepared fluorescent probe was as high as 45 %, and an average fluorescence lifetime was about 7.80 ns. N-CDs have excellent water solubility and dispersibility, with an average size of 2.58 nm. N-CDs exhibited excellent specific responsiveness to Fe3+ and can be used as an effective method for detecting Fe3+ at low-concentrations (the concentrations of N-CDs as low as 0.24 μg/mL) using fluorescent probes. The linear response of the fluorescent probe N-CDs to Fe3+ was formed in the concentration range of 20-80 μM, and the detection limit was 3.18 μM. In addition, in the actual water samples analysis, the recovery rate reached 97.05-100.58 %. The prepared of N-CDs provide available Fe3+ fluorescent probes in the environment.
Collapse
Affiliation(s)
- Yulin Ma
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Linhan Mao
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Congcong Cui
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yong Hu
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhaoxia Chen
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuan Zhan
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yuhong Zhang
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
48
|
Cui J, Yang Y, Zhang Y, Yang X, Liu Y, Tan J, Wu S, Liu Z. Luminescence performance and antioxidant properties of selenium carbon dots prepared from selenium-hyperaccumulating plants. LUMINESCENCE 2024; 39:e4867. [PMID: 39152781 DOI: 10.1002/bio.4867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Heteroatom doping has become an important method to enhance the performance of traditional carbon dots in modern times. Selenium (Se) is a nonmetallic trace element with excellent redox properties and is therefore essential for health. Previous studies have mainly used pure chemicals as selenium sources to prepare selenium-doped carbon dots (Se-CDs), but the precursor pure chemicals have the disadvantages of being expensive, difficult to obtain, toxic, and having low fluorescence yields of the synthesised Se-CDs. Fortunately, our team achieved successful synthesis of selenium carbon dots, exhibiting excellent luminescence and biocompatibility through a one-step hydrothermal method using selenium-enriched natural plant Cardamine, as an alternative to selenium chemicals. This approach aims to address the limitations and high costs associated with Se-CDs precursors. Electron spin resonance spectroscopy (ESR) and cellular antioxidant tests have confirmed the protective ability of Se-CDs against oxidative damage induced by excessive reactive oxygen species (ROS). A new concept and method for synthesizing selenium carbon dots on the basis of biomass, a rationale for the antioxidant effects on human health, and a wide range of development and application possibilities were offered in this work.
Collapse
Affiliation(s)
- Jingwen Cui
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology, Enshi, China
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, China
| | - Yuwei Yang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology, Enshi, China
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, China
| | - Yashuai Zhang
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Enshi, China
| | - Xu Yang
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Enshi, China
| | - Yu Liu
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Enshi, China
| | - Jianfeng Tan
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Enshi, China
| | - Shaowei Wu
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, China
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology, Enshi, China
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, China
| | - Zhuo Liu
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology, Enshi, China
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Enshi, China
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, China
| |
Collapse
|
49
|
Li J, Zhao X, Gong X. The Emerging Star of Carbon Luminescent Materials: Exploring the Mysteries of the Nanolight of Carbon Dots for Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400107. [PMID: 38461525 DOI: 10.1002/smll.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
50
|
Lv J, Tian H, Pan L, Chen Z, Li M, Ghiladi RA, Qin Z, Yin X. Biomass derived carbon dots with antibacterial and anti-inflammatory properties for the treatment of wound healing. Chem Eng Sci 2024; 295:120084. [DOI: 10.1016/j.ces.2024.120084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|