1
|
Jeong S, Shin J, Kim J, Kim H, Lee JG, Min J, Hong S, Ko SH. Human Circulatory/Respiratory-Inspired Comprehensive Air Purification System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405568. [PMID: 39140643 DOI: 10.1002/adma.202405568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/04/2024] [Indexed: 08/15/2024]
Abstract
The circulatory and respiratory systems in humans are marvels of biological engineering that exhibit competence in maintaining homeostasis. These systems not only shield the organism from external contaminants but also orchestrate the vital gases via the bloodstream to sustain cellular respiration and metabolic processes across diverse tissues. It is noticed that spaces inhabited encounter challenges akin to those of the human body: protecting the indoor air from external pollutants while removing anthropogenic byproducts like carbon dioxide (CO2), particulate matters (PM), and volatile organic compounds (VOCs) tooutside. A biomimetic approach, composed of a microbubble-based gas exchanger and circulating liquid inspired by alveoli, capillary beds, and bloodstream of the human circulatory/respiratory system, offer an innovative solution for comprehensive air purification of hermetic spaces. Circulatory/respiratory-inspired air purification system (CAPS) ensure both continuous removal of PM and exchange of gas species between indoor and outdoor environments to maintain homeostasis. The effectiveness of this system is also supported by animal behavior experiments with and without CAPS, showing an effect of reducing CO2 concentration by 30% and increasing mice locomotor activity by 53%. CAPS is expected to evolve into robust and comprehensive air purification schemes through the networked integration of plural internal and external environments.
Collapse
Affiliation(s)
- Seongmin Jeong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Jaeho Shin
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Jinmo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Hongchan Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Jae Gun Lee
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - JinKi Min
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Sukjoon Hong
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Republic of South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
- Institute of Engineering Research / Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
2
|
Zhao W, Wang M, Yao Y, Cheng Z, Shen Y, Zhang Y, Tao J, Xiong J, Cao H, Zhang D. Hyperbranched Polymer Induced Antibacterial Tree-Like Nanofibrous Membrane for High Effective Air Filtration. Macromol Rapid Commun 2024; 45:e2300685. [PMID: 38339795 DOI: 10.1002/marc.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Indexed: 02/12/2024]
Abstract
The air filtration materials with high efficiency, low resistance, and extra antibacterial property are crucial for personal health protection. Herein, a tree-like polyvinylidene fluoride (PVDF) nanofibrous membrane with hierarchical structure (trunk fiber of 447 nm, branched fiber of 24.7 nm) and high filtration capacity is demonstrated. Specifically, 2-hydroxypropyl trimethyl ammonium chloride terminated hyperbranched polymer (HBP-HTC) with near-spherical three-dimensional molecular structure and adjustable terminal positive groups is synthesized as an additive for PVDF electrospinning to enhance the jet splitting and promote the formation of branched ultrafine nanofibers, achieving a coverage rate of branched nanofibers over 90% that is superior than small molecular quaternary ammonium salts. The branched nanofibers network enhances mechanical properties and filtration efficiency (99.995% for 0.26 µm sodium chloride particles) of the PVDF/HBP-HTC membrane, which demonstrates reduced pressure drop (122.4 Pa) and a quality factor up to 0.083 Pa-1 on a 40 µm-thick sample. More importantly, the numerous quaternary ammonium salt groups of HBP-HTC deliver excellent antibacterial properties to the PVDF membranes. Bacterial inhibitive rate of 99.9% against both S. aureus and E. coli is demonstrated in a membrane with 3.0 wt% HBP-HTC. This work provides a new strategy for development of high-efficiency and antibacterial protection products.
Collapse
Affiliation(s)
- Weitao Zhao
- College of Intelligent Textiles and Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Mengxuan Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ying Yao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zhongqiu Cheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yaxinru Shen
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yufan Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Jin Tao
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
- Department of Textile, Garment and Design, Changshu Institute of Technology, Suzhou, 215500, China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Hongmei Cao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
| | - Desuo Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Roshan U, Mudugamuwa A, Cha H, Hettiarachchi S, Zhang J, Nguyen NT. Actuation for flexible and stretchable microdevices. LAB ON A CHIP 2024; 24:2146-2175. [PMID: 38507292 DOI: 10.1039/d3lc01086d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Flexible and stretchable microdevices incorporate highly deformable structures, facilitating precise functionality at the micro- and millimetre scale. Flexible microdevices have showcased extensive utility in the fields of biomedicine, microfluidics, and soft robotics. Actuation plays a critical role in transforming energy between different forms, ensuring the effective operation of devices. However, when it comes to actuating flexible microdevices at the small millimetre or even microscale, translating actuation mechanisms from conventional rigid large-scale devices is not straightforward. The recent development of actuation mechanisms leverages the benefits of device flexibility, particularly in transforming conventional actuation concepts into more efficient approaches for flexible devices. Despite many reviews on soft robotics, flexible electronics, and flexible microfluidics, a specific and systematic review of the actuation mechanisms for flexible and stretchable microdevices is still lacking. Therefore, the present review aims to address this gap by providing a comprehensive overview of state-of-the-art actuation mechanisms for flexible and stretchable microdevices. We elaborate on the different actuation mechanisms based on fluid pressure, electric, magnetic, mechanical, and chemical sources, thoroughly examining and comparing the structure designs, characteristics, performance, advantages, and drawbacks of these diverse actuation mechanisms. Furthermore, the review explores the pivotal role of materials and fabrication techniques in the development of flexible and stretchable microdevices. Finally, we summarise the applications of these devices in biomedicine and soft robotics and provide perspectives on current and future research.
Collapse
Affiliation(s)
- Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Samith Hettiarachchi
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
4
|
Won D, Bang J, Choi SH, Pyun KR, Jeong S, Lee Y, Ko SH. Transparent Electronics for Wearable Electronics Application. Chem Rev 2023; 123:9982-10078. [PMID: 37542724 PMCID: PMC10452793 DOI: 10.1021/acs.chemrev.3c00139] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/07/2023]
Abstract
Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.
Collapse
Affiliation(s)
- Daeyeon Won
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seok Hwan Choi
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyung Rok Pyun
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Youngseok Lee
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute
of Engineering Research/Institute of Advanced Machinery and Design
(SNU-IAMD), Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
5
|
Mahalakshmi V, Balobaid A, Kanisha B, Sasirekha R, Ramkumar Raja M. Artificial Intelligence: A Next-Level Approach in Confronting the COVID-19 Pandemic. Healthcare (Basel) 2023; 11:854. [PMID: 36981511 PMCID: PMC10048108 DOI: 10.3390/healthcare11060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which caused coronavirus diseases (COVID-19) in late 2019 in China created a devastating economical loss and loss of human lives. To date, 11 variants have been identified with minimum to maximum severity of infection and surges in cases. Bacterial co-infection/secondary infection is identified during viral respiratory infection, which is a vital reason for morbidity and mortality. The occurrence of secondary infections is an additional burden to the healthcare system; therefore, the quick diagnosis of both COVID-19 and secondary infections will reduce work pressure on healthcare workers. Therefore, well-established support from Artificial Intelligence (AI) could reduce the stress in healthcare and even help in creating novel products to defend against the coronavirus. AI is one of the rapidly growing fields with numerous applications for the healthcare sector. The present review aims to access the recent literature on the role of AI and how its subfamily machine learning (ML) and deep learning (DL) are used to curb the pandemic's effects. We discuss the role of AI in COVID-19 infections, the detection of secondary infections, technology-assisted protection from COVID-19, global laws and regulations on AI, and the impact of the pandemic on public life.
Collapse
Affiliation(s)
- V. Mahalakshmi
- Department of Computer Science, College of Computer Science & Information Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Awatef Balobaid
- Department of Computer Science, College of Computer Science & Information Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - B. Kanisha
- Department of Computer Science and Engineering, School of Computing, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, India
| | - R. Sasirekha
- Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur Campus, Chengalpattu 603203, India
| | - M. Ramkumar Raja
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
6
|
Gong X, Jin C, Liu XY, Yu J, Zhang S, Ding B. Scalable Fabrication of Electrospun True-Nanoscale Fiber Membranes for Effective Selective Separation. NANO LETTERS 2023; 23:1044-1051. [PMID: 36655867 DOI: 10.1021/acs.nanolett.2c04667] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrospun fibers have received wide attention in various fields ranging from the environment and healthcare to energy. However, nearly all electrospun fibers suffer from a pseudonanoscale diameter, resulting in fabricated membranes with a large pore size and limited separation performance. Herein, we report a novel strategy based on manipulating the equilibrium of stretch deformation and phase separation of electrospun jets to develop true-nanoscale fibers for effective selective separation. The obtained fibers present true-nanoscale diameters (∼67 nm), 1 order of magnitude less than those of common electrospun fibers, which endows the resultant membranes with remarkable nanostructural characteristics and separation performances in areas of protective textiles (waterproofness of 113 kPa and breathability of 4.1 kg m-2 d-1), air filtration (efficiency of 99.3% and pressure drop of 127.4 Pa), and water purification (flux of 81.5 kg m-2 h-1 and salt rejection of 99.94%). This work may shed light on developing high-performance separation materials for various applications.
Collapse
Affiliation(s)
- Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Chunfeng Jin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Xiao-Yan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, People's Republic of China
| |
Collapse
|
7
|
Li J, Yin J, Ramakrishna S, Ji D. Smart Mask as Wearable for Post-Pandemic Personal Healthcare. BIOSENSORS 2023; 13:205. [PMID: 36831971 PMCID: PMC9953568 DOI: 10.3390/bios13020205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
A mask serves as a simple external barrier that protects humans from infectious particles from poor air conditions in the surrounding environment. As an important personal protective equipment (PPE) to protect our respiratory system, masks are able not only to filter pathogens and dust particles but also to sense, reflect or even respond to environmental conditions. This smartness is of particular interest among academia and industries due to its potential in disease detection, health monitoring and caring aspects. In this review, we provide an overlook of the current air filtration strategies used in masks, from structural designs to integrated functional modules that empower the mask's ability to sense and transfer physiological or environmental information to become smart. Specifically, we discussed recent developments in masks designed to detect macroscopic physiological signals from the wearer and mask-based disease diagnoses, such as COVID-19. Further, we propose the concept of next-generation smart masks and the requirements from material selection and function design perspectives that enable masks to interact and play crucial roles in health-caring wearables.
Collapse
Affiliation(s)
- Jingcheng Li
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117081, Singapore
| | - Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117081, Singapore
| | - Dongxiao Ji
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Gao Y, Tian E, Mo J. Electrostatic Polydopamine-Interface-Mediated (e-PIM) filters with tuned surface topography and electrical properties for efficient particle capture and ozone removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129821. [PMID: 36067559 DOI: 10.1016/j.jhazmat.2022.129821] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Ambient particulate matter (PM) poses severe environmental health risks to the public globally, and efficient filtration technologies are urgently needed for air ventilation. In this contribution, to overcome the efficiency-resistance trade-off for fibrous filtration, we introduced an electrostatic polydopamine-interface-mediated (e-PIM) filter utilizing a combined effect of particle pre-charging and filter polarizing. After delineating the PM-fiber interactions in electrostatic filtration, we designed a composite fiber structure and fabricated the filters by a two-step dip-coating. The surface topography and electrical potential of the polyester (PET) coarse substrates were regulated by successively coating polydopamine (PDA) layers and manganese oxide clusters. By this means, an 8-mm-thick Mn-P @ P-100 filter possessed improved efficiency of 96.05%, 97.60%, and 99.14% for 0.3-0.5 µm, 0.5-1 µm, and 1-3 µm particles, the ultralow air resistance of 10.4 Pa at a filtration velocity of 0.5 m/s, and steady ozone removal property. Compared with the pristine PET substrates, the efficiency for 0.3-0.5 µm particles expanded 12 times. Compared with the pristine PET substrates, the efficiency for 0.3-0.5 µm particles expanded 12 times. We expect e-PIM filters and the filtration prototype will be potential candidates as effective and low-cost air cleaning devices for a sustainable and healthy environment.
Collapse
Affiliation(s)
- Yilun Gao
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan 523808, China; State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China; Key Laboratory of Eco Planning & Green Building, Ministry of Education (Tsinghua University), Beijing 100084, China.
| |
Collapse
|
9
|
Yin J, Reddy VS, Chinnappan A, Ramakrishna S, Xu L. Electrospun Micro/Nanofiber with Various Structures and Functions for Wearable Physical Sensors. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2158467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Vundrala Sumedha Reddy
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Amutha Chinnappan
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- Jiangsu Engineering Research Center of Textile, Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, China
| |
Collapse
|
10
|
Simić M, Stavrakis AK, Stojanović GM. Portable Heating and Temperature-Monitoring System with a Textile Heater Embroidered on the Facemask. ACS OMEGA 2022; 7:47214-47224. [PMID: 36570303 PMCID: PMC9773964 DOI: 10.1021/acsomega.2c06431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Personal heating systems are getting increasing interest because of the need to reduce the negative impact of cold weather on the health of people and animals. Heating the air before inhalation is of great importance as it can reduce the probability of various diseases. In this paper, we present a textile-based heater composed of commercial conductive threads, embroidered on an ordinary protective facemask. We also present the design and implementation details of the temperature monitoring and controlling circuit. Air temperature inside the facemask was monitored by a thermocouple placed in close proximity to the nose (nostrils). Preliminary testing revealed that the difference among temperatures in repeated heating cycles is in the range of ±1.5 °C. The response time for temperature increase from 29.9 to 40.5 °C was about 4 min, while the recovery time from 40.5 to 31.3 °C was about 4.3 min. Safety for human use and wireless data transmission to an application installed on a mobile phone are also demonstrated.
Collapse
|
11
|
Lin TE, Chien MC, Chen PF, Yang PW, Chang HE, Wang DH, Lin TY, Hsu YJ. A Sensor-Integrated Face Mask Using Au@SnO 2 Nanoparticle Modified Fibers and Augmented Reality Technology. ACS OMEGA 2022; 7:42233-42241. [PMID: 36440160 PMCID: PMC9685760 DOI: 10.1021/acsomega.2c04655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In this work, we develop a wireless sensor-integrated face mask using Au@SnO2 nanoparticle-modified conductive fibers based on augmented reality (AR) technology. AR technology enables the overlay of real objects and environments with virtual 3D objects and allows virtual interactions with real objects to create desired meanings. With the help of the AR system, the size of the mask could be precisely estimated and then manufactured using 3D printing technology. The body temperature sensor and respiratory sensor were integrated into the mask so that vital parameters of the human body could be continuously monitored without removing the personal protective equipment. Furthermore, the outer part of the mask consists of conductive fabric modified with Au@SnO2 core-shell nanoparticle additives, which enhanced the filtration efficiency of airborne aerosols. A significant improvement in the filtration efficiency of particulate matter 2.5 was observed after applying an external voltage to the conductive textiles. A smartwatch with a heart rate sensor was paired with the mask to display sensor data on the mask through wireless transmission. Therefore, this sensor-integrated mask system with AR technology provides the first line of defense to combat global threats from pathogens and air pollutants.
Collapse
Affiliation(s)
- Tzu-En Lin
- Institute
of Biomedical Engineering, Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan
| | - Ming-Chun Chien
- Institute
of Biomedical Engineering, Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan
| | - Po-Feng Chen
- Institute
of Biomedical Engineering, Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan
| | - Pei-Wen Yang
- Institute
of Biomedical Engineering, Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan
| | - Huai-En Chang
- Department
of Material Science, National Yang Ming
Chiao Tung University, 30010 Hsinchu, Taiwan
| | - Ding-Han Wang
- College
of Dentistry, National Yang Ming Chiao Tung
University, 11221 Taipei, Taiwan
| | - Tung-Yi Lin
- Institute
of Traditional Medicine, National Yang Ming
Chiao Tung University, Taipei 11221, Taiwan
- Biomedical
Industry Ph.D. Program, National Yang Ming
Chiao Tung University, Taipei 11221, Taiwan
| | - Yung-Jung Hsu
- Department
of Material Science, National Yang Ming
Chiao Tung University, 30010 Hsinchu, Taiwan
| |
Collapse
|
12
|
A Review of the Fabrication Methods, Testing, and Performance of Face Masks. INT J POLYM SCI 2022. [DOI: 10.1155/2022/2161869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Improvement in the performance and compatibility of face masks has remained the focus of researchers in recent years, especially after the emergence of the COVID pandemic. Although a lot of progress in the design, tolerability, and comfort of the mask has been reported, there are certain limitations, requiring further improvement. The present review aims to highlight the filtration efficacy, comfort, and associated characteristic of various types of face masks and respirators as a function of their design and structure. In addition, the air pollutants, their adverse effects on health, certified respirators, and face masks are also discussed. The present review also provides an insight into different types of commercially available face masks in terms of their materials, filtration efficiency, and limitations. The role of emerging trends (such as nanotechnology and high-performance polymers) in the improvement and development of face masks and respirators is also discussed.
Collapse
|
13
|
Yang C, Jiang X, Gao X, Wang H, Li L, Hussain N, Xie J, Cheng Z, Li Z, Yan J, Zhong M, Zhao L, Wu H. Saving 80% Polypropylene in Facemasks by Laser-Assisted Melt-Blown Nanofibers. NANO LETTERS 2022; 22:7212-7219. [PMID: 36054509 DOI: 10.1021/acs.nanolett.2c02693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ongoing coronavirus (COVID-19) pandemic requires enormous production of facemasks and related personal protection materials, thereby increasing the amount of nondegradable plastic waste. The core material for facemasks is melt-blown polypropylene (PP) fiber. Each disposable facemask consumes ∼0.7 g of PP fibers, resulting in annual global consumption and disposal of more than 1 150 000 tons of PP fibers annually. Herein, we developed a laser-assisted melt-blown (LAMB) technique to manufacture PP nanofibers with a quality factor of 0.17 Pa-1 and significantly reduced the filter's weight. We demonstrated that a standard surgical facemask could be made with only 0.13 g of PP nanofibers, saving approximately 80% of the PP materials used in commercial facemasks. Theoretical analysis and modeling were also conducted to understand the LAMB process. Importantly, nanofibers can be easily scaled up for mass production by upgrading traditional melt blown line with scanning laser-assisted melt-blown (SLAMB).
Collapse
Affiliation(s)
- Chong Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xinyu Jiang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xue Gao
- College of Chemistry and Material Engineering, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Naveed Hussain
- Department of Electrical Engineering and Computer Science, The Henry Samueli School of Engineering, University of California, Irvine, California 92617, United States
| | - Jiawang Xie
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zekun Cheng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ziwei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jianfeng Yan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Minlin Zhong
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lihao Zhao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Cao J, Yang X, Rao J, Mitriashkin A, Fan X, Chen R, Cheng H, Wang X, Goh J, Leo HL, Ouyang J. Stretchable and Self-Adhesive PEDOT:PSS Blend with High Sweat Tolerance as Conformal Biopotential Dry Electrodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39159-39171. [PMID: 35973944 DOI: 10.1021/acsami.2c11921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dry epidermal electrodes that can always form conformal contact with skin can be used for continuous long-term biopotential monitoring, which can provide vital information for disease diagnosis and rehabilitation. But, this application has been limited by the poor contact of dry electrodes on wet skin. Herein, we report a biocompatible fully organic dry electrode that can form conformal contact with both dry and wet skin even during physical movement. The dry electrodes are prepared by drop casting an aqueous solution consisting of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), poly(vinyl alcohol) (PVA), tannic acid (TA), and ethylene glycol (EG). The electrodes can exhibit a conductivity of 122 S cm-1 and a mechanical stretchability of 54%. Moreover, they are self-adhesive to not only dry skin but also wet skin. As a result, they can exhibit a lower contact impedance to skin than commercial Ag/AgCl gel electrodes on both dry and sweat skins. They can be used as dry epidermal electrodes to accurately detect biopotential signals including electrocardiogram (ECG) and electromyogram (EMG) on both dry and wet skins for the users at rest or during physical movement. This is the first time to demonstrate dry epidermal electrodes self-adhesive to wet skin for accurate biopotential detection.
Collapse
Affiliation(s)
- Jian Cao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Xingyi Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117574
| | - Jiancheng Rao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Aleksandr Mitriashkin
- Biomedical Engineering Department, College of Design and Engineering, National University of Singapore, Singapore 117574
| | - Xing Fan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Rui Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Hanlin Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Xinchao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117574
| | - James Goh
- Biomedical Engineering Department, College of Design and Engineering, National University of Singapore, Singapore 117574
| | - Hwa Liang Leo
- Biomedical Engineering Department, College of Design and Engineering, National University of Singapore, Singapore 117574
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
- NUS Research Institute, No. 16 South Huashan Road, Liangjiang New Area, Chongqing 119077, China
| |
Collapse
|
15
|
Hu S, Chen R, Lu P, Zheng Z, Gu G, Wang M, Zhang X. Electrospun PAN-HNTs composite nanofiber membranes for efficient electrostatic capture of particulate matters. NANOTECHNOLOGY 2022; 33:265702. [PMID: 35290964 DOI: 10.1088/1361-6528/ac5df4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The fine particulate matter (PM) pollution has become a serious concern to public health. As the core part of PM air filters, high-performance electrostatic nanofiber membranes are urgently needed. However, the existing air filters remain challenging to further decrease the pressure drop to improve the wearer comfort. On the other hand, the rapidly disappearing static electricity of the existing electrostatic nanofiber inevitably gives rise to a relatively short service life. Here, we demonstrate a novel and enhanced electrostatic nanofiber membrane by introducing the halloysite nanotubes (HNTs) to the traditional electrospun PAN nanofiber membrane. The optimal PAN-HNTs nanofiber membrane shows a high removal efficiency of 99.54%, a low pressure drop of 39 Pa, and a high quality factor of 0.89 Pa-1. This greatly improved filtration performance can be attributed to the increased surface area and diameter of nanofiber after introducing the HNTs as additives with suitable doping concentrations. More importantly, compared with the pure PAN nanofiber membrane, the electrostatic capacity of the PAN-HNTs nanofiber membrane is significantly enhanced, which is confirmed by the leaf electroscope. After introducing the HNTs as additives, the surface of the PAN-HNTs nanofiber membrane becomes hydrophilic, which benefits for preventing foulants from attaching to the surface. We anticipate that the PAN-HNTs nanofibers as high-performance membrane air filters will bring great benefits to public health.
Collapse
Affiliation(s)
- Shiqian Hu
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Ruowang Chen
- Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Peng Lu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zida Zheng
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Gangwei Gu
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Mingyuan Wang
- Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Xiaowei Zhang
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, People's Republic of China
- National Laboratory of Solid State Microstructures, Department of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| |
Collapse
|