1
|
Yin C, Yu X, Wu B, Tian L. Spontaneous Emergence of Lipid Vesicles in a Coacervate-Based Compartmentalized System. Angew Chem Int Ed Engl 2024:e202414372. [PMID: 39656166 DOI: 10.1002/anie.202414372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/06/2024] [Indexed: 12/22/2024]
Abstract
The spontaneous emergence of lipid vesicles in the absence of evolved biological machinery represents a major challenge for bottom-up synthetic biology. We show that coacervate microdroplets could create a compartmentalized environment that enriches lipid molecules and facilitates their spontaneous assembly into lipid vesicles. These vesicles can escape from the coacervate microdroplets in a continuous process under non-equilibrium conditions, resembling a constant production process akin to a "primitive enzyme" factory assembly line. These findings significantly extend our understanding of the intricate interaction between lipid molecules and coacervate microdroplets, shedding light on the emergence of cellular systems and offering a new perspective on the conditions necessary for the development of life on Earth.
Collapse
Affiliation(s)
- Chengying Yin
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Baohu Wu
- MLZ, JCNS, JCNS-4, Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
- Department of Ambulatory Surgery, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
2
|
Ivanov T, Doan-Nguyen TP, Belahouane MA, Dai Z, Cao S, Landfester K, Caire da Silva L. Coacervate Droplets as Biomimetic Models for Designing Cell-Like Microreactors. Macromol Rapid Commun 2024; 45:e2400626. [PMID: 39588807 DOI: 10.1002/marc.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Coacervates are versatile compartments formed by liquid-liquid phase separation. Their dynamic behavior and molecularly crowded microenvironment make them ideal materials for creating cell-like systems such as synthetic cells and microreactors. Recently, combinations of synthetic and natural molecules have been exploited via simple or complex coacervation to create compartments that can be used to build hierarchical chemical systems with life-like properties. This review highlights recent advances in the design of coacervate compartments and their application as biomimetic compartments for the design of cell-like chemical reactors and cell mimicking systems. It first explores the variety of materials used for coacervation and the influence of their chemical structure on their controlled dynamic behavior. Then, the applications of coacervates as cell-like systems are reviewed, focusing on how they can be used as cell-like microreactors through their ability to sequester molecules and provide a distinct and regulatory microenvironment for chemical reactions in aqueous media.
Collapse
Affiliation(s)
- Tsvetomir Ivanov
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thao P Doan-Nguyen
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | | | - Zhen Dai
- Department of Chemistry, McGill University, H3A 0B8, Montreal, Canada
| | - Shoupeng Cao
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lucas Caire da Silva
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Chemistry, McGill University, H3A 0B8, Montreal, Canada
| |
Collapse
|
3
|
Heuberger L, Korpidou M, Guinart A, Doellerer D, López DM, Schoenenberger CA, Milinkovic D, Lörtscher E, Feringa BL, Palivan CG. Photoreceptor-Like Signal Transduction Between Polymer-Based Protocells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413981. [PMID: 39491508 DOI: 10.1002/adma.202413981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Deciphering inter- and intracellular signaling pathways is pivotal for understanding the intricate communication networks that orchestrate life's dynamics. Communication models involving bottom-up construction of protocells are emerging but often lack specialized compartments sufficiently robust and hierarchically organized to perform spatiotemporally defined signaling. Here, the modular construction of communicating polymer-based protocells designed to mimic the transduction of information in retinal photoreceptors is presented. Microfluidics is used to generate polymeric protocells subcompartmentalized by specialized artificial organelles. In one protocell population, light triggers artificial organelles with membrane-embedded photoresponsive rotary molecular motors to set off a sequence of reactions starting with the release of encapsulated signaling molecules into the lumen. Intercellular communication is mediated by signal transfer across membranes to protocells containing catalytic artificial organelles as subcompartments, whose signal conversion can be modulated by environmental calcium. Signal propagation also requires selective permeability of the diverse compartments. By segregating artificial organelles in distinct protocells, a sequential chain of reactions mediating intercellular communication is created that is further modulated by adding extracellular messengers. This connective behavior offers the potential for a deeper understanding of signaling pathways and faster integration of proto- and living cells, with the unique advantage of controlling each step by bio-relevant signals.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of Chemistry, University of Basel, Basel, 4002, Switzerland
| | - Maria Korpidou
- Department of Chemistry, University of Basel, Basel, 4002, Switzerland
| | - Ainoa Guinart
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, AG Groningen, 9747, The Netherlands
| | - Daniel Doellerer
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, AG Groningen, 9747, The Netherlands
| | | | | | - Daela Milinkovic
- Department of Chemistry, University of Basel, Basel, 4002, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe-Zürich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland
- NCCR - Molecular Systems Engineering, Mattenstrasse 22, Basel, 4002, Switzerland
| | - Ben L Feringa
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, AG Groningen, 9747, The Netherlands
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Basel, 4002, Switzerland
- NCCR - Molecular Systems Engineering, Mattenstrasse 22, Basel, 4002, Switzerland
- Swiss Nanoscience Institute (SNI), University of Basel, Klingelbergstrasse 80, Basel, 4056, Switzerland
| |
Collapse
|
4
|
Yandrapalli N. Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges. Pharmaceutics 2024; 16:707. [PMID: 38931830 PMCID: PMC11206808 DOI: 10.3390/pharmaceutics16060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the intersection of microfluidic technology and complex emulsion development as a promising solution to the challenges of formulations in multi-drug therapy (MDT) and polypharmacy. The convergence of microfluidic technology and complex emulsion fabrication could herald a transformative era in multi-drug delivery systems, directly confronting the prevalent challenges of polypharmacy. Microfluidics, with its unparalleled precision in droplet formation, empowers the encapsulation of multiple drugs within singular emulsion particles. The ability to engineer emulsions with tailored properties-such as size, composition, and release kinetics-enables the creation of highly efficient drug delivery vehicles. Thus, this innovative approach not only simplifies medication regimens by significantly reducing the number of necessary doses but also minimizes the pill burden and associated treatment termination-issues associated with polypharmacy. It is important to bring forth the opportunities and challenges of this synergy between microfluidic-driven complex emulsions and multi-drug therapy poses. Together, they not only offer a sophisticated method for addressing the intricacies of delivering multiple drugs but also align with broader healthcare objectives of enhancing treatment outcomes, patient safety, and quality of life, underscoring the importance of dosage form innovations in tackling the multifaceted challenges of modern pharmacotherapy.
Collapse
Affiliation(s)
- Naresh Yandrapalli
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
5
|
Søgaard AB, Løvschall KB, Montasell MC, Cramer CB, Marcet PM, Pedersen AB, Jakobsen JH, Zelikin AN. Artificial Receptor in Synthetic Cells Performs Transmembrane Activation of Proteolysis. Adv Biol (Weinh) 2024:e2400053. [PMID: 38767247 DOI: 10.1002/adbi.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 05/22/2024]
Abstract
The design of artificial, synthetic cells is a fundamentally important and fast-developing field of science. Of the diverse attributes of cellular life, artificial transmembrane signaling across the biomolecular barriers remains a high challenge with only a few documented successes. Herein, the study achieves signaling across lipid bilayers and connects an exofacial enzymatic receptor activation to an intracellular biochemical catalytic response using an artificial receptor. The mechanism of signal transduction for the artificial receptor relies on the triggered decomposition of a self-immolative linker. Receptor activation ensues its head-to-tail decomposition and the release of a secondary messenger molecule into the internal volume of the synthetic cell. Transmembrane signaling is demonstrated in synthetic cells based on liposomes and mammalian cell-sized giant unilamellar vesicles and illustrates receptor performance in cell mimics with a diverse size and composition of the lipid bilayer. In giant unilamellar vesicles, transmembrane signaling connects exofacial receptor activation with intracellular activation of proteolysis. Taken together, the results of this study take a step toward engineering receptor-mediated, responsive behavior in synthetic cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexander N Zelikin
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
6
|
Westensee IN, Paffen LJMM, Pendlmayr S, De Dios Andres P, Ramos Docampo MA, Städler B. Artificial Cells and HepG2 Cells in 3D-Bioprinted Arrangements. Adv Healthc Mater 2024; 13:e2303699. [PMID: 38277695 DOI: 10.1002/adhm.202303699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Artificial cells are engineered units with cell-like functions for different purposes including acting as supportive elements for mammalian cells. Artificial cells with minimal liver-like function are made of alginate and equipped with metalloporphyrins that mimic the enzyme activity of a member of the cytochrome P450 family namely CYP1A2. The artificial cells are employed to enhance the dealkylation activity within 3D bioprinted structures composed of HepG2 cells and these artificial cells. This enhancement is monitored through the conversion of resorufin ethyl ether to resorufin. HepG2 cell aggregates are 3D bioprinted using an alginate/gelatin methacryloyl ink, resulting in the successful proliferation of the HepG2 cells. The composite ink made of an alginate/gelatin liquid phase with an increasing amount of artificial cells is characterized. The CYP1A2-like activity of artificial cells is preserved over at least 35 days, where 6 nM resorufin is produced in 8 h. Composite inks made of artificial cells and HepG2 cell aggregates in a liquid phase are used for 3D bioprinting. The HepG2 cells proliferate over 35 days, and the structure has boosted CYP1A2 activity. The integration of artificial cells and their living counterparts into larger 3D semi-synthetic tissues is a step towards exploring bottom-up synthetic biology in tissue engineering.
Collapse
Affiliation(s)
- Isabella N Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Lars J M M Paffen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Stefan Pendlmayr
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Paula De Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
7
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
8
|
Llopis-Lorente A, Schotman MJG, Humeniuk HV, van Hest JCM, Dankers PYW, Abdelmohsen LKEA. Artificial cells with viscoadaptive behavior based on hydrogel-loaded giant unilamellar vesicles. Chem Sci 2024; 15:629-638. [PMID: 38179539 PMCID: PMC10763548 DOI: 10.1039/d3sc04687g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Viscoadaptation is an essential process in natural cells, where supramolecular interactions between cytosolic components drive adaptation of the cellular mechanical features to regulate metabolic function. This important relationship between mechanical properties and function has until now been underexplored in artificial cell research. Here, we have created an artificial cell platform that exploits internal supramolecular interactions to display viscoadaptive behavior. As supramolecular material to mimic the cytosolic component of these artificial cells, we employed a pH-switchable hydrogelator based on poly(ethylene glycol) coupled to ureido-pyrimidinone units. The hydrogelator was membranized in its sol state in giant unilamellar lipid vesicles to include a cell-membrane mimetic component. The resulting hydrogelator-loaded giant unilamellar vesicles (designated as HL-GUVs) displayed reversible pH-switchable sol-gel behavior through multiple cycles. Furthermore, incorporation of the regulatory enzyme urease enabled us to increase the cytosolic pH upon conversion of its substrate urea. The system was able to switch between a high viscosity (at neutral pH) and a low viscosity (at basic pH) state upon addition of substrate. Finally, viscoadaptation was achieved via the incorporation of a second enzyme of which the activity was governed by the viscosity of the artificial cell. This work represents a new approach to install functional self-regulation in artificial cells, and opens new possibilities for the creation of complex artificial cells that mimic the structural and functional interplay found in biological systems.
Collapse
Affiliation(s)
- Antoni Llopis-Lorente
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, CIBER de Bioingeniería, Biomateriales y Nanomedicina, Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 València Spain
| | - Maaike J G Schotman
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Heorhii V Humeniuk
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Jan C M van Hest
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| |
Collapse
|
9
|
Gao Y, Gao C, Fan Y, Sun H, Du J. Physically and Chemically Compartmentalized Polymersomes for Programmed Delivery and Biological Applications. Biomacromolecules 2023; 24:5511-5538. [PMID: 37933444 DOI: 10.1021/acs.biomac.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Multicompartment polymersomes (MCPs) refer to polymersomes that not only contain one single compartment, either in the membrane or in the internal cavity, but also mimic the compartmentalized structure of living cells, attracting much attention in programmed delivery and biological applications. The investigation of MCPs may promote the application of soft nanomaterials in biomedicine. This Review seeks to highlight the recent advances of the design principles, synthetic strategies, and biomedical applications of MCPs. The compartmentalization types including chemical, physical, and hybrid compartmentalization are discussed. Subsequently, the design and controlled synthesis of MCPs by the self-assembly of amphiphilic polymers, double emulsification, coprecipitation, microfluidics and particle assembly, etc. are summarized. Furthermore, the diverse applications of MCPs in programmed delivery of various cargoes and biological applications including cancer therapy, antimicrobials, and regulation of blood glucose levels are highlighted. Finally, future perspectives of MCPs from the aspects of controlled synthesis and applications are proposed.
Collapse
Affiliation(s)
- Yaning Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yirong Fan
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200072, China
| |
Collapse
|
10
|
Qiao X, Wang X, Chen H, Huang Y, Li S, Li L, Sun Y, Liu X, Huang X. Cholesterol-Mediated Anchoring of Phospholipids onto Proteinosomes for Switching Membrane Permeability. Biomacromolecules 2023; 24:5749-5758. [PMID: 37934168 DOI: 10.1021/acs.biomac.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Modulated membrane functionalization is a necessary and overarching step for hollow microcompartments toward their application as nanoreactors or artificial cells. In this study, we show a way to generate phospholipid hybrid proteinosomes that could show superposed virtues of liposomes and proteinosomes. In comparison to pure proteinosomes, both the membrane fluidity and permeability are improved obviously after forming the phospholipid hybrid proteinosomes. Specifically, the integration of phospholipids also endows the hybrid proteinosomes demonstrating a stepwise release of the encapsulants of FITC-dextran (70 and 150 kDa) triggered sequentially by phospholipase and protease, and then a modulated cascaded enzymatic reaction between two different populations of proteinosomes are achieved. Therefore, it is anticipated that such constructed phospholipid hybrid proteinosomes could be employed as an improved microcompartmental model for further advanced artificial cell design toward achieving logic signal communication within the various artificial cellular populations as well as potential applications in the field of microreactors.
Collapse
Affiliation(s)
- Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shangsong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Luxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yinyong Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
11
|
Gao R, Yu X, Kumar BVVSP, Tian L. Hierarchical Structuration in Protocellular System. SMALL METHODS 2023; 7:e2300422. [PMID: 37438327 DOI: 10.1002/smtd.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Spatial control is one of the ubiquitous features in biological systems and the key to the functional complexity of living cells. The strategies to achieve such precise spatial control in protocellular systems are crucial to constructing complex artificial living systems with functional collective behavior. Herein, the authors review recent advances in the spatial control within a single protocell or between different protocells and discuss how such hierarchical structured protocellular system can be used to understand complex living systems or to advance the development of functional microreactors with the programmable release of various biomacromolecular payloads, or smart protocell-biological cell hybrid system.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Ultrasound, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
12
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
13
|
Yu X, Mukwaya V, Mann S, Dou H. Signal Transduction in Artificial Cells. SMALL METHODS 2023; 7:e2300231. [PMID: 37116092 DOI: 10.1002/smtd.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Indexed: 06/19/2023]
Abstract
In recent years, significant progress has been made in the emerging field of constructing biomimetic soft compartments with life-like behaviors. Given that biological activities occur under a flux of energy and matter exchange, the implementation of rudimentary signaling pathways in artificial cells (protocells) is a prerequisite for the development of adaptive sense-response phenotypes in cytomimetic models. Herein, recent approaches to the integration of signal transduction modules in model protocells prepared by bottom-up construction are discussed. The approaches are classified into two categories involving invasive biochemical signals or non-invasive physical stimuli. In the former mechanism, transducers with intrinsic recognition capability respond with high specificity, while in the latter, artificial cells respond through intra-protocellular energy transduction. Although major challenges remain in the pursuit of a sophisticated artificial signaling network for the orchestration of higher-order cytomimetic models, significant advances have been made in establishing rudimentary protocell communication networks, providing novel organizational models for the development of life-like microsystems and new avenues in protoliving technologies.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
- Max Planck Bristol Centre for Minimal Biology and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
14
|
Zhang A, Guo Z, Ge G, Liu Z. Insights into In Vivo Environmental Effects on Quantitative Biochemistry in Single Cells. Anal Chem 2023; 95:17246-17255. [PMID: 37963214 DOI: 10.1021/acs.analchem.3c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Biomacromolecules exist and function in a crowded and spatially confined intracellular milieu. Single-cell analysis has been an essential tool for deciphering the molecular mechanisms of cell biology and cellular heterogeneity. However, a sound understanding of in vivo environmental effects on single-cell quantification has not been well established. In this study, via cell mimicking with giant unilamellar vesicles and single-cell analysis by an approach called plasmonic immunosandwich assay (PISA) that we developed previously, we investigated the effects of two in vivo environmental factors, i.e., molecular crowding and spatial confinement, on quantitative biochemistry in the cytoplasm of single cells. We find that molecular crowding greatly affects the biomolecular interactions and immunorecognition-based detection while the effect of spatial confinement in cell-sized space is negligible. Without considering the effect of molecular crowding, the results by PISA were found to be apparently under-quantitated, being only 29.5-50.0% of those by the calibration curve considering the effect of molecular crowding. We further demonstrated that the use of a calibration curve established with standard solutions containing 20% (wt) polyethylene glycol 6000 can well offset the effect of intracellular crowding and thereby provide a simple but accurate calibration for the PISA measurement. Thus, this study not only sheds light on how intracellular environmental factors influence biomolecular interactions and immunorecognition-based single-cell quantification but also provides a simple but effective strategy to make the single-cell analysis more accurate.
Collapse
Affiliation(s)
- Anqi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Ge Ge
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
15
|
Radhakrishnan S, Nair KS, Nandi S, Bajaj H. Engineering semi-permeable giant liposomes. Chem Commun (Camb) 2023; 59:13863-13866. [PMID: 37930322 DOI: 10.1039/d3cc04039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Giant unilamellar vesicles (GUVs) with a semi-permeable nature are prerequisites for constructing synthetic cells. Here we engineer semi-permeable GUVs by the inclusion of DOTAP lipid in vesicles. Diffusion of molecules of different charge and size across GUVs are reported. Control over size-selective permeability is demonstrated by modulating the DOTAP lipid composition in different lipid systems without reconstituting membrane proteins. Such semi-permeable GUVs have immense applications for constructing synthetic cells.
Collapse
Affiliation(s)
- Sreelakshmi Radhakrishnan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
| | - Karthika S Nair
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Samir Nandi
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
16
|
Ivanov T, Cao S, Bohra N, de Souza Melchiors M, Caire da Silva L, Landfester K. Polymeric Microreactors with pH-Controlled Spatial Localization of Cascade Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50755-50764. [PMID: 37903081 PMCID: PMC10636718 DOI: 10.1021/acsami.3c09196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Lipid and polymer vesicles provide versatile means of creating systems that mimic the architecture of cells. However, these constructs cannot mimic the adaptive compartmentalization observed in cells, where the assembly and disassembly of subcompartments are dynamically modulated by environmental cues. Here, we describe a fully polymeric microreactor with a coacervate-in-vesicle architecture that exhibits an adaptive response to pH. The system was fabricated by microfluidic generation of semipermeable biomimetic polymer vesicles within 1 min using oleyl alcohol as the oil phase. The polymersomes allowed for the diffusion of protons and substrates acting as external signals. Using this method, we were able to construct adaptive microreactors containing internal polyelectrolyte-based catalytic organelles capable of sequestering and localizing enzymes and reaction products in a dynamic process driven by an external stimulus. This approach provides a platform for the rapid and efficient construction of robust adaptive microreactors that can be used in catalysis, biosensing, and cell mimicry.
Collapse
Affiliation(s)
- Tsvetomir Ivanov
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shoupeng Cao
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Nitin Bohra
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marina de Souza Melchiors
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lucas Caire da Silva
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
17
|
Hao R, Zhang M, Tian D, Lei F, Qin Z, Wu T, Yang H. Bottom-Up Synthesis of Multicompartmentalized Microreactors for Continuous Flow Catalysis. J Am Chem Soc 2023; 145:20319-20327. [PMID: 37676729 DOI: 10.1021/jacs.3c04886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The bottom-up assembly of biomimetic multicompartmentalized microreactors for use in continuous flow catalysis remains a grand challenge because of the structural instability or the absence of liquid microenvironments to host biocatalysts in the existing systems. Here, we address this challenge using a strategy that combines stepwise Pickering emulsification with interface-confined cross-linking. Our strategy allows for the fabrication of robust multicompartmentalized liquid-containing microreactors (MLMs), whose interior architectures can be exquisitely tuned in a bottom-up fashion. With this strategy, enzymes and metal catalysts can be separately confined in distinct subcompartments of MLMs for processing biocatalysis or chemo-enzymatic cascade reactions. As exemplified by the enzyme-catalyzed kinetic resolution of racemic alcohols, our systems exhibit a durability of 2000 h with 99% enantioselectivity. Another Pd-enzyme-cocatalyzed dynamic kinetic resolution of amines further demonstrates the versatility and long-term operational stability of our MLMs in continuous flow cascade catalysis. This study opens up a new way to design efficient biomimetic multicompartmental microreactors for practical applications.
Collapse
Affiliation(s)
- Ruipeng Hao
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ming Zhang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Danping Tian
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Fu Lei
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhiqin Qin
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hengquan Yang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
18
|
Sun Q, Liang J, Lin Y, Zhang Y, Yan F, Wu W. Preparation of nano-sized multi-vesicular vesicles (MVVs) and its application in co-delivery of doxorubicin and curcumin. Colloids Surf B Biointerfaces 2023; 229:113471. [PMID: 37523805 DOI: 10.1016/j.colsurfb.2023.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Multi-vesicular vesicles (MVVs) offer structural advantages in terms of drug encapsulation and physiological stability. In this study, we address the challenge of preparing small-sized MVVs for drug delivery. The nano-sized MVVs (∼120 nm) loaded with doxorubicin (DOX) and curcumin (CUR) (DOX/CUR@MVVs) were successfully prepared using a glass bead combined with a thin film dispersion method. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the independent non-homocentric vesicle structures of DOX/CUR@MVVs with homogeneous particle sizes. The experimental results showed high encapsulation rates of DOX and CUR in DOX/CUR@MVVs, reaching 82.5 ± 0.75 % and 85.9 ± 0.69 %, respectively. Moreover, the MVVs exhibited good biosafety and sustained release properties. Notably, the bioavailability of DOX and CUR in DOX/CUR@MVVs was enhanced compared to free DOX and CUR, with increases of 4.2 and 2.1 times, respectively. And the half-life of DOX and CUR was extended by 10 times in DOX/CUR@MVVs. In vivo antitumor experiments demonstrated that nano-sized DOX/CUR@MVVs significantly improved the antitumor activity while reducing the toxic side effects of DOX. Overall, the successful preparation of nano-sized DOX/CUR@MVVs and their potent and low-toxic antitumor effects provide a critical experimental reference for the combined antitumor therapy of MVVs and liposomes.
Collapse
Affiliation(s)
- Qiankun Sun
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ju Liang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Yang Lin
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yunyun Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Fuqing Yan
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenlan Wu
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
19
|
Nair KS, Bajaj H. Advances in giant unilamellar vesicle preparation techniques and applications. Adv Colloid Interface Sci 2023; 318:102935. [PMID: 37320960 DOI: 10.1016/j.cis.2023.102935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Giant unilamellar vesicles (GUVs) are versatile and promising cell-sized bio-membrane mimetic platforms. Their applications range from understanding and quantifying membrane biophysical processes to acting as elementary blocks in the bottom-up assembly of synthetic cells. Definite properties and requisite goals in GUVs are dictated by the preparation techniques critical to the success of their applications. Here, we review key advances in giant unilamellar vesicle preparation techniques and discuss their formation mechanisms. Developments in lipid hydration and emulsion techniques for GUV preparation are described. Novel microfluidic-based techniques involving lipid or surfactant-stabilized emulsions are outlined. GUV immobilization strategies are summarized, including gravity-based settling, covalent linking, and immobilization by microfluidic, electric, and magnetic barriers. Moreover, some of the key applications of GUVs as biomimetic and synthetic cell platforms during the last decade have been identified. Membrane interface processes like phase separation, membrane protein reconstitution, and membrane bending have been deciphered using GUVs. In addition, vesicles are also employed as building blocks to construct synthetic cells with defined cell-like functions comprising compartments, metabolic reactors, and abilities to grow and divide. We critically discuss the pros and cons of preparation technologies and the properties they confer to the GUVs and identify potential techniques for dedicated applications.
Collapse
Affiliation(s)
- Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India.
| |
Collapse
|
20
|
Tian D, Hao R, Zhang X, Shi H, Wang Y, Liang L, Liu H, Yang H. Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis. Nat Commun 2023; 14:3226. [PMID: 37270555 DOI: 10.1038/s41467-023-38949-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid-liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb' catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24-5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations.
Collapse
Affiliation(s)
- Danping Tian
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Ruipeng Hao
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Xiaoming Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Yuwei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Linfeng Liang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
21
|
Hu H, Huang X, Dai Y, Zhu K, Ye X, Meng S, Zhang Q, Xie X. Organic metal matrix Mil-88a nano-enzyme for joint repair in the osteoarthritis mouse model. Front Bioeng Biotechnol 2023; 11:1164942. [PMID: 37187885 PMCID: PMC10175628 DOI: 10.3389/fbioe.2023.1164942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction: In this paper we tried to conduct a novel nanomaterial strategy to overcome osteoarthritis (OA) in a mouse model. Methods: In this regard, after synthesizing the Mil-88a nanozyme, as a certain Fe-MOF, its toxic effects were detected by CCK-8 method and live-dead staining. The OA model of mouse was constructed, and paraffin sections of joints were taken for histological evaluation. In addition, immunofluorescence and immunohistochemistry were used to identify the OA progression and OARSI was used to evaluate the OA grades. We observed that Mil-88a could be easily synthesized and has high biocompatibility. Results: We observed that Mil-88a could significantly promote the expression of OA anabolism-related genes such as Col2 and also significantly inhibit the expression of OA catabolism-related genes MMP13. Besides, we observed better OARSI score in animals treated with Mil-88a nano-enzyme loading on organic metal matrix. Discussion: Overall, Mil-88a nano-enzyme could be used as a novel strategy to treat OA.
Collapse
|
22
|
Ghosh B. Artificial cell design: reconstructing biology for life science applications. Emerg Top Life Sci 2022; 6:619-627. [PMID: 36398710 DOI: 10.1042/etls20220050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Artificial cells are developed to redesign novel biological functions in a programmable and tunable manner. Although it aims to reconstitute living cell features and address 'origin of life' related questions, rapid development over the years has transformed artificial cells into an engineering tool with huge potential in applied biotechnology. Although the application of artificial cells was introduced decades ago as drug carriers, applications in other sectors are relatively new and could become possible with the technological advancement that can modulate its designing principles. Artificial cells are non-living system that includes no prerequisite designing modules for their formation and therefore allow freedom of assembling desired biological machinery within a physical boundary devoid of complex contemporary living-cell counterparts. As stimuli-responsive biomimetic tools, artificial cells are programmed to sense the surrounding, recognise their target, activate its function and perform the defined task. With the advantage of their customised design, artificial cells are being studied in biosensing, drug delivery, anti-cancer therapeutics or artificial photosynthesis type fields. This mini-review highlights those advanced fields where artificial cells with a minimalistic setup are developed as user-defined custom-made microreactors, targeting to reshape our future 'life'.
Collapse
Affiliation(s)
- Basusree Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
23
|
Gispert I, Hindley JW, Pilkington CP, Shree H, Barter LMC, Ces O, Elani Y. Stimuli-responsive vesicles as distributed artificial organelles for bacterial activation. Proc Natl Acad Sci U S A 2022; 119:e2206563119. [PMID: 36223394 PMCID: PMC9586261 DOI: 10.1073/pnas.2206563119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication is a hallmark of living systems. As such, engineering artificial cells that possess this behavior has been at the heart of activities in bottom-up synthetic biology. Communication between artificial and living cells has potential to confer novel capabilities to living organisms that could be exploited in biomedicine and biotechnology. However, most current approaches rely on the exchange of chemical signals that cannot be externally controlled. Here, we report two types of remote-controlled vesicle-based artificial organelles that translate physical inputs into chemical messages that lead to bacterial activation. Upon light or temperature stimulation, artificial cell membranes are activated, releasing signaling molecules that induce protein expression in Escherichia coli. This distributed approach differs from established methods for engineering stimuli-responsive bacteria. Here, artificial cells (as opposed to bacterial cells themselves) are the design unit. Having stimuli-responsive elements compartmentalized in artificial cells has potential applications in therapeutics, tissue engineering, and bioremediation. It will underpin the design of hybrid living/nonliving systems where temporal control over population interactions can be exerted.
Collapse
Affiliation(s)
- Ignacio Gispert
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - James W. Hindley
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Colin P. Pilkington
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Hansa Shree
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Laura M. C. Barter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Oscar Ces
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, White City, London W12 0BZ, UK
| |
Collapse
|
24
|
Abstract
Recent years have seen substantial efforts aimed at constructing artificial cells from various molecular components with the aim of mimicking the processes, behaviours and architectures found in biological systems. Artificial cell development ultimately aims to produce model constructs that progress our understanding of biology, as well as forming the basis for functional bio-inspired devices that can be used in fields such as therapeutic delivery, biosensing, cell therapy and bioremediation. Typically, artificial cells rely on a bilayer membrane chassis and have fluid aqueous interiors to mimic biological cells. However, a desire to more accurately replicate the gel-like properties of intracellular and extracellular biological environments has driven increasing efforts to build cell mimics based on hydrogels. This has enabled researchers to exploit some of the unique functional properties of hydrogels that have seen them deployed in fields such as tissue engineering, biomaterials and drug delivery. In this Review, we explore how hydrogels can be leveraged in the context of artificial cell development. We also discuss how hydrogels can potentially be incorporated within the next generation of artificial cells to engineer improved biological mimics and functional microsystems.
Collapse
|
25
|
Karoui H, Patwal PS, Pavan Kumar BVVS, Martin N. Chemical Communication in Artificial Cells: Basic Concepts, Design and Challenges. Front Mol Biosci 2022; 9:880525. [PMID: 35720123 PMCID: PMC9199989 DOI: 10.3389/fmolb.2022.880525] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, the focus of bottom-up synthetic biology has shifted from the design of complex artificial cell architectures to the design of interactions between artificial cells mediated by physical and chemical cues. Engineering communication between artificial cells is crucial for the realization of coordinated dynamic behaviours in artificial cell populations, which would have implications for biotechnology, advanced colloidal materials and regenerative medicine. In this review, we focus our discussion on molecular communication between artificial cells. We cover basic concepts such as the importance of compartmentalization, the metabolic machinery driving signaling across cell boundaries and the different modes of communication used. The various studies in artificial cell signaling have been classified based on the distance between sender and receiver cells, just like in biology into autocrine, juxtacrine, paracrine and endocrine signaling. Emerging tools available for the design of dynamic and adaptive signaling are highlighted and some recent advances of signaling-enabled collective behaviours, such as quorum sensing, travelling pulses and predator-prey behaviour, are also discussed.
Collapse
Affiliation(s)
- Hedi Karoui
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, France
| | - Pankaj Singh Patwal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | | | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, France
| |
Collapse
|
26
|
Zhao QH, Cao FH, Luo ZH, Huck WTS, Deng NN. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles. Angew Chem Int Ed Engl 2022; 61:e202117500. [PMID: 35090078 DOI: 10.1002/anie.202117500] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 01/26/2023]
Abstract
Spatiotemporal organization of distinct biological processes in cytomimetic compartments is a crucial step towards engineering functional artificial cells. Mimicking controlled bi-directional molecular communication inside artificial cells remains a considerable challenge. Here we present photoswitchable molecular transport between programmable membraneless organelle-like DNA coacervates in a synthetic microcompartment. We use droplet microfluidics to fabricate membraneless non-fusing DNA coacervates by liquid-liquid phase separation in a water-in-oil droplet, and employ the interior DNA coacervates as artificial organelles to imitate intracellular communication via photo-regulated uni- and bi-directional transfer of biomolecules. Our results highlight a promising new route to assembly of multicompartment artificial cells with functional networks.
Collapse
Affiliation(s)
- Qi-Hong Zhao
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fang-Hao Cao
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhen-Hong Luo
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wilhelm T S Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Nan-Nan Deng
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
27
|
Zhao QH, Cao FH, Luo ZH, Huck WTS, Deng NN. Photoswitchable Molecular Communication between Programmable DNA‐based Artificial Membraneless Organelles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi-Hong Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Fang-Hao Cao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Zhen-Hong Luo
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Wilhelm T. S. Huck
- Radboud University Institute for Molecules and Materials: Radboud Universiteit Institute for Molecules and Materials Institue for Molecules and Materials NETHERLANDS
| | - Nan-Nan Deng
- Shanghai Jiao Tong University Chemistry and Chemical Engineering 800 Dongchuan RD. Minhang District 200240 Shanghai CHINA
| |
Collapse
|