1
|
Brotons-Gisbert M, Gerardot BD, Holleitner AW, Wurstbauer U. Interlayer and Moiré excitons in atomically thin double layers: From individual quantum emitters to degenerate ensembles. MRS BULLETIN 2024; 49:914-931. [PMID: 39247683 PMCID: PMC11379794 DOI: 10.1557/s43577-024-00772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
Abstract Interlayer excitons (IXs), composed of electron and hole states localized in different layers, excel in bilayers composed of atomically thin van der Waals materials such as semiconducting transition-metal dichalcogenides (TMDs) due to drastically enlarged exciton binding energies, exciting spin-valley properties, elongated lifetimes, and large permanent dipoles. The latter allows modification by electric fields and the study of thermalized bosonic quasiparticles, from the single particle level to interacting degenerate dense ensembles. Additionally, the freedom to combine bilayers of different van der Waals materials without lattice or relative twist-angle constraints leads to layer-hybridized and Moiré excitons, which can be widely engineered. This article covers fundamental aspects of IXs, including correlation phenomena as well as the consequence of Moiré superlattices with a strong focus on TMD homo- and heterobilayers. Graphical abstract
Collapse
Affiliation(s)
- Mauro Brotons-Gisbert
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
| | - Brian D Gerardot
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
| | - Alexander W Holleitner
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
2
|
Karmakar A, Al-Mahboob A, Zawadzka N, Raczyński M, Yang W, Arfaoui M, Gayatri, Kucharek J, Sadowski JT, Shin HS, Babiński A, Pacuski W, Kazimierczuk T, Molas MR. Twisted MoSe 2 Homobilayer Behaving as a Heterobilayer. NANO LETTERS 2024; 24:9459-9467. [PMID: 39042710 PMCID: PMC11311526 DOI: 10.1021/acs.nanolett.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe2) homobilayer without any charge-blocking interlayer. We fabricated an unconventional homobilayer (i.e., HS) with a large twist angle (∼57°) by combining the chemical vapor deposition (CVD) and mechanical exfoliation (Exf.) techniques to fully exploit the lattice parameter mismatch and indirect/direct (CVD/Exf.) bandgap nature. These effectively weaken the interlayer charge transfer and allow the ET to control the carrier recombination channels. Our experimental and theoretical results explain a massive HS photoluminescence enhancement due to an efficient ET process. This work shows that the electronically decoupled MoSe2 homobilayer is coupled by the ET process, mimicking a "true" heterobilayer nature.
Collapse
Affiliation(s)
- Arka Karmakar
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Abdullah Al-Mahboob
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Natalia Zawadzka
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Mateusz Raczyński
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Weiguang Yang
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Mehdi Arfaoui
- Département
de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire, 1060 Tunis, Tunisia
| | - Gayatri
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Julia Kucharek
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jerzy T. Sadowski
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Hyeon Suk Shin
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
- Center
for 2D Quantum Heterostructures, Institute
for Basic Science (IBS), Suwon 16419, Republic
of Korea
- Department
of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Adam Babiński
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Wojciech Pacuski
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Tomasz Kazimierczuk
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Maciej R. Molas
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Palekar CC, Rosa B, Heermeier N, Shih CW, Limame I, Koulas-Simos A, Rahimi-Iman A, Reitzenstein S. Enhancement of Interlayer Exciton Emission in a TMDC Heterostructure via a Multi-Resonant Chirped Microresonator Upto Room Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402624. [PMID: 39007260 DOI: 10.1002/adma.202402624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/02/2024] [Indexed: 07/16/2024]
Abstract
We report on multi-resonance chirped distributed Bragg reflector (DBR) microcavities. These systems are employed to investigate the light-mater interaction with both intra- and inter-layer excitons of transition metal dichalcogenide (TMDC) bilayer heterostructures. The chirped DBRs consisting of SiO2 and Si3N4 layers of gradually varying thickness exhibit a broad stopband with a width exceeding 600 nm. Importantly, the structures provide multiple resonances across a broad spectral range, which can be matched to resonances of the embedded TMDC heterostructures. Studying cavity-coupled emission of both intra- and inter-layer excitons from an integrated WSe2/MoSe2 heterostructure in a chirped microcavity system, an enhanced interlayer exciton emission with a Purcell factor of 6.67 ± 1.02 at 4 K is observed. The cavity-enhanced emission of the interlayer exciton is used to investigate its temperature-dependent luminescence lifetime of 60 ps at room temperature. The cavity system modestly suppresses intralayer exciton emission by intentional detuning, thereby promoting a higher IX population and enhancing cavity-coupled interlayer exciton emission. This approach provides an intriguing platform for future studies of energetically distant and confined excitons in different semiconducting materials, which paves the way for various applications such as microlasers and single-photon sources by enabling precise emission control and utilizing multimode resonance light-matter interaction.
Collapse
Affiliation(s)
- Chirag C Palekar
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Barbara Rosa
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Niels Heermeier
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Ching-Wen Shih
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Imad Limame
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Aris Koulas-Simos
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Arash Rahimi-Iman
- I. Physikalisches Institut and Center for Materials Research, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
| | - Stephan Reitzenstein
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| |
Collapse
|
4
|
Chen D, Dini K, Rasmita A, Huang Z, Tan Q, Cai H, He R, Miao Y, Liew TCH, Gao W. Spatial Filtering of Interlayer Exciton Ground State in WSe 2/MoS 2 Heterobilayer. NANO LETTERS 2024; 24:8795-8800. [PMID: 38985646 DOI: 10.1021/acs.nanolett.4c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Long-life interlayer excitons (IXs) in transition metal dichalcogenide (TMD) heterostructure are promising for realizing excitonic condensates at high temperatures. Critical to this objective is to separate the IX ground state (the lowest energy of IX state) emission from other states' emissions. Filtering the IX ground state is also essential in uncovering the dynamics of correlated excitonic states, such as the excitonic Mott insulator. Here, we show that the IX ground state in the WSe2/MoS2 heterobilayer can be separated from other states by its spatial profile. The emissions from different moiré IX modes are identified by their different energies and spatial distributions, which fits well with the rate-diffusion model for cascading emission. Our results show spatial filtering of the ground state mode and enrich the toolbox to realize correlated states at elevated temperatures.
Collapse
Affiliation(s)
- Disheng Chen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Kevin Dini
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Abdullah Rasmita
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zumeng Huang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Qinghai Tan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Hongbing Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Ruihua He
- Institute For Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore
| | - Yansong Miao
- Institute For Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore 637371, Singapore
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore 637371, Singapore
- Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
5
|
Hu Z, Wang H, Wang L, Wang H. A new charge transfer pathway in the MoSe 2-WSe 2 heterostructure under the conditions of B-excitons being resonantly pumped. Phys Chem Chem Phys 2024; 26:9424-9431. [PMID: 38446138 DOI: 10.1039/d3cp05282f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Most transition metal dichalcogenide (TMD) heterostructures (HSs) exhibit a type II band alignment, leading to a charge transfer process accompanied by the transfer of spin-valley polarization and spontaneous formation of interlayer excitons. This unique band structure facilitates achieving a longer exciton lifetime and extended spin-valley polarization lifetime. However, the mechanism of charge transfer in type II TMD HSs is not fully comprehended. Here, the ultrafast charge transfer process is studied in MoSe2-WSe2 HS via valley-solved broadband pump-probe spectroscopy. Under the conditions of B-excitons of WSe2 and MoSe2 being resonantly pumped, a new charge transfer pathway through the higher energy state associated with the B-exciton is found. Meanwhile, the holes (electrons) in the WSe2 (MoSe2) layer of MoSe2-WSe2 HS produce obvious spin-valley polarization even under the condition of B-exciton of WSe2 (MoSe2) being resonantly pumped, and the lifetime can reach tens of ps, which is in stark contrast to the absence of A-exciton spin-valley polarization in monolayer WSe2 (MoSe2) under the same pumping condition. The results deepen the insight into the charge transfer process in type II TMD HSs and show the great potential of TMD HSs in the application of spin-valley electronics devices.
Collapse
Affiliation(s)
- Zifan Hu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Hai Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Lei Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Haiyu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Bange JP, Schmitt D, Bennecke W, Meneghini G, AlMutairi A, Watanabe K, Taniguchi T, Steil D, Steil S, Weitz RT, Jansen GSM, Hofmann S, Brem S, Malic E, Reutzel M, Mathias S. Probing electron-hole Coulomb correlations in the exciton landscape of a twisted semiconductor heterostructure. SCIENCE ADVANCES 2024; 10:eadi1323. [PMID: 38324690 PMCID: PMC10849592 DOI: 10.1126/sciadv.adi1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
In two-dimensional semiconductors, cooperative and correlated interactions determine the material's excitonic properties and can even lead to the creation of correlated states of matter. Here, we study the fundamental two-particle correlated exciton state formed by the Coulomb interaction between single-particle holes and electrons. We find that the ultrafast transfer of an exciton's hole across a type II band-aligned semiconductor heterostructure leads to an unexpected sub-200-femtosecond upshift of the single-particle energy of the electron being photoemitted from the two-particle exciton state. While energy relaxation usually leads to an energetic downshift of the spectroscopic signature, we show that this upshift is a clear fingerprint of the correlated interaction of the electron and hole parts of the exciton. In this way, time-resolved photoelectron spectroscopy is straightforwardly established as a powerful method to access electron-hole correlations and cooperative behavior in quantum materials. Our work highlights this capability and motivates the future study of optically inaccessible correlated excitonic and electronic states of matter.
Collapse
Affiliation(s)
- Jan Philipp Bange
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - David Schmitt
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Wiebke Bennecke
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Giuseppe Meneghini
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Daniel Steil
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sabine Steil
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - R. Thomas Weitz
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany
| | - G. S. Matthijs Jansen
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Stephan Hofmann
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Samuel Brem
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Ermin Malic
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Marcel Reutzel
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Stefan Mathias
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Hu C, Naik MH, Chan YH, Louie SG. Excitonic Interactions and Mechanism for Ultrafast Interlayer Photoexcited Response in van der Waals Heterostructures. PHYSICAL REVIEW LETTERS 2023; 131:236904. [PMID: 38134768 DOI: 10.1103/physrevlett.131.236904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
Optical dynamics in van der Waals heterobilayers is of fundamental scientific and practical interest. Based on a time-dependent adiabatic GW approach, we discover a new many-electron (excitonic) channel for converting photoexcited intralayer to interlayer excitations and the associated ultrafast optical responses in heterobilayers, which is conceptually different from the conventional single-particle picture. We find strong electron-hole interactions drive the dynamics and enhance the pump-probe optical responses by an order of magnitude with a rise time of ∼300 fs in MoSe_{2}/WSe_{2} heterobilayers, in agreement with experiment.
Collapse
Affiliation(s)
- Chen Hu
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Mit H Naik
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yang-Hao Chan
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Institute of Atomic and Molecular Sciences, Academia Sinica, and Physics Division, National Center for Theoretical Sciences, Taipei, 10617, Taiwan
| | - Steven G Louie
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Policht VR, Mittenzwey H, Dogadov O, Katzer M, Villa A, Li Q, Kaiser B, Ross AM, Scotognella F, Zhu X, Knorr A, Selig M, Cerullo G, Dal Conte S. Time-domain observation of interlayer exciton formation and thermalization in a MoSe 2/WSe 2 heterostructure. Nat Commun 2023; 14:7273. [PMID: 37949848 PMCID: PMC10638375 DOI: 10.1038/s41467-023-42915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Vertical heterostructures of transition metal dichalcogenides (TMDs) host interlayer excitons with electrons and holes residing in different layers. With respect to their intralayer counterparts, interlayer excitons feature longer lifetimes and diffusion lengths, paving the way for room temperature excitonic optoelectronic devices. The interlayer exciton formation process and its underlying physical mechanisms are largely unexplored. Here we use ultrafast transient absorption spectroscopy with a broadband white-light probe to simultaneously resolve interlayer charge transfer and interlayer exciton formation dynamics in a MoSe2/WSe2 heterostructure. We observe an interlayer exciton formation timescale nearly an order of magnitude (~1 ps) longer than the interlayer charge transfer time (~100 fs). Microscopic calculations attribute this relative delay to an interplay of a phonon-assisted interlayer exciton cascade and thermalization, and excitonic wave-function overlap. Our results may explain the efficient photocurrent generation observed in optoelectronic devices based on TMD heterostructures, as the interlayer excitons are able to dissociate during thermalization.
Collapse
Affiliation(s)
- Veronica R Policht
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy.
- NRC Postdoc residing at U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC, 20375, USA.
| | - Henry Mittenzwey
- Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany.
| | - Oleg Dogadov
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Manuel Katzer
- Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Andrea Villa
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Qiuyang Li
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | | | - Aaron M Ross
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Francesco Scotognella
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Andreas Knorr
- Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Malte Selig
- Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- CNR-IFN, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Stefano Dal Conte
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy.
| |
Collapse
|
9
|
Ji J, Zhou Y, Zhou B, Desgué E, Legagneux P, Jepsen PU, Bøggild P. Probing Carrier Dynamics in Large-Scale MBE-Grown PtSe 2 Films by Terahertz Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37883033 DOI: 10.1021/acsami.3c09792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Atomically thin platinum diselenide (PtSe2) films are promising for applications in the fields of electronics, spintronics, and photodetectors owing to their tunable electronic structure and high carrier mobility. Using terahertz (THz) spectroscopy techniques, we investigated the layer-dependent semiconducting-to-metallic phase transition and associated intrinsic carrier dynamics in large-scale PtSe2 films grown by molecular beam epitaxy. The uniformity of large-scale PtSe2 films was characterized by spatially and frequency-resolved THz-based sheet conductivity mapping. Furthermore, we use an optical-pump-THz-probe technique to study the transport dynamics of photoexcited carriers and explore light-induced intergrain carrier transport in PtSe2 films. We demonstrate large-scale THz-based mapping of the electrical properties of transition metal dichalcogenide films and show that the two noncontact THz-based approaches provide insight in the spatial and temporal properties of PtSe2 films.
Collapse
Affiliation(s)
- Jie Ji
- Department of Physics, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Yingqiu Zhou
- Department of Physics, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Binbin Zhou
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Eva Desgué
- Thales Research and Technology, Palaiseau 91767, France
| | | | - Peter Uhd Jepsen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Peter Bøggild
- Department of Physics, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
10
|
Kim W, Jeong G, Oh J, Kim J, Watanabe K, Taniguchi T, Ryu S. Exciton-Sensitized Second-Harmonic Generation in 2D Heterostructures. ACS NANO 2023; 17:20580-20588. [PMID: 37801328 DOI: 10.1021/acsnano.3c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The efficient optical second-harmonic generation (SHG) of two-dimensional (2D) crystals, coupled with their atomic thickness, which circumvents the phase-match problem, has garnered considerable attention. While various 2D heterostructures have shown promising applications in photodetectors, switching electronics, and photovoltaics, the modulation of nonlinear optical properties in such heterosystems remains unexplored. In this study, we investigate exciton-sensitized SHG in heterobilayers of transition metal dichalcogenides (TMDs), where photoexcitation of one donor layer enhances the SHG response of the other as an acceptor. We utilize polarization-resolved interferometry to detect the SHG intensity and phase of each individual layer, revealing the energetic match between the excitonic resonances of donors and the SHG enhancement of acceptors for four TMD combinations. Our results also uncover the dynamic nature of interlayer coupling, as made evident by the dependence of sensitization on interlayer gap spacing and the average power of the fundamental beam. This work provides insights into how the interlayer coupling of two different layers can modify nonlinear optical phenomena in 2D heterostructures.
Collapse
Affiliation(s)
- Wontaek Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Gyouil Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Juseung Oh
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Jihun Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Kenji Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Sunmin Ryu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
11
|
Jiao C, Pei S, Wu S, Wang Z, Xia J. Tuning and exploiting interlayer coupling in two-dimensional van der Waals heterostructures. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:114503. [PMID: 37774692 DOI: 10.1088/1361-6633/acfe89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
Two-dimensional (2D) layered materials can stack into new material systems, with van der Waals (vdW) interaction between the adjacent constituent layers. This stacking process of 2D atomic layers creates a new degree of freedom-interlayer interface between two adjacent layers-that can be independently studied and tuned from the intralayer degree of freedom. In such heterostructures (HSs), the physical properties are largely determined by the vdW interaction between the individual layers,i.e.interlayer coupling, which can be effectively tuned by a number of means. In this review, we summarize and discuss a number of such approaches, including stacking order, electric field, intercalation, and pressure, with both their experimental demonstrations and theoretical predictions. A comprehensive overview of the modulation on structural, optical, electrical, and magnetic properties by these four approaches are also presented. We conclude this review by discussing several prospective research directions in 2D HSs field, including fundamental physics study, property tuning techniques, and future applications.
Collapse
Affiliation(s)
- Chenyin Jiao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Shenghai Pei
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Song Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Zenghui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Juan Xia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| |
Collapse
|
12
|
Yuan Y, Liu P, Wu H, Chen H, Zheng W, Peng G, Zhu Z, Zhu M, Dai J, Qin S, Novoselov KS. Probing the Twist-Controlled Interlayer Coupling in Artificially Stacked Transition Metal Dichalcogenide Bilayers by Second-Harmonic Generation. ACS NANO 2023; 17:17897-17907. [PMID: 37698446 DOI: 10.1021/acsnano.3c03795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Interlayer coupling plays a critical role in the electronic band structures and optoelectronic properties of van der Waals (vdW) materials and heterostructures. Here, we utilize optical second-harmonic generation (SHG) measurements to probe the twist-controlled interlayer coupling in artificially stacked WSe2/WSe2 homobilayers and WSe2/WS2 and WSe2/MoS2 heterobilayers with a postannealing procedure. In the large angle twisted WSe2/WSe2 and WSe2/WS2, the angular dependence of the SHG intensity follows the interference relations up to angles above 10°. For lower angles, the SHG is significantly suppressed. Furthermore, for the twisted WSe2/MoS2 the SHG intensity largely deviates from the coherent superposition model and shows consistent quenching for all the stacking angles. The suppressed SHG in twisted transition metal dichalcogenide (TMDC) bilayers is predominantly attributed to the interlayer coupling between the two adjacent monolayers. The evolution of the interlayer Raman mode in WSe2 demonstrates that the interlayer coupling in the twisted WSe2/WSe2 and WSe2/WS2 is highly angle-dependent. Alternatively, the interlayer coupling generally exists in the twisted WSe2/MoS2, regardless of the different angles. The interlayer coupling is further confirmed by the quenching and red-shift of the photoluminescence of WSe2 in the twisted TMDC bilayers. Combined with density functional theory calculations, we reveal that the stacking-angle-modulated interlayer coupling originates from the variation of the interlayer spacing and the binding energy in the twisted TMDC bilayers.
Collapse
Affiliation(s)
- Yuanjian Yuan
- College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Peng Liu
- College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Hongjian Wu
- College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Haitao Chen
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Weihao Zheng
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Gang Peng
- College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Zhihong Zhu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Mengjian Zhu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Jiayu Dai
- College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Shiqiao Qin
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575
| |
Collapse
|
13
|
Sayer T, Farah YR, Austin R, Sambur J, Krummel AT, Montoya-Castillo A. Trion Formation Resolves Observed Peak Shifts in the Optical Spectra of Transition-Metal Dichalcogenides. NANO LETTERS 2023. [PMID: 37311112 DOI: 10.1021/acs.nanolett.3c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monolayer transition-metal dichalcogenides (ML-TMDs) have the potential to unlock novel photonic and chemical technologies if their optoelectronic properties can be understood and controlled. Yet, recent work has offered contradictory explanations for how TMD absorption spectra change with carrier concentration, fluence, and time. Here, we test our hypothesis that the large broadening and shifting of the strong band-edge features observed in optical spectra arise from the formation of negative trions. We do this by fitting an ab initio based, many-body model to our experimental electrochemical data. Our approach provides an excellent, global description of the potential-dependent linear absorption data. We further leverage our model to demonstrate that trion formation explains the nonmonotonic potential dependence of the transient absorption spectra, including through photoinduced derivative line shapes for the trion peak. Our results motivate the continued development of theoretical methods to describe cutting-edge experiments in a physically transparent way.
Collapse
Affiliation(s)
- Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder 80309, Colorado, United States
| | - Yusef R Farah
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Rachelle Austin
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Justin Sambur
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
- School of Advanced Materials Discovery, Colorado State University, Fort Collins 80524, Colorado, United States
| | - Amber T Krummel
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Andrés Montoya-Castillo
- Department of Chemistry, University of Colorado Boulder, Boulder 80309, Colorado, United States
| |
Collapse
|
14
|
Yoon Y, Zhang Z, Qi R, Joe AY, Sailus R, Watanabe K, Taniguchi T, Tongay S, Wang F. Charge Transfer Dynamics in MoSe 2/hBN/WSe 2 Heterostructures. NANO LETTERS 2022; 22:10140-10146. [PMID: 36485010 DOI: 10.1021/acs.nanolett.2c04030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ultrafast charge transfer processes provide a facile way to create interlayer excitons in directly contacted transition metal dichalcogenide (TMD) layers. More sophisticated heterostructures composed of TMD/hBN/TMD enable new ways to control interlayer exciton properties and achieve novel exciton phenomena, such as exciton insulators and condensates, where longer lifetimes are desired. In this work, we experimentally study the charge transfer dynamics in a heterostructure composed of a 1 nm thick hBN spacer between MoSe2 and WSe2 monolayers. We observe the hole transfer from MoSe2 to WSe2 through the hBN barrier with a time constant of 500 ps, which is over 3 orders of magnitude slower than that between TMD layers without a spacer. Furthermore, we observe strong competition between the interlayer charge transfer and intralayer exciton-exciton annihilation processes at high excitation densities. Our work opens possibilities to understand charge transfer pathways in TMD/hBN/TMD heterostructures for the efficient generation and control of interlayer excitons.
Collapse
Affiliation(s)
- Yoseob Yoon
- Department of Physics, University of California, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Zuocheng Zhang
- Department of Physics, University of California, Berkeley, California94720, United States
| | - Ruishi Qi
- Department of Physics, University of California, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Andrew Y Joe
- Department of Physics, University of California, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Renee Sailus
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona85287, United States
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona85287, United States
| | - Feng Wang
- Department of Physics, University of California, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
15
|
Tan Q, Rasmita A, Zhang Z, Novoselov KS, Gao WB. Signature of Cascade Transitions between Interlayer Excitons in a Moiré Superlattice. PHYSICAL REVIEW LETTERS 2022; 129:247401. [PMID: 36563256 DOI: 10.1103/physrevlett.129.247401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
A moiré superlattice in transition metal dichalcogenides heterostructure provides an exciting platform for studying strongly correlated electronics and excitonic physics, such as multiple interlayer exciton (IX) energy bands. However, the correlations between these IXs remain elusive. Here, we demonstrate the cascade transitions between IXs in a moiré superlattice by performing energy- and time-resolved photoluminescence measurements in the MoS_{2}/WSe_{2} heterostructure. Furthermore, we show that the lower-energy IX can be excited to higher-energy ones, facilitating IX population inversion. Our finding of cascade transitions between IXs contributes to the fundamental understanding of the IX dynamics in moiré superlattices and may have important applications, such as in exciton condensate, quantum information protocols, and quantum cascade lasers.
Collapse
Affiliation(s)
- Qinghai Tan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Abdullah Rasmita
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhaowei Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - K S Novoselov
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Wei-Bo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
- Centre for Quantum Technologies, National University of Singapore, 117543 Singapore, Singapore
| |
Collapse
|
16
|
Quan C, Xing X, Jia T, Zhang Z, Wang C, Huang S, Liu Z, Du J, Leng Y. Hot Carrier Transfer in PtSe 2/Graphene Enabled by the Hot Phonon Bottleneck. J Phys Chem Lett 2022; 13:9456-9463. [PMID: 36197092 DOI: 10.1021/acs.jpclett.2c02378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The charge transfer (CT) process of two-dimensional (2D) graphene/transition metal dichalcogenides (TMDs) heterostructures makes the photoelectric conversion ability of TMDs into a wider spectral range for the light harvester and photoelectric detector applications. However, the direct in situ investigation of the hot carrier transport in graphene/TMDs heterostructures has been rarely reported. Herein, using the optical pump and a terahertz (THz) probe (OPTP) spectroscopy, the CT process from graphene to five-layer PtSe2 in the PtSe2/graphene (P/G) heterostructure is demonstrated to be related to the pump fluence, which is enabled by the hot phonon bottleneck (HPB) effect in graphene. Furthermore, the frequency dispersion conductivity and the THz emission spectroscopy of the P/G heterostructure confirmed the existence of interlayer CT and its pump fluence-dependent behavior. Our results provide in-depth physical insights into the CT mechanism at the P/G van der Waals interface, which is crucial for further exploration of optoelectronic devices based on P/G heterostructures.
Collapse
Affiliation(s)
- Chenjing Quan
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- School of Physics Science and Engineering, Tongji University, Shanghai200092, People's Republic of China
| | - Xiao Xing
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
| | - Tingyuan Jia
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Zeyu Zhang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Chunwei Wang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Sihao Huang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Zhengzheng Liu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
| | - Juan Du
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Yuxin Leng
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, People's Republic of China
- School of Physics Science and Engineering, Tongji University, Shanghai200092, People's Republic of China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| |
Collapse
|
17
|
Ji J, Choi JH. Recent progress in 2D hybrid heterostructures from transition metal dichalcogenides and organic layers: properties and applications in energy and optoelectronics fields. NANOSCALE 2022; 14:10648-10689. [PMID: 35839069 DOI: 10.1039/d2nr01358d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomically thin transition metal dichalcogenides (TMDs) present extraordinary optoelectronic, electrochemical, and mechanical properties that have not been accessible in bulk semiconducting materials. Recently, a new research field, 2D hybrid heteromaterials, has emerged upon integrating TMDs with molecular systems, including organic molecules, polymers, metal-organic frameworks, and carbonaceous materials, that can tailor the TMD properties and exploit synergetic effects. TMD-based hybrid heterostructures can meet the demands of future optoelectronics, including supporting flexible, transparent, and ultrathin devices, and energy-based applications, offering high energy and power densities with long cycle lives. To realize such applications, it is necessary to understand the interactions between the hybrid components and to develop strategies for exploiting the distinct benefits of each component. Here, we provide an overview of the current understanding of the new phenomena and mechanisms involved in TMD/organic hybrids and potential applications harnessing such valuable materials in an insightful way. We highlight recent discoveries relating to multicomponent hybrid materials. Finally, we conclude this review by discussing challenges related to hybrid heteromaterials and presenting future directions and opportunities in this research field.
Collapse
Affiliation(s)
- Jaehoon Ji
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
18
|
Formation of moiré interlayer excitons in space and time. Nature 2022; 608:499-503. [PMID: 35978130 DOI: 10.1038/s41586-022-04977-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
Moiré superlattices in atomically thin van der Waals heterostructures hold great promise for extended control of electronic and valleytronic lifetimes1-7, the confinement of excitons in artificial moiré lattices8-13 and the formation of exotic quantum phases14-18. Such moiré-induced emergent phenomena are particularly strong for interlayer excitons, where the hole and the electron are localized in different layers of the heterostructure19,20. To exploit the full potential of correlated moiré and exciton physics, a thorough understanding of the ultrafast interlayer exciton formation process and the real-space wavefunction confinement is indispensable. Here we show that femtosecond photoemission momentum microscopy provides quantitative access to these key properties of the moiré interlayer excitons. First, we elucidate that interlayer excitons are dominantly formed through femtosecond exciton-phonon scattering and subsequent charge transfer at the interlayer-hybridized Σ valleys. Second, we show that interlayer excitons exhibit a momentum fingerprint that is a direct hallmark of the superlattice moiré modification. Third, we reconstruct the wavefunction distribution of the electronic part of the exciton and compare the size with the real-space moiré superlattice. Our work provides direct access to interlayer exciton formation dynamics in space and time and reveals opportunities to study correlated moiré and exciton physics for the future realization of exotic quantum phases of matter.
Collapse
|
19
|
Karni O, Esin I, Dani KM. Through the Lens of a Momentum Microscope: Viewing Light-Induced Quantum Phenomena in 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2204120. [PMID: 35817468 DOI: 10.1002/adma.202204120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Van der Waals (vdW) materials at their 2D limit are diverse, flexible, and unique laboratories to study fundamental quantum phenomena and their future applications. Their novel properties rely on their pronounced Coulomb interactions, variety of crystal symmetries and spin-physics, and the ease of incorporation of different vdW materials to form sophisticated heterostructures. In particular, the excited state properties of many 2D semiconductors and semi-metals are relevant for their technological applications, particularly those that can be induced by light. In this paper, the recent advances made in studying out-of-equilibrium, light-induced, phenomena in these materials are reviewed using powerful, surface-sensitive, time-resolved photoemission-based techniques, with a particular emphasis on the emerging multi-dimensional photoemission spectroscopy technique of time-resolved momentum microscopy. The advances this technique has enabled in studying the nature and dynamics of occupied excited states in these materials are discussed. Then, the future research directions opened by these scientific and instrumental advancements are projected for studying the physics of 2D materials and the opportunities to engineer their band-structure and band-topology by laser fields.
Collapse
Affiliation(s)
- Ouri Karni
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Iliya Esin
- Department of Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Keshav M Dani
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
20
|
Purz TL, Martin EW, Holtzmann WG, Rivera P, Alfrey A, Bates KM, Deng H, Xu X, Cundiff ST. Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides. J Chem Phys 2022; 156:214704. [DOI: 10.1063/5.0087544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transition metal dichalcogenides (TMDs) are regarded as a possible material platform for quantum information science and related device applications. In TMD monolayers, the dephasing time and inhomogeneity are crucial parameters for any quantum information application. In TMD heterostructures, coupling strength and interlayer exciton lifetimes are also parameters of interest. However, many demonstrations in TMDs can only be realized at specific spots on the sample, presenting a challenge to the scalability of these applications. Here, using multi-dimensional coherent imaging spectroscopy, we shed light on the underlying physics—including dephasing, inhomogeneity, and strain—for a MoSe2 monolayer and identify both promising and unfavorable areas for quantum information applications. We, furthermore, apply the same technique to a MoSe2/WSe2 heterostructure. Despite the notable presence of strain and dielectric environment changes, coherent and incoherent coupling and interlayer exciton lifetimes are mostly robust across the sample. This uniformity is despite a significantly inhomogeneous interlayer exciton photoluminescence distribution that suggests a bad sample for device applications. This robustness strengthens the case for TMDs as a next-generation material platform in quantum information science and beyond.
Collapse
Affiliation(s)
- Torben L. Purz
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Eric W. Martin
- MONSTR Sense Technologies LLC, Ann Abor, Michigan 48104, USA
| | - William G. Holtzmann
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
| | - Pasqual Rivera
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
| | - Adam Alfrey
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Kelsey M. Bates
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Hui Deng
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
| | - Steven T. Cundiff
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
21
|
Cao W, Hod O, Urbakh M. Interlayer Registry Index of Layered Transition Metal Dichalcogenides. J Phys Chem Lett 2022; 13:3353-3359. [PMID: 35394797 PMCID: PMC9140326 DOI: 10.1021/acs.jpclett.1c04202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Inspired by the fascinating electronic properties of twisted transition metal dichalcogenides, we extend the registry index approach to quantify the interlayer commensurability of homogeneous and heterogeneous interfaces of MoS2, WS2, MoSe2, and WSe2. The developed geometric measure provides quantitative information about their sliding energy landscape with vast mechanical and tribological implications. Furthermore, the registry index is highly suitable for characterizing surface reconstruction in twisted transition metal dichalcogenide interfaces that dictates their intricate electronic and ferroelectric properties. The simple and intuitive nature of the registry index marks it as a powerful computational tool for studying the fascinating physical phenomena demonstrated by these materials.
Collapse
|
22
|
Cheng Z, Niu X, Jiang S, Zhang Q. State-selective exciton–plasmon interplay in a hybrid WSe 2/CuFeS 2 nanosystem. J Chem Phys 2022; 156:144701. [DOI: 10.1063/5.0090467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The integration of confined exciton and localized surface plasmon in a hybrid nanostructure has recently stimulated extensive interests. The mechanistic insights into the elusive exciton–plasmon interplay at the nanoscale are of both fundamental and applicable values. Herein, by taking a hybrid WSe2/CuFeS2 system as a prototype, in which the excitonic semiconductor WSe2 nanosheets are interfaced with the plasmonic semiconductor CuFeS2 nanocrystals to form a heterostructure, we design and perform an ultrafast dynamics study to glean information in this regard. Specifically, the band-alignment relationship between the two components enables the contrasting case studies in which the excitonic excited states of WSe2 are pre-selected to be on-/off-resonant with the plasmon band of CuFeS2. As revealed by the joint observations from steady-state absorption and photoexcitation-dependent/temperature-dependent femtosecond time-resolved transient absorption (fs-TA) spectroscopy, an effective energy transfer process occurs in this exciton–plasmon system where the energy donor (acceptor) is the excitonic WSe2 (plasmonic CuFeS2) and its efficiency is modulated by the exciton–plasmon coupling strength. Furthermore, as inferred from the temperature-dependent fs-TA analysis, the opening of such an energy-transfer channel turns out to take place during the early phase of plasmon decay (∼1 ps). In addition, the activation energy of energy transfer for a specific exciton-state-selected case is estimated (∼200 meV). This work provides a dynamics perspective to the plasmon semiconductor-involved exciton–plasmon interplay that features excited-state selectivity of exciton band and, hence, would be of guiding value for rational design and optimization of relevant applications based on exciton–plasmon manipulation.
Collapse
Affiliation(s)
- Zhiqiang Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyou Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shenlong Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|