1
|
Patel S, Salaman SD, Kapoor DU, Yadav R, Sharma S. Latest developments in biomaterial interfaces and drug delivery: challenges, innovations, and future outlook. Z NATURFORSCH C 2024:znc-2024-0208. [PMID: 39566511 DOI: 10.1515/znc-2024-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
An ideal drug carrier system should demonstrate optimal payload and release characteristics, thereby ensuring prolonged therapeutic index while minimizing adverse effects. The field of drug delivery has undergone significant advancements, particularly within the last two decades, owing to the revolutionary impact of biomaterials. The use of biomaterials presents significant due to their biocompatibility and biodegradability, which must be addressed in order to achieve effective drug delivery. The properties of the biomaterial and its interface are primarily influenced by their physicochemical attributes, physiological barriers, cellular trafficking, and immunomodulatory effects. By attuning these barriers, regulating the physicochemical properties, and masking the immune system's response, the bio interface can be effectively modulated, leading to the development of innovative supramolecular structures with enhanced effectiveness. With a comprehensive understanding of these technologies, there is a growing demand for repurposing existing drugs for new therapeutic indications within this space. This review aims to provide a substantial body of evidence showcasing the productiveness of biomaterials and their interface in drug delivery, as well as methods for mitigating and modulating barriers and physicochemical properties along with an examination of future prospects in this field.
Collapse
Affiliation(s)
- Saraswati Patel
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Samsi D Salaman
- Apollo College of Pharmacy, Mevaloorkuppam, Kanchipuram, 602105, Tamil Nadu, India
| | - Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Sardar Baug, Station Road, 394601 Bardoli, Gujarat, India
| | - Richa Yadav
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, P.O., Rajasthan, 304022, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, P.O., Rajasthan, 304022, India
| |
Collapse
|
2
|
Lee J, Tang Y, Cureño Hernandez KE, Kim S, Lee R, Cartwright Z, Pochan DJ, Herrera-Alonso M. Ultrastable and Redispersible Zwitterionic Bottlebrush Micelles for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39370599 DOI: 10.1021/acsami.4c10968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Bottlebrush copolymers are increasingly used for drug delivery and biological imaging applications in part due to the enhanced thermodynamic stability of their self-assemblies. Herein, we discuss the effect of hydrophilic block chemistry on the stability of bottlebrush micelles. Amphiphilic bottlebrushes with zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and nonionic polyethylene glycol (PEG) hydrophilic blocks were synthesized by "grafting from" polymerization and self-assembled into well-defined spherical micelles. Colloidal stability and stability against disassembly were challenged under high concentrations of NaCl, MgSO4, sodium dodecyl sulfate, fetal bovine serum, and elevated temperature. While both types of micelles appeared to be stable in many of these conditions, those with a PMPC shell consistently surpassed their PEG analogs. Moreover, when repeatedly subjected to lyophilization/resuspension cycles, PMPC micelles redispersed with no apparent variation in size or dispersity even in the absence of a cryoprotectant; PEG micelles readily aggregated. The observed excellent stability of PMPC micelles is attributed to the low critical micelle concentration of the bottlebrushes as well as to the strong hydration shell caused by ionic solvation of the phosphorylcholine moieties. Zwitterionic micelles were loaded with doxorubicin, and higher loading capacity/efficiency, as well as delayed release, was observed with increasing side-chain length. Finally, hemocompatibility studies of PMPC micelles demonstrated no disruption to the red blood cell membranes. The growing concern regarding the immunogenicity of PEG-based systems propels the search for alternative hydrophilic polymers; in this respect and for their outstanding stability, zwitterionic bottlebrush micelles represent excellent candidates for drug delivery and bioimaging applications.
Collapse
Affiliation(s)
- Jeonghun Lee
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yao Tang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Karla E Cureño Hernandez
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sunghoon Kim
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Rahmi Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Zachary Cartwright
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Margarita Herrera-Alonso
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
3
|
Zheng JJ, Li QZ, Wang Z, Wang X, Zhao Y, Gao X. Computer-aided nanodrug discovery: recent progress and future prospects. Chem Soc Rev 2024; 53:9059-9132. [PMID: 39148378 DOI: 10.1039/d3cs00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xiaoli Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuliang Zhao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
4
|
Phan NM, Nguyen TL, Choi Y, Mo XW, Trinh TA, Yi GR, Kim J. High Cellular Internalization of Virus-Like Mesoporous Silica Nanoparticles Enhances Adaptive Antigen-Specific Immune Responses against Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45917-45928. [PMID: 39178210 DOI: 10.1021/acsami.4c07106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Effective activation of an antigen-specific immune response hinges upon the intracellular delivery of cancer antigens to antigen-presenting cells (APCs), marking the initial stride in cancer vaccine development. Leveraging biomimetic topological morphology, we employed virus-like mesoporous silica nanoparticles (VMSNs) coloaded with antigens and toll-like receptor 9 (TLR9) agonists to craft a potent cancer vaccine. Our VMSNs could be efficiently internalized by APCs to a greater extent than their nonviral structured counterparts, thereby promoting the activation of APCs by upregulating the TLR9 pathway and cross-presenting ovalbumin (OVA) epitopes. In in vivo animal study, VMSN-based nanovaccines triggered substantial CD4+ and CD8+ lymphocyte populations in both lymph nodes and spleen while inducing the effector memory of adaptive T cells. Consequently, VMSN-based nanovaccines suppressed tumor progression and increased the survival rate of B16-OVA-bearing mice in both prophylactic and therapeutic studies. The combination of immune checkpoint blockade (ICB) with the VMSN-based nanovaccine has synergistic effects in significantly preventing tumor progression under therapeutic conditions. These findings highlight the potential of viral structure-mimicking mesoporous silica nanoparticles as promising candidates for antigen-delivering nanocarriers in vaccine development.
Collapse
Affiliation(s)
- Ngoc Man Phan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- South Australian ImmunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia 5005, Australia
| | - Youngjin Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Xin Wang Mo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thuy An Trinh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Grundler J, Whang CH, Shin K, Savan NA, Zhong M, Saltzman WM. Modifying the Backbone Chemistry of PEG-Based Bottlebrush Block Copolymers for the Formation of Long-Circulating Nanoparticles. Adv Healthc Mater 2024; 13:e2304040. [PMID: 38734871 PMCID: PMC11368614 DOI: 10.1002/adhm.202304040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Nanoparticle physicochemical properties have received great attention in optimizing the performance of nanoparticles for biomedical applications. For example, surface functionalization with small molecules or linear hydrophilic polymers is commonly used to tune the interaction of nanoparticles with proteins and cells. However, it is challenging to control the location of functional groups within the shell for conventional nanoparticles. Nanoparticle surfaces composed of shape-persistent bottlebrush polymers allow hierarchical control over the nanoparticle shell but the effect of the bottlebrush backbone on biological interactions is still unknown. The synthesis is reported of novel heterobifunctional poly(ethylene glycol) (PEG)-norbornene macromonomers modified with various small molecules to form bottlebrush polymers with different backbone chemistries. It is demonstrated that micellar nanoparticles composed of poly(lactic acid) (PLA)-PEG bottlebrush block copolymer (BBCP) with neutral and cationic backbone modifications exhibit significantly reduced cellular uptake compared to conventional unmodified BBCPs. Furthermore, the nanoparticles display long blood circulation half-lives of ≈22 hours and enhanced tumor accumulation in mice. Overall, this work sheds light on the importance of the bottlebrush polymer backbone and provides a strategy to improve the performance of nanoparticles in biomedical applications.
Collapse
Affiliation(s)
- Julian Grundler
- Department of Chemistry and Department of Biomedical Engineering, Yale University, New Haven, CT 06511 (USA)
| | - Chang-Hee Whang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511 (USA)
| | - Kwangsoo Shin
- Department of Polymer Science & Engineering and Environmental Engineering, Inha University, Incheon, 22212 (Korea), Inha University, Incheon, 22212 (Korea)
| | - N. Anna Savan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511 (USA), Medical Scientist Training Program, Yale School of Medicine, New Haven, CT 06510 (USA)
| | - Mingjiang Zhong
- Department of Chemical Engineering and Department of Chemistry, Yale University, New Haven, CT 06511 (USA)
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511 (USA), Department of Cellular & Molecular Physiology and Department of Dermatology, Yale School of Medicine, New Haven, CT 06510 (USA)
| |
Collapse
|
6
|
Song J, Fransen PPKH, Bakker MH, Wijnands SPW, Huang J, Guo S, Dankers PYW. The effect of charge and albumin on cellular uptake of supramolecular polymer nanostructures. J Mater Chem B 2024; 12:4854-4866. [PMID: 38682307 PMCID: PMC11111113 DOI: 10.1039/d3tb02631k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/30/2024] [Indexed: 05/01/2024]
Abstract
Intracellular delivery of functional biomolecules by using supramolecular polymer nanostructures has gained significant interest. Here, various charged supramolecular ureido-pyrimidinone (UPy)-aggregates were designed and formulated via a simple "mix-and-match" method. The cellular internalization of these UPy-aggregates in the presence or absence of serum proteins by phagocytic and non-phagocytic cells, i.e., THP-1 derived macrophages and immortalized human kidney cells (HK-2 cells), was systematically investigated. In the presence of serum proteins the UPy-aggregates were taken up by both types of cells irrespective of the charge properties of the UPy-aggregates, and the UPy-aggregates co-localized with mitochondria of the cells. In the absence of serum proteins only cationic UPy-aggregates could be effectively internalized by THP-1 derived macrophages, and the internalized UPy-aggregates either co-localized with mitochondria or displayed as vesicular structures. While the cationic UPy-aggregates were hardly internalized by HK-2 cells and could only bind to the membrane of HK-2 cells. With adding and increasing the amount of serum albumin in the cell culture medium, the cationic UPy-aggregates were gradually taken up by HK-2 cells without anchoring on the cell membranes. It is proposed that the serum albumin regulates the cellular internalization of UPy-aggregates. These results provide fundamental insights for the fabrication of supramolecular polymer nanostructures for intracellular delivery of therapeutics.
Collapse
Affiliation(s)
- Jiankang Song
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Peter-Paul K H Fransen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Maarten H Bakker
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Sjors P W Wijnands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Jingyi Huang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Shuaiqi Guo
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| |
Collapse
|
7
|
Forgham H, Zhu J, Zhang T, Huang X, Li X, Shen A, Biggs H, Talbo G, Xu C, Davis TP, Qiao R. Fluorine-modified polymers reduce the adsorption of immune-reactive proteins to PEGylated gold nanoparticles. Nanomedicine (Lond) 2024; 19:995-1012. [PMID: 38593053 PMCID: PMC11221377 DOI: 10.2217/nnm-2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/23/2024] [Indexed: 04/11/2024] Open
Abstract
Aim: To investigate the influence of fluorine in reducing the adsorption of immune-reactive proteins onto PEGylated gold nanoparticles. Methods: Reversible addition fragmentation chain transfer polymerization, the Turkevich method and ligand exchange were used to prepare polymer-coated gold nanoparticles. Subsequent in vitro physicochemical and biological characterizations and proteomic analysis were performed. Results: Fluorine-modified polymers reduced the adsorption of complement and other immune-reactive proteins while potentially improving circulatory times and modulating liver toxicity by reducing apolipoprotein E adsorption. Fluorine actively discouraged phagocytosis while encouraging the adsorption of therapeutic targets, CD209 and signaling molecule calreticulin. Conclusion: This study suggests that the addition of fluorine in the surface coating of nanoparticles could lead to improved performance in nanomedicine designed for the intravenous delivery of cargos.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jiayuan Zhu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Taoran Zhang
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiangke Li
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ao Shen
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Heather Biggs
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Gert Talbo
- Metabolomics Australia (Queensland Node), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, Queensland, 4006, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
8
|
Dridi N, Jin Z, Perng W, Mattoussi H. Probing Protein Corona Formation around Gold Nanoparticles: Effects of Surface Coating. ACS NANO 2024; 18:8649-8662. [PMID: 38471029 DOI: 10.1021/acsnano.3c08005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
There has been much interest in integrating various inorganic nanoparticles (nanoscale colloids) in biology and medicine. However, buildup of a protein corona around the nanoparticles in biological media, driven by nonspecific interactions, remains a major hurdle for the translation of nanomedicine into clinical applications. In this study, we investigate the interactions between gold nanoparticles and serum proteins using a series of dihydrolipoic acid (DHLA)-based ligands. We employed gel electrophoresis combined with UV-vis absorption and dynamic light scattering to correlate protein adsorption with the nature and size of the ligand used. For instance, we found that AuNPs capped with DHLA alone promote nonspecific protein adsorption. In comparison, capping AuNPs with polyethylene glycol- or zwitterion-appended DHLA essentially prevents corona formation, regardless of ligand charge and size. Our results highlight the crucial role of surface chemistry and core material in protein corona formation and offer valuable information for the design of colloidal nanomaterials for biological applications.
Collapse
Affiliation(s)
- Narjes Dridi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Woody Perng
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
9
|
Miao Y, Li L, Wang Y, Wang J, Zhou Y, Guo L, Zhao Y, Nie D, Zhang Y, Zhang X, Gan Y. Regulating protein corona on nanovesicles by glycosylated polyhydroxy polymer modification for efficient drug delivery. Nat Commun 2024; 15:1159. [PMID: 38326312 PMCID: PMC10850157 DOI: 10.1038/s41467-024-45254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
The dynamic protein corona formed on nanocarriers has been revealed to strongly affect their in vivo behaviors. Precisely manipulating the formation of protein corona on nanocarriers may provide an alternative impetus for specific drug delivery. Herein, we explore the role of glycosylated polyhydroxy polymer-modified nanovesicles (CP-LVs) with different amino/hydroxyl ratios in protein corona formation and evolution. CP-LVs with an amino/hydroxyl ratio of approximately 0.4 (CP1-LVs) are found to efficiently suppress immunoglobulin adsorption in blood and livers, resulting in prolonged circulation. Moreover, CP1-LVs adsorb abundant tumor distinctive proteins, such as CD44 and osteopontin in tumor interstitial fluids, mediating selective tumor cell internalization. The proteins corona transformation specific to the environment appears to be affected by the electrostatic interaction between CP-LVs and proteins with diverse isoelectric points. Benefiting from surface modification-mediated protein corona regulation, paclitaxel-loaded CP1-LVs demonstrate superior antitumor efficacy to PEGylated liposomes. Our work offers a perspective on rational surface-design of nanocarriers to modulate the protein corona formation for efficient drug delivery.
Collapse
Affiliation(s)
- Yunqiu Miao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Lijun Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangyue Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yihan Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linmiao Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yanqi Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
10
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
11
|
Grundler J, Shin K, Suh HW, Whang CH, Fulgoni G, Pierce RW, Saltzman WM. Nanoscale Surface Topography of Polyethylene Glycol-Coated Nanoparticles Composed of Bottlebrush Block Copolymers Prolongs Systemic Circulation and Enhances Tumor Uptake. ACS NANO 2024; 18:2815-2827. [PMID: 38227820 DOI: 10.1021/acsnano.3c05921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Improving the performance of nanocarriers remains a major challenge in the clinical translation of nanomedicine. Efforts to optimize nanoparticle formulations typically rely on tuning the surface density and thickness of stealthy polymer coatings, such as poly(ethylene glycol) (PEG). Here, we show that modulating the surface topography of PEGylated nanoparticles using bottlebrush block copolymers (BBCPs) significantly enhances circulation and tumor accumulation, providing an alternative strategy to improve nanoparticle coatings. Specifically, nanoparticles with rough surface topography achieve high tumor cell uptake in vivo due to superior tumor extravasation and distribution compared to conventional smooth-surfaced nanoparticles based on linear block copolymers. Furthermore, surface topography profoundly impacts the interaction with serum proteins, resulting in the adsorption of fundamentally different proteins onto the surface of rough-surfaced nanoparticles formed from BBCPs. We envision that controlling the nanoparticle surface topography of PEGylated nanoparticles will enable the design of improved nanocarriers in various biomedical applications.
Collapse
Affiliation(s)
| | - Kwangsoo Shin
- Department of Polymer Science & Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | | | | | | | | | | |
Collapse
|
12
|
Yang C, Nguyen DD, Lai J. Poly(l-Histidine)-Mediated On-Demand Therapeutic Delivery of Roughened Ceria Nanocages for Treatment of Chemical Eye Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302174. [PMID: 37430140 PMCID: PMC10502830 DOI: 10.1002/advs.202302174] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/10/2023] [Indexed: 07/12/2023]
Abstract
Development of topical bioactive formulations capable of overcoming the low bioavailability of conventional eye drops is critically important for efficient management of ocular chemical burns. Herein, a nanomedicine strategy is presented to harness the surface roughness-controlled ceria nanocages (SRCNs) and poly(l-histidine) surface coatings for triggering multiple bioactive roles of intrinsically therapeutic nanocarriers and promoting transport across corneal epithelial barriers as well as achieving on-demand release of dual drugs [acetylcholine chloride (ACh) and SB431542] at the lesion site. Specifically, the high surface roughness helps improve cellular uptake and therapeutic activity of SRCNs while exerting a negligible impact on good ocular biocompatibility of the nanomaterials. Moreover, the high poly(l-histidine) coating amount can endow the SRCNs with an ≈24-fold enhancement in corneal penetration and an effective smart release of ACh and SB431542 in response to endogenous pH changes caused by tissue injury/inflammation. In a rat model of alkali burn, topical single-dose nanoformulation can efficaciously reduce corneal wound areas (19-fold improvement as compared to a marketed eye drops), attenuate ≈93% abnormal blood vessels, and restore corneal transparency to almost normal at 4 days post-administration, suggesting great promise for designing multifunctional metallic nanotherapeutics for ocular pharmacology and tissue regenerative medicine.
Collapse
Affiliation(s)
- Chia‐Jung Yang
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Duc Dung Nguyen
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Jui‐Yang Lai
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
- Department of OphthalmologyChang Gung Memorial Hospital, LinkouTaoyuan33305Taiwan
- Department of Materials EngineeringMing Chi University of TechnologyNew Taipei City24301Taiwan
- Research Center for Chinese Herbal MedicineCollege of Human EcologyChang Gung University of Science and TechnologyTaoyuan33303Taiwan
| |
Collapse
|
13
|
Richfield O, Piotrowski-Daspit AS, Shin K, Saltzman WM. Rational nanoparticle design: Optimization using insights from experiments and mathematical models. J Control Release 2023; 360:772-783. [PMID: 37442201 PMCID: PMC10529591 DOI: 10.1016/j.jconrel.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Polymeric nanoparticles are highly tunable drug delivery systems that show promise in targeting therapeutics to specific sites within the body. Rational nanoparticle design can make use of mathematical models to organize and extend experimental data, allowing for optimization of nanoparticles for particular drug delivery applications. While rational nanoparticle design is attractive from the standpoint of improving therapy and reducing unnecessary experiments, it has yet to be fully realized. The difficulty lies in the complexity of nanoparticle structure and behavior, which is added to the complexity of the physiological mechanisms involved in nanoparticle distribution throughout the body. In this review, we discuss the most important aspects of rational design of polymeric nanoparticles. Ultimately, we conclude that many experimental datasets are required to fully model polymeric nanoparticle behavior at multiple scales. Further, we suggest ways to consider the limitations and uncertainty of experimental data in creating nanoparticle design optimization schema, which we call quantitative nanoparticle design frameworks.
Collapse
Affiliation(s)
- Owen Richfield
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06511, USA; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, USA; Department of Dermatology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
14
|
Liu Y, Zhu S, Fan J, Guo W, Min Y, Jiang X, Li J. Photo-Cross-Linked Polymeric Dispersants of Comb-Shaped Benzophenone-Containing Poly(ether amine). ACS APPLIED MATERIALS & INTERFACES 2023; 15:19470-19479. [PMID: 37023404 DOI: 10.1021/acsami.3c02395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Efficient dispersion of nanoparticles (NPs) is a crucial challenge in the preparation and application of composites that contain NPs, particularly in coatings, inks, and related materials. Physical adsorption and chemical modification are the two common methods used to disperse NPs. However, the former suffers from desorption, and the latter is more specific and has limited versatility. To address these issues, we developed a novel photo-cross-linked polymeric dispersant, comb-shaped benzophenone-containing poly(ether amine) (bPEA), using a one-pot nucleophilic/cyclic-opening addition reaction. The results demonstrated that the bPEA dispersant forms a dense and stable shell on the surface of pigment NPs through physical adsorption and subsequent chemical photo-cross-linking, which effectively overcome the drawbacks of the desorption occurred in physical adsorption and the specificity of the chemical modification. By means of the dispersing effect of bPEA, the obtained pigment dispersions show high solvent, thermal, and pH stability without flocculation during storage. Moreover, the NPs dispersants show good compatibility with screen printing, coating, and 3D printing, endowing the ornamental products with high uniformity, color fastness, and less color shading. These properties make bPEA dispersants ideal candidates in fabrication dispersions of other NPs.
Collapse
Affiliation(s)
- Yanchi Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanfeng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinchen Fan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenyao Guo
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Lee JH, Chapman DV, Saltzman WM. Nanoparticle Targeting with Antibodies in the Central Nervous System. BME FRONTIERS 2023; 4:0012. [PMID: 37849659 PMCID: PMC10085254 DOI: 10.34133/bmef.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/19/2023] [Indexed: 10/19/2023] Open
Abstract
Treatments for disease in the central nervous system (CNS) are limited because of difficulties in agent penetration through the blood-brain barrier, achieving optimal dosing, and mitigating off-target effects. The prospect of precision medicine in CNS treatment suggests an opportunity for therapeutic nanotechnology, which offers tunability and adaptability to address specific diseases as well as targetability when combined with antibodies (Abs). Here, we review the strategies to attach Abs to nanoparticles (NPs), including conventional approaches of chemisorption and physisorption as well as attempts to combine irreversible Ab immobilization with controlled orientation. We also summarize trends that have been observed through studies of systemically delivered Ab-NP conjugates in animals. Finally, we discuss the future outlook for Ab-NPs to deliver therapeutics into the CNS.
Collapse
Affiliation(s)
| | | | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Hou W, Zhang Z, Shi Y, Chen Y. Co-Assembly of Diblock Copolymers and Molecular Bottlebrushes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wangmeng Hou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhen Zhang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Müllner M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem Commun (Camb) 2022; 58:5683-5716. [PMID: 35445672 DOI: 10.1039/d2cc01601j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular polymer bottlebrushes are densely grafted, individual macromolecules with nanoscale proportions. The last decade has seen an increased focus on this material class, especially in nanomedicine and for biomedical applications. This Feature Article provides an overview of major developments in this area to highlight the many opportunities that these polymer architectures bring to nano-bio research. The article covers aspects of bottlebrush synthesis and summarises their use in drug and gene delivery, imaging, as theranostics and as prototype materials to correlate nanoparticle structure and composition to biological function and behaviour. Areas for future research in this area are discussed.
Collapse
Affiliation(s)
- Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Hassler JF, Van Zee NJ, Crabtree AA, Bates FS, Hackel BJ, Lodge TP. Synthesis and Micellization of Bottlebrush Poloxamers. ACS Macro Lett 2022; 11:460-467. [PMID: 35575325 PMCID: PMC9726453 DOI: 10.1021/acsmacrolett.2c00053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bottlebrush polymers are characterized by an expansive parameter space, including graft length and spacing along the backbone, and these features impact various structural and physical properties such as molecular diffusion and bulk viscosity. In this work, we report a synthetic strategy for making grafted block polymers with poly(propylene oxide) and poly(ethylene oxide) side chains, bottlebrush analogues of poloxamers. Combined anionic and sequential ring-opening metathesis polymerization yielded low dispersity polymers, at full conversion of the macromonomers, with control over graft length, graft end-groups, and overall molecular weight. A set of bottlebrush poloxamers (BBPs), with identical graft lengths and composition, was synthesized over a range of molecular weights. Dynamic light scattering and transmission electron microscopy were used to characterize micelle formation in aqueous buffer. The critical micelle concentration scales exponentially with overall molecular weight for both linear and bottlebrush poloxamers; however, the bottlebrush architecture shifts micelle formation to a much higher concentration at a comparable molecular weight. Consequently, BBPs can exist in solution as unimers at significantly higher molecular weights and concentrations than the linear analogues.
Collapse
|