1
|
Xu Y, Dai X, Yan P, Wang J, Wang S, Deng Y, Liu Y, He K, Wang T, Li C, Xu Y, He L. Antisymmetric Magnetoresistance in a CrTe 2/Bi 2Te 3/CrTe 2 van der Waals Heterostructure Grown by MBE. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10129-10135. [PMID: 39895113 DOI: 10.1021/acsami.4c19932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The magnetoresistance (MR) of spin valves usually displays a symmetric dependence on the magnetic field. An antisymmetric MR phenomenon has been discovered recently that breaks field symmetry and has the potential to realize polymorphic memory. In this work, centimeter-size and high-quality CrTe2/Bi2Te3/CrTe2 van der Waals (vdWs) heterostructure devices have been prepared using molecular beam epitaxy (MBE). By changing the magnetization direction of the top and bottom layers of CrTe2, an antisymmetric MR effect with high, intermediate, and low resistance states has been found and persists up to 75K. The emergence of this antisymmetric MR phenomenon is attributed to the spin Hall effect, which generates spin currents with both spin-up and spin-down orientations on the upper and lower surfaces of Bi2Te3. The spin currents diffuse or reflect at the Bi2Te3/CrTe2 interfaces alongside the additional charge currents induced by the inverse spin Hall effect (ISHE). Through theoretical calculations, the existence of the antisymmetric MR effect has also been confirmed. Our work emphasizes the use of the MBE technology to grow vdWs heterostructures to explore new physical phenomena and potential applications of spin electronic devices in polymorphic solid-state storage.
Collapse
Affiliation(s)
- Yongkang Xu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Xingze Dai
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Pengfei Yan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Jin Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Shuanghai Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Yafeng Deng
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Yu Liu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Kun He
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Taikun Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Caitao Li
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Yongbing Xu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| | - Liang He
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210000, China
- State Key Laboratory of Spintronics, Nanjing University, Suzhou 210000, China
| |
Collapse
|
2
|
Ni Y, Guo Y, Jiang YY, Huang T, Mu Q, Hou F, Li T, Wang S, Zhang Z, Shao D, Ding X, Min T, Li T. Emergent Skyrmions in Cr 0.85Te nanoflakes at Room Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409189. [PMID: 39668423 DOI: 10.1002/smll.202409189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Chiral noncollinear magnetic nanostructures, such as skyrmions, are intriguing spin configurations with significant potential for magnetic memory technologies. However, the limited availability of 2D magnetic materials that host skyrmions with Curie temperatures above room temperature presents a major challenge for practical implementation. Chromium tellurides exhibit diverse spin configurations and remarkable stability under ambient conditions, making them a promising platform for fundamental spin physics research and the development of innovative 2D spintronic devices. Here, domain structures of Cr0.85Te nanoflakes synthesized via chemical vapor deposition are investigated, using magnetic force microscopy at room temperature. The results reveal that the domain width of the as-grown nanoflakes scales with the square root of their thicknesses. Notably, the emergence and annihilation of skyrmions are observed, which can be reversibly controlled by external magnetic fields and thermal excitation in ambient air. Micromagnetic simulations suggest that the emergence of skyrmions in Cr0.85Te nanoflakes arises from inversion symmetry breaking due to compositional gradients across the sample thickness, rather than the interfacial Dzyaloshinskii-Moriya interaction. These findings provide new insights into the mechanisms underlying skyrmion formation in 2D ferromagnets and open exciting possibilities for manipulating domain structures at room temperature, offering practical pathways for developing next-generation spintronic devices.
Collapse
Affiliation(s)
- Yan Ni
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yongxiang Guo
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yuan-Yuan Jiang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ting Huang
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Qiuxuan Mu
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Feiyan Hou
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, 030006, China
| | - Tiaoyang Li
- Fuzhou University-Jinjiang Joint Institute of Microelectronics and College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Shaohao Wang
- FZU-Jinjiang Joint Institute of Microelectronics, Jinjiang Campus, Fuzhou University, Jinjiang, 362200, China
| | - Zhen Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dingfu Shao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tai Min
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou, 215163, China
| | - Tao Li
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
3
|
He K, Bian M, Seddon SD, Jagadish K, Mucchietto A, Ren H, Kirstein E, Asadi R, Bai J, Yao C, Pan S, Yu J, Milde P, Huai C, Hui H, Zang J, Sabirianov R, Cheng XM, Miao G, Xing H, Shao Y, Crooker SA, Eng L, Hou Y, Bird JP, Zeng H. Unconventional Anomalous Hall Effect Driven by Self-Intercalation in Covalent 2D Magnet Cr 2Te 3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407625. [PMID: 39587440 PMCID: PMC11727383 DOI: 10.1002/advs.202407625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Indexed: 11/27/2024]
Abstract
Covalent 2D magnets such as Cr2Te3, which feature self-intercalated magnetic cations located between monolayers of transition-metal dichalcogenide material, offer a unique platform for controlling magnetic order and spin texture, enabling new potential applications for spintronic devices. Here, it is demonstrated that the unconventional anomalous Hall effect (AHE) in Cr2Te3, characterized by additional humps and dips near the coercive field in AHE hysteresis, originates from an intrinsic mechanism dictated by the self-intercalation. This mechanism is distinctly different from previously proposed mechanisms such as topological Hall effect, or two-channel AHE arising from spatial inhomogeneities. Crucially, multiple Weyl-like nodes emerge in the electronic band structure due to strong spin-orbit coupling, whose positions relative to the Fermi level is sensitively modulated by the canting angles of the self-intercalated Cr cations. These nodes contribute strongly to the Berry curvature and AHE conductivity. This component competes with the contribution from bands that are less affected by the self-intercalation, resulting in a sign change in AHE with temperature and the emergence of additional humps and dips. The findings provide compelling evidence for the intrinsic origin of the unconventional AHE in Cr2Te3 and further establish self-intercalation as a control knob for engineering AHE in complex magnets.
Collapse
Affiliation(s)
- Keke He
- Department of PhysicsUniversity at BuffaloThe State University of New YorkBuffaloNY14226USA
- Department of Electrical EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNY14226USA
| | - Mengying Bian
- Department of PhysicsUniversity at BuffaloThe State University of New YorkBuffaloNY14226USA
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
- College of Materials Science and EngineeringBeijing University of TechnologyBeijing100124China
| | - Samuel D. Seddon
- Institute of Applied PhysicsTechnical University of Dresden01187DresdenGermany
| | - Koushik Jagadish
- Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Andrea Mucchietto
- National High Magnetic Field LaboratoryLos Alamos National LabLos AlamosNM87545USA
| | - He Ren
- Department of Electrical and Computer Engineering Institute for Quantum ComputingUniversity of WaterlooOntarioN2L3G1Canada
| | - Erik Kirstein
- National High Magnetic Field LaboratoryLos Alamos National LabLos AlamosNM87545USA
| | - Reza Asadi
- Department of Electrical and Computer Engineering Institute for Quantum ComputingUniversity of WaterlooOntarioN2L3G1Canada
| | - Jaeil Bai
- Department of PhysicsUniversity of Nebraska‐OmahaOmahaNE68182USA
| | - Chao Yao
- Key Laboratory of Artificial Structures and Quantum ControlShanghai Center for Complex PhysicsSchool of Physics and AstronomyShanghai Jiao Tong UniversityShanghai200240China
| | - Sheng Pan
- School of Physical science and TechnologySoochow UniversitySuzhou215006China
| | - Jie‐Xiang Yu
- School of Physical science and TechnologySoochow UniversitySuzhou215006China
| | - Peter Milde
- Institute of Applied PhysicsTechnical University of Dresden01187DresdenGermany
| | - Chang Huai
- Department of PhysicsUniversity at BuffaloThe State University of New YorkBuffaloNY14226USA
| | - Haolei Hui
- Department of PhysicsUniversity at BuffaloThe State University of New YorkBuffaloNY14226USA
| | - Jiadong Zang
- Department of Physics and AstronomyUniversity of New HampshireDurhamNH03824USA
| | - Renat Sabirianov
- Department of PhysicsUniversity of Nebraska‐OmahaOmahaNE68182USA
| | | | - Guoxing Miao
- Department of Electrical and Computer Engineering Institute for Quantum ComputingUniversity of WaterlooOntarioN2L3G1Canada
| | - Hui Xing
- Key Laboratory of Artificial Structures and Quantum ControlShanghai Center for Complex PhysicsSchool of Physics and AstronomyShanghai Jiao Tong UniversityShanghai200240China
| | - Yu‐Tsun Shao
- Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Scott A. Crooker
- National High Magnetic Field LaboratoryLos Alamos National LabLos AlamosNM87545USA
| | - Lukas Eng
- Institute of Applied PhysicsTechnical University of Dresden01187DresdenGermany
| | - Yanglong Hou
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
- School of MaterialsSun Yat‐Sen UniversityShenzhen518107China
| | - Jonathan P. Bird
- Department of Electrical EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNY14226USA
| | - Hao Zeng
- Department of PhysicsUniversity at BuffaloThe State University of New YorkBuffaloNY14226USA
| |
Collapse
|
4
|
Röseler KD, Witteveen C, Besnard C, Pomjakushin V, Jeschke HO, von Rohr FO. Efficient soft-chemical synthesis of large van-der-Waals crystals of the room-temperature ferromagnet 1T-CrTe 2. JOURNAL OF MATERIALS CHEMISTRY. A 2024:d4ta05649c. [PMID: 39669521 PMCID: PMC11629937 DOI: 10.1039/d4ta05649c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
We herein report on a fast and convenient soft-chemical synthesis approach towards large 1T-CrTe2 van-der-Waals crystals. This compound is formed X-ray diffraction pure, with a complete conversion within just over 2 h from flux-grown LiCrTe2 crystals using diluted acids. Due to the availability of high-quality single crystals, we have confirmed the crystal structure for the first time by single-crystal X-ray diffraction experiments. For the acid deintercalated 1T-CrTe2 crystals, we find long-range ferromagnetic order with a Curie temperature of T C = 318 K. We further revealed the magnetic structure of 1T-CrTe2 using low-temperature neutron powder diffraction experiments and determined the magnetic Hamiltonian using density functional theory. X-ray diffraction experiments of post-annealed crystals suggest a thermal stability of 1T-CrTe2 up to at least 100 °C. Our findings expand the synthesis methods for 1T-CrTe2 crystals, which hold promise for integrated room-temperature spintronics applications.
Collapse
Affiliation(s)
- Kai D Röseler
- Department of Quantum Matter Physics, University of Geneva 24 Quai Ernest-Ansermet CH-1211 Geneva Switzerland
| | - Catherine Witteveen
- Department of Quantum Matter Physics, University of Geneva 24 Quai Ernest-Ansermet CH-1211 Geneva Switzerland
| | - Céline Besnard
- Department of Quantum Matter Physics, University of Geneva 24 Quai Ernest-Ansermet CH-1211 Geneva Switzerland
| | - Vladimir Pomjakushin
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
| | - Harald O Jeschke
- Research Institute for Interdisciplinary Science, Okayama University Okayama 700-8530 Japan
| | - Fabian O von Rohr
- Department of Quantum Matter Physics, University of Geneva 24 Quai Ernest-Ansermet CH-1211 Geneva Switzerland
| |
Collapse
|
5
|
Wang D, Wang X, Hu B, Wang J, Zou Y, Guo J, Li Z, Wang S, Li Y, Song G, Wang H, Liu Y. Strain- and Electron Doping-Induced In-Plane Spin Orientation at Room Temperature in Single-Layer CrTe 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28791-28797. [PMID: 38783664 DOI: 10.1021/acsami.4c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Ferromagnets with a Curie temperature surpassing room temperature (RT) are highly sought after for advancing planar spintronics. The ultrathin CrTe2 is proposed as a promising two-dimensional (2D) ferromagnet with a Curie temperature above 300 K. However, its single-layer film is highly susceptible to specific external perturbations, leading to variable magnetic features depending on the environment. The magnetic ordering of single-layer CrTe2 remains a topic of debate, and experimental confirmation of ferromagnetic order at RT is still pending. In our study, we utilized molecular beam epitaxy to create a single-layer 1T-CrTe2 on bilayer graphene, demonstrating ferromagnetism above 300 K with in-plane magnetization through superconducting quantum interference devices (SQUID) measurements. Our density functional theory (DFT) calculations suggest that the ferromagnetic properties stem from epitaxial strain, which increases the distance between adjacent Cr atoms within the layer by about 1.6% and enhances the Cr-Te-Cr angle by approximately 1.6°. Due to its interaction with the graphene substrate, the magnetic moment transitions from an out-of-plane to an in-plane orientation, while electronic doping exceeds 1.5 e/u.c. Combining DFT calculations with in situ scanning tunneling microscopy (STM) characterizations allowed us to determine the configuration of the CrTe2 single layer on graphene. This discovery presents the first experimental proof of ferromagnetic order in single-layer CrTe2 with a Curie temperature above RT, laying the groundwork for future applications of CrTe2 single-layer-based spintronic devices.
Collapse
Affiliation(s)
- Donghui Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xin Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bingxi Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jiaxuan Wang
- Department of Physics, Capital Normal University, Beijing 100048, P. R. China
| | - Yuxiao Zou
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Jin Guo
- Department of Physics, Capital Normal University, Beijing 100048, P. R. China
| | - Zezhong Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Shuting Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yunliang Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guofeng Song
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hai Wang
- Department of Physics, Capital Normal University, Beijing 100048, P. R. China
| | - Ying Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
6
|
Zhang X, Li Y, Lu Q, Xiang X, Sun X, Tang C, Mahdi M, Conner C, Cook J, Xiong Y, Inman J, Jin W, Liu C, Cai P, Santos EJG, Phatak C, Zhang W, Gao N, Niu W, Bian G, Li P, Yu D, Long S. Epitaxial Growth of Large-Scale 2D CrTe 2 Films on Amorphous Silicon Wafers With Low Thermal Budget. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311591. [PMID: 38426690 DOI: 10.1002/adma.202311591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/27/2024] [Indexed: 03/02/2024]
Abstract
2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal-oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO2) and silicon nitride (SiNx). Here, a seeded growth technique for crystallizing CrTe2 films on amorphous SiNx/Si and SiO2/Si substrates with a low thermal budget is presented. This fabrication process optimizes large-scale, granular atomic layers on amorphous substrates, yielding a substantial coercivity of 11.5 kilo-oersted, attributed to weak intergranular exchange coupling. Field-driven Néel-type stripe domain dynamics explain the amplified coercivity. Moreover, the granular CrTe2 devices on Si wafers display significantly enhanced magnetoresistance, more than doubling that of single-crystalline counterparts. Current-assisted magnetization switching, enabled by a substantial spin-orbit torque with a large spin Hall angle (85) and spin Hall conductivity (1.02 × 107 ℏ/2e Ω⁻¹ m⁻¹), is also demonstrated. These observations underscore the proficiency in manipulating crystallinity within integrated 2D magnetic films on Si wafers, paving the way for large-scale batch manufacturing of practical magnetoelectronic and spintronic devices, heralding a new era of technological innovation.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Yue Li
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Qiangsheng Lu
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
- Material Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xueqiang Xiang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaozhen Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Chunli Tang
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Muntasir Mahdi
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Clayton Conner
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Jacob Cook
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Yuzan Xiong
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jerad Inman
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Wencan Jin
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
- Department of Physics, Auburn University, Auburn, AL, 36849, USA
| | - Chang Liu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - PeiYu Cai
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Elton J G Santos
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, 20018, Basque Country, Spain
| | - Charudatta Phatak
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Zhang
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Nan Gao
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Niu
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Guang Bian
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Peng Li
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shibing Long
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
7
|
Gu K, Zhang X, Liu X, Guo X, Wu Z, Wang S, Song Q, Wang W, Wei L, Liu P, Ma J, Xu Y, Niu W, Pu Y. Exchange Bias Modulated by Antiferromagnetic Spin-Flop Transition in 2D Van der Waals Heterostructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307034. [PMID: 38353386 PMCID: PMC11077673 DOI: 10.1002/advs.202307034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/29/2024] [Indexed: 05/09/2024]
Abstract
Exchange bias is extensively studied and widely utilized in spintronic devices, such as spin valves and magnetic tunnel junctions. 2D van der Waals (vdW) magnets, with high-quality interfaces in heterostructures, provide an excellent platform for investigating the exchange bias effect. To date, intrinsic modulation of exchange bias, for instance, via precise manipulation of the magnetic phases of the antiferromagnetic layer, is yet to be fully reached, owing partly to the large exchange fields of traditional bulk antiferromagnets. Herein, motivated by the low-field spin-flop transition of a 2D antiferromagnet, CrPS4, exchange bias is explored by modulating the antiferromagnetic spin-flop phase transition in all-vdW magnetic heterostructures. The results demonstrate that undergoing the spin-flop transition during the field cooling process, the A-type antiferromagnetic ground state of CrPS4 turns into a canted antiferromagnetic one, therefore, it reduces the interfacial magnetic coupling and suppresses the exchange bias. Via conducting different cooling fields, one can select the exchange bias effect switching among the "ON", "depressed", and "OFF" states determined by the spin flop of CrPS4. This work provides an approach to intrinsically modulate the exchange bias in all-vdW heterostructures and paves new avenues to design and manipulate 2D spintronic devices.
Collapse
Affiliation(s)
- Kai Gu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of ScienceNanjing University of Posts and TelecommunicationsNanjing210023China
| | - Xiaoqian Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189China
- International Quantum AcademyShenzhen518048China
| | - Xiangjie Liu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of ScienceNanjing University of Posts and TelecommunicationsNanjing210023China
| | - Xinlei Guo
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of ScienceNanjing University of Posts and TelecommunicationsNanjing210023China
| | - Zhenqi Wu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of ScienceNanjing University of Posts and TelecommunicationsNanjing210023China
| | - Shuo Wang
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of ScienceNanjing University of Posts and TelecommunicationsNanjing210023China
| | - Qinxin Song
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of ScienceNanjing University of Posts and TelecommunicationsNanjing210023China
| | - Wei Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced MaterialsJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech UniversityNanjing211816China
| | - Lujun Wei
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of ScienceNanjing University of Posts and TelecommunicationsNanjing210023China
| | - Ping Liu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of ScienceNanjing University of Posts and TelecommunicationsNanjing210023China
| | - Jingrui Ma
- Key Laboratory of Energy Conversion and Storage TechnologiesSouthern University of Science and TechnologyShenzhen518055China
| | - Yongbing Xu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of ScienceNanjing University of Posts and TelecommunicationsNanjing210023China
- School of Electronic Science and EngineeringNanjing UniversityNanjing210023China
| | - Wei Niu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of ScienceNanjing University of Posts and TelecommunicationsNanjing210023China
- Key Laboratory of Energy Conversion and Storage TechnologiesSouthern University of Science and TechnologyShenzhen518055China
| | - Yong Pu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of ScienceNanjing University of Posts and TelecommunicationsNanjing210023China
| |
Collapse
|
8
|
Chen X, Wang H, Li M, Hao Q, Cai M, Dai H, Chen H, Xing Y, Liu J, Wang X, Zhai T, Zhou X, Han J. Manipulation and Optical Detection of Artificial Topological Phenomena in 2D Van der Waals Fe 5 GeTe 2 /MnPS 3 Heterostructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207617. [PMID: 37327250 PMCID: PMC10401167 DOI: 10.1002/advs.202207617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/20/2023] [Indexed: 06/18/2023]
Abstract
2D ferromagnet is a good platform to investigate topological effects and spintronic devices owing to its rich spin structures and excellent external-field tunability. The appearance of the topological Hall Effect (THE) is often regarded as an important sign of the generation of chiral spin textures, like magnetic vortexes or skyrmions. Here, interface engineering and an in-plane current are used to modulate the magnetic properties of the nearly room-temperature 2D ferromagnet Fe5 GeTe2 . An artificial topology phenomenon is observed in the Fe5 GeTe2 /MnPS3 heterostructure by using both anomalous Hall Effect and reflective magnetic circular dichroism (RMCD) measurements. Through tuning the applied current and the RMCD laser wavelength, the amplitude of the humps and dips observed in the hysteresis loops can be modulated accordingly. Magnetic field-dependent hysteresis loops demonstrate that the observed artificial topological phenomena are induced by the generation and annihilation of the magnetic domains. This work provides an optical method for investigating the topological-like effects in magnetic structures and proposes an effective way to modulate the magnetic properties of magnetic materials, which is important for developing magnetic and spintronic devices in van der Waals magnetic materials.
Collapse
Affiliation(s)
- Xiaodie Chen
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Manshi Li
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Qinghua Hao
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Menghao Cai
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Hongwei Dai
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Hongjing Chen
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Yuntong Xing
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Jie Liu
- State Key Laboratory of Materials Processing and Die & Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xia Wang
- School of Elementary EducationWuhan City Polytechnic CollegeWuhan430074P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Jun‐Bo Han
- Wuhan National High Magnetic Field Center and Department of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
9
|
Chi H, Ou Y, Eldred TB, Gao W, Kwon S, Murray J, Dreyer M, Butera RE, Foucher AC, Ambaye H, Keum J, Greenberg AT, Liu Y, Neupane MR, de Coster GJ, Vail OA, Taylor PJ, Folkes PA, Rong C, Yin G, Lake RK, Ross FM, Lauter V, Heiman D, Moodera JS. Strain-tunable Berry curvature in quasi-two-dimensional chromium telluride. Nat Commun 2023; 14:3222. [PMID: 37270579 DOI: 10.1038/s41467-023-38995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr2Te3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional Cr2Te3 epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry. This Berry phase effect further introduces hump-shaped Hall peaks in pristine Cr2Te3 near the coercive field during the magnetization switching process, owing to the presence of strain-modulated magnetic layers/domains. The versatile interface tunability of Berry curvature in Cr2Te3 thin films offers new opportunities for topological electronics.
Collapse
Affiliation(s)
- Hang Chi
- Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- DEVCOM Army Research Laboratory, Adelphi, MD, 20783, USA.
| | - Yunbo Ou
- Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Tim B Eldred
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Wenpei Gao
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sohee Kwon
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, 92521, USA
| | - Joseph Murray
- Department of Physics, University of Maryland, College Park, MD, 20742, USA
| | - Michael Dreyer
- Department of Physics, University of Maryland, College Park, MD, 20742, USA
| | - Robert E Butera
- Laboratory for Physical Sciences, College Park, MD, 20740, USA
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haile Ambaye
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jong Keum
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Nanophase Materials Sciences, Physical Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | - Yuhang Liu
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, 92521, USA
| | - Mahesh R Neupane
- DEVCOM Army Research Laboratory, Adelphi, MD, 20783, USA
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, 92521, USA
| | | | - Owen A Vail
- DEVCOM Army Research Laboratory, Adelphi, MD, 20783, USA
| | | | | | - Charles Rong
- DEVCOM Army Research Laboratory, Adelphi, MD, 20783, USA
| | - Gen Yin
- Department of Physics, Georgetown University, Washington, DC, 20057, USA
| | - Roger K Lake
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, 92521, USA
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Valeria Lauter
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Don Heiman
- Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
| | - Jagadeesh S Moodera
- Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Wang X, Zhou H, Bai L, Wang HQ. Growth, structure, and morphology of van der Waals epitaxy Cr 1+δTe 2 films. NANOSCALE RESEARCH LETTERS 2023; 18:23. [PMID: 36826603 DOI: 10.1186/s11671-023-03791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/07/2023] [Indexed: 05/24/2023]
Abstract
The preparation of two-dimensional magnetic materials is a key process to their applications and the study of their structure and morphology plays an important role in the growth of high-quality thin films. Here, the growth, structure, and morphology of Cr1+δTe2 films grown by molecular beam epitaxy on mica with variations of Te/Cr flux ratio, growth temperature, and film thickness have been systematically investigated by scanning tunneling microscopy, reflection high-energy electron diffraction, scanning electron microscope, and X-ray photoelectron spectroscopy. We find that a structural change from multiple phases to a single phase occurs with the increase in growth temperature, irrespective of the Cr/Te flux ratios, which is attributed to the desorption difference of Te atoms at different temperatures, and that the surface morphology of the films grown at relatively high growth temperatures (≥ 300 °C) exhibits a quasi-hexagonal mesh-like structure, which consists of nano-islands with bending surface induced by the screw dislocations, as well as that the films would undergo a growth-mode change from 2D at the initial stage in a small film thickness (2 nm) to 3D at the later stage in thick thicknesses (12 nm and 24 nm). This work provides a general model for the study of pseudo-layered materials grown on flexible layered substrates.
Collapse
Affiliation(s)
- Xiaodan Wang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
- School of Physics, Shandong University, Jinan, 250100, People's Republic of China
| | - Hua Zhou
- School of Physics, Shandong University, Jinan, 250100, People's Republic of China.
| | - Lihui Bai
- School of Physics, Shandong University, Jinan, 250100, People's Republic of China
| | - Hui-Qiong Wang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
11
|
Cho SW, Lee IH, Lee Y, Kim S, Khim YG, Park SY, Jo Y, Choi J, Han S, Chang YJ, Lee S. Investigation of the mechanism of the anomalous Hall effects in Cr 2Te 3/(BiSb) 2(TeSe) 3 heterostructure. NANO CONVERGENCE 2023; 10:2. [PMID: 36625963 PMCID: PMC9832196 DOI: 10.1186/s40580-022-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The interplay between ferromagnetism and the non-trivial topology has unveiled intriguing phases in the transport of charges and spins. For example, it is consistently observed the so-called topological Hall effect (THE) featuring a hump structure in the curve of the Hall resistance (Rxy) vs. a magnetic field (H) of a heterostructure consisting of a ferromagnet (FM) and a topological insulator (TI). The origin of the hump structure is still controversial between the topological Hall effect model and the multi-component anomalous Hall effect (AHE) model. In this work, we have investigated a heterostructure consisting of BixSb2-xTeySe3-y (BSTS) and Cr2Te3 (CT), which are well-known TI and two-dimensional FM, respectively. By using the so-called "minor-loop measurement", we have found that the hump structure observed in the CT/BSTS is more likely to originate from two AHE channels. Moreover, by analyzing the scaling behavior of each amplitude of two AHE with the longitudinal resistivities of CT and BSTS, we have found that one AHE is attributed to the extrinsic contribution of CT while the other is due to the intrinsic contribution of BSTS. It implies that the proximity-induced ferromagnetic layer inside BSTS serves as a source of the intrinsic AHE, resulting in the hump structure explained by the two AHE model.
Collapse
Affiliation(s)
- Seong Won Cho
- Center for Neuromorphic engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - In Hak Lee
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Youngwoong Lee
- Center for Neuromorphic engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea
- Department of Physics, Konkuk University, Seoul, 05029, Korea
| | - Sangheon Kim
- Center for Neuromorphic engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Korea
| | - Yeong Gwang Khim
- Department of Physics, University of Seoul, Seoul, 02504, Korea
- Department of Smart Cities, University of Seoul, Seoul, 02504, Korea
| | - Seung-Young Park
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 34133, Korea
| | - Younghun Jo
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 34133, Korea
| | - Junwoo Choi
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Seungwu Han
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Young Jun Chang
- Department of Physics, University of Seoul, Seoul, 02504, Korea
- Department of Smart Cities, University of Seoul, Seoul, 02504, Korea
| | - Suyoun Lee
- Center for Neuromorphic engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea.
- Division of Nano & Information Technology, Korea University of Science and Technology, Daejeon, 34316, Korea.
| |
Collapse
|
12
|
Zhang C, Liu C, Zhang J, Yuan Y, Wen Y, Li Y, Zheng D, Zhang Q, Hou Z, Yin G, Liu K, Peng Y, Zhang XX. Room-Temperature Magnetic Skyrmions and Large Topological Hall Effect in Chromium Telluride Engineered by Self-Intercalation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205967. [PMID: 36245330 DOI: 10.1002/adma.202205967] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Room-temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano-spintronic devices. However, such skyrmion-hosting materials are rare in nature. In this study, a self-intercalated transition metal dichalcogenide Cr1+ x Te2 with a layered crystal structure that hosts room-temperature skyrmions and exhibits large THE is reported. By tuning the self-intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out-of-plane to the in-plane configuration are achieved. Based on the intercalation engineering, room-temperature skyrmions are successfully created in Cr1.53 Te2 with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion-induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.
Collapse
Affiliation(s)
- Chenhui Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chen Liu
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Junwei Zhang
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Youyou Yuan
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yan Wen
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yan Li
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dongxing Zheng
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qiang Zhang
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Zhipeng Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Gen Yin
- Physics Department, Georgetown University, Washington, DC, 20057, USA
| | - Kai Liu
- Physics Department, Georgetown University, Washington, DC, 20057, USA
| | - Yong Peng
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Xi-Xiang Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Tai L, Dai B, Li J, Huang H, Chong SK, Wong KL, Zhang H, Zhang P, Deng P, Eckberg C, Qiu G, He H, Wu D, Xu S, Davydov A, Wu R, Wang KL. Distinguishing the Two-Component Anomalous Hall Effect from the Topological Hall Effect. ACS NANO 2022; 16:17336-17346. [PMID: 36126321 DOI: 10.1021/acsnano.2c08155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In transport, the topological Hall effect (THE) presents itself as nonmonotonic features (or humps and dips) in the Hall signal and is widely interpreted as a sign of chiral spin textures, like magnetic skyrmions. However, when the anomalous Hall effect (AHE) is also present, the coexistence of two AHEs could give rise to similar artifacts, making it difficult to distinguish between genuine THE with AHE and two-component AHE. Here, we confirm genuine THE with AHE by means of transport and magneto-optical Kerr effect (MOKE) microscopy, in which magnetic skyrmions are directly observed, and find that genuine THE occurs in the transition region of the AHE. In sharp contrast, the artifact "THE" or two-component AHE occurs well beyond the saturation of the "AHE component" (under the false assumption of THE + AHE). Furthermore, we distinguish artifact "THE" from genuine THE by three methods: (1) minor loops, (2) temperature dependence, and (3) gate dependence. Minor loops of genuine THE with AHE are always within the full loop, while minor loops of the artifact "THE" may reveal a single loop that cannot fit into the "AHE component". In addition, the temperature or gate dependence of the artifact "THE" may also be accompanied by a polarity change of the "AHE component", as the nonmonotonic features vanish, while the temperature dependence of genuine THE with AHE reveals no such change. Our work may help future researchers to exercise caution and use these methods for careful examination in order to ascertain the genuine THE.
Collapse
Affiliation(s)
- Lixuan Tai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Bingqian Dai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Jie Li
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Hanshen Huang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Su Kong Chong
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Kin L Wong
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Huairuo Zhang
- Theiss Research, Inc., La Jolla, California 92037, United States
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Peng Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Peng Deng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Christopher Eckberg
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
- Fibertek, Inc., Herndon, Virginia 20171, United States
- US Army Research Laboratory, Adelphi, Maryland 20783, United States
- US Army Research Laboratory, Playa Vista, California 90094, United States
| | - Gang Qiu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Haoran He
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Di Wu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Shijie Xu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
- Shanghai Key Laboratory of Special Artificial Microstructure and Pohl Institute of Solid State Physics and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Albert Davydov
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Kang L Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Liu J, Ding B, Liang J, Li X, Yao Y, Wang W. Magnetic Skyrmionic Bubbles at Room Temperature and Sign Reversal of the Topological Hall Effect in a Layered Ferromagnet Cr 0.87Te. ACS NANO 2022; 16:13911-13918. [PMID: 36000915 DOI: 10.1021/acsnano.2c02928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The search for materials that exhibit topologically protected spin configurations, such as magnetic skyrmions, continues to be fueled by the promise of outstanding candidate components for spin-based applications. In this study, in situ Lorentz transmission electron microscopy directly images Bloch-type magnetic skyrmionic bubbles in a layered ferromagnet Cr0.87Te single crystal. Owing to the competition between a magnetic dipole interaction and uniaxial easy axis anisotropy, nanoscale magnetic bubbles with random chirality can be observed in a wide temperature range covering room temperature when the external magnetic field is applied along the out-of-plane direction. Moreover, high-density and stable skyrmionic bubbles are successfully realized at zero magnetic field by appropriate field-cooling manipulation. Additionally, a sign reversal of the Hall effect and the derived topological Hall effect is observed and discussed. As quasi-two-dimensional materials, the binary chromium tellurides hosting magnetic skyrmions could have many applications in low-dimensional skyrmion-based spintronic devices in an ambient atmosphere.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bei Ding
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinjing Liang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Yao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | | |
Collapse
|
15
|
Jeon JH, Na HR, Kim H, Lee S, Song S, Kim J, Park S, Kim J, Noh H, Kim G, Jerng SK, Chun SH. Emergent Topological Hall Effect from Exchange Coupling in Ferromagnetic Cr 2Te 3/Noncoplanar Antiferromagnetic Cr 2Se 3 Bilayers. ACS NANO 2022; 16:8974-8982. [PMID: 35621270 DOI: 10.1021/acsnano.2c00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The topological Hall effect has been observed in magnetic materials of complex spin structures or bilayers of trivial magnets and strong spin-orbit-coupled systems. In view of current attention on dissipationless topological electronics, the occurrence of the topological Hall effect in new systems or by an unexpected mechanism is fascinating. Here, we report a robust topological Hall effect generated in bilayers of a ferromagnet and a noncoplanar antiferromagnet, from the interfacial Dzyaloshinskii-Moriya interaction due to the exchange coupling of magnetic layers. Molecular beam epitaxy has been utilized to fabricate heterostructures of a ferromagnetic metal Cr2Te3 and a noncoplanar antiferromagnet Cr2Se3. A significant topological Hall effect at low temperature implies the development of nontrivial spin chirality, and density functional theory calculations explain the correlation of the Dzyaloshinskii-Moriya interaction increase and inversion symmetry breaking at the interface. The presence of noncoplanar ordering in the antiferromagnet plays a pivotal role in producing the topological Hall effect. Our results suggest that the exchange coupling in ferromagnet/noncoplanar antiferromagnet bilayers could be an alternative mechanism toward topologically protected magnetic structures.
Collapse
Affiliation(s)
- Jae Ho Jeon
- Department of Physics, Sejong University, Seoul 05006, Korea
| | - Hong Ryeol Na
- Department of Physics, Sejong University, Seoul 05006, Korea
| | - Heeju Kim
- Department of Physics and HMC, Sejong University, Seoul 05006, Korea
| | - Sunghun Lee
- Department of Physics, Sejong University, Seoul 05006, Korea
| | - Sehwan Song
- Department of Physics, Pusan National University, Busan 46241, Korea
| | - Jiwoong Kim
- Department of Physics, Pusan National University, Busan 46241, Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan 46241, Korea
| | - Jeong Kim
- Department of Electrical Engineering, Sejong University, Seoul 05006, Korea
| | - Hwayong Noh
- Department of Physics, Sejong University, Seoul 05006, Korea
| | - Gunn Kim
- Department of Physics and HMC, Sejong University, Seoul 05006, Korea
| | | | - Seung-Hyun Chun
- Department of Physics, Sejong University, Seoul 05006, Korea
| |
Collapse
|
16
|
Li J, Liang J, Yang X, Li X, Zhao B, Li B, Duan X. Controllable Preparation of 2D Vertical van der Waals Heterostructures and Superlattices for Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107059. [PMID: 35297544 DOI: 10.1002/smll.202107059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/27/2022] [Indexed: 06/14/2023]
Abstract
2D van der Waals heterostructures (vdWHs) and superlattices (SLs) with exotic physical properties and applications for new devices have attracted immense interest. Compared to conventionally bonded heterostructures, the dangling-bond-free surface of 2D layered materials allows for the feasible integration of various materials to produce vdWHs without the requirements of lattice matching and processing compatibility. The quality of interfaces in artificially stacked vdWHs/vdWSLs and scalability of production remain among the major challenges in the field of 2D materials. Fortunately, bottom-up methods exhibit relatively high controllability and flexibility. The growth parameters, such as the temperature, precursors, substrate, and carrier gas, can be carefully and comprehensively controlled to produce high-quality interfaces and wafer-scale products of vdWHs/vdWSLs. This review focuses on three types of bottom-up methods for the assembly of vdWHs and vdWSLs with atomically clean and electronically sharp interfaces: chemical/physical vapor deposition, metal-organic chemical vapor deposition, and ultrahigh vacuum growth. These methods can intuitively illustrate the great flexibility and controllability of bottom-up methods for the preparation of vdWHs/vdWSLs. The latest progress in vdWHs and vdWSLs, related physical phenomena, and (opto)electronic devices are summarized. Finally, the authors discuss current challenges and future perspectives in the synthesis and application of vdWHs and vdWSLs.
Collapse
Affiliation(s)
- Jia Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
| | - Jingyi Liang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
| | - Xiangdong Yang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
| | - Xin Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
| | - Bei Zhao
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
| | - Bo Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
- School of Physics and Electronics, Hunan University, Changsha, P. R. China
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410012, P. R. China
| |
Collapse
|
17
|
Ou Y, Yanez W, Xiao R, Stanley M, Ghosh S, Zheng B, Jiang W, Huang YS, Pillsbury T, Richardella A, Liu C, Low T, Crespi VH, Mkhoyan KA, Samarth N. ZrTe 2/CrTe 2: an epitaxial van der Waals platform for spintronics. Nat Commun 2022; 13:2972. [PMID: 35624122 PMCID: PMC9142486 DOI: 10.1038/s41467-022-30738-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
The rapid discovery of two-dimensional (2D) van der Waals (vdW) quantum materials has led to heterostructures that integrate diverse quantum functionalities such as topological phases, magnetism, and superconductivity. In this context, the epitaxial synthesis of vdW heterostructures with well-controlled interfaces is an attractive route towards wafer-scale platforms for systematically exploring fundamental properties and fashioning proof-of-concept devices. Here, we use molecular beam epitaxy to synthesize a vdW heterostructure that interfaces two material systems of contemporary interest: a 2D ferromagnet (1T-CrTe2) and a topological semimetal (ZrTe2). We find that one unit-cell (u.c.) thick 1T-CrTe2 grown epitaxially on ZrTe2 is a 2D ferromagnet with a clear anomalous Hall effect. In thicker samples (12 u.c. thick CrTe2), the anomalous Hall effect has characteristics that may arise from real-space Berry curvature. Finally, in ultrathin CrTe2 (3 u.c. thickness), we demonstrate current-driven magnetization switching in a full vdW topological semimetal/2D ferromagnet heterostructure device.
Collapse
Affiliation(s)
- Yongxi Ou
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wilson Yanez
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Run Xiao
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Max Stanley
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Supriya Ghosh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Boyang Zheng
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wei Jiang
- Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yu-Sheng Huang
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Timothy Pillsbury
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anthony Richardella
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chaoxing Liu
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tony Low
- Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Physics & Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Vincent H Crespi
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - K Andre Mkhoyan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nitin Samarth
- Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|