1
|
Zhang X, Zhao X, Sun J, He Y, Wu B, Ge L, Pan J. Ultrathin zwitterionic COF membranes from colloidal 2D-COF towards precise molecular sieving. WATER RESEARCH 2025; 274:123073. [PMID: 39754827 DOI: 10.1016/j.watres.2024.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/08/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Membrane technology is an important component of resource recovery. Covalent organic frameworks (COFs) with inherent long-range ordered structure and permanent porosity are ideal materials for fabricating advanced membrane. Zwitterionic COFs have unique features beyond single ionic COFs containing anions or cations. Here, a zwitterionic colloidal 2D-COF (TpPa-Py) is synthesized via a single-phase method. ultrathin zwitterionic COF membranes are fabricated via a facile blade-coating method. Experimental and molecular dynamics simulation results showed that due to the unique amphiphilic nature of the TpPa-Py, the TpPa1-Py1 membrane exhibits high level permeance and rejection of both positively and negatively charged dyes. Moreover, the TpPa1-Py1 membrane exhibits excellent dye/dye and dye/salt separation performance. The selectivity factors were 89 for the separation of acid blue and rhodamine B, and 47.8 for the separation of methyl blue and NaCl. This work provides a promising solution for the development of high-performance membranes tailored for resource recovery of dye wastewater, addressing a critical need in water treatment.
Collapse
Affiliation(s)
- Xinliang Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xueting Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinshan Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yubin He
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Bin Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China.
| | - Liang Ge
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jiefeng Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
2
|
Jiang G, Zou W, Ou Z, Zhang W, Huo J, Qi S, Wang L, Du L. Precise Regulation of Intra-Nanopore Charge Microenvironment in Covalent Organic Frameworks for Efficient Monovalent Cation Transport. Angew Chem Int Ed Engl 2025; 64:e202420333. [PMID: 39895231 DOI: 10.1002/anie.202420333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 02/04/2025]
Abstract
Charged channels are considered an effective design for achieving efficient monovalent cation transport; however, it remains challenging to establish a direct relationship between charge microenvironments and ionic conductivity within the pores. Herein, we report a series of crystalline covalent organic frameworks (COFs) with identical skeletons but different charge microenvironments and explore their intra-pore charge-driven ion transport performance and mechanism differences. We found that the charged nature determines ion-pair action sites, modes, host-guest interaction, thereby influencing the dissociation efficiency of ion pairs, the hopping ability of cations, and the effective carrier concentration. The order of transport efficiency for Li+, Na+, and H+ follows anion > zwitterion > cation > neutrality. Ionic COFs exhibit up to 11-fold higher ionic conductivity than neutral COFs. Notably, the ionic conductivity of anionic COF achieves 2.0 × 10-4 S cm-1 for Li+ at 30 °C and 3.8 × 10-2 S cm-1 for H+ at 160 °C, surpassing most COF-based ionic conductors. This COF platform for efficient ion migration and stable battery cycling in lithium-metal quasi-solid-state batteries has also been verified as proof of concept. This work offers new insights into the development and structure-activity relationship studies of the next generation of solid-state ionic conductors.
Collapse
Affiliation(s)
- Guoxing Jiang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Wenwu Zou
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhaoyuan Ou
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Weifeng Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Junlang Huo
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shengguang Qi
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Liming Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| |
Collapse
|
3
|
Mukherjee D, Saha A, Moni S, Volkmer D, Das MC. Anhydrous Solid-State Proton Conduction in Crystalline MOFs, COFs, HOFs, and POMs. J Am Chem Soc 2025; 147:5515-5553. [PMID: 39929703 DOI: 10.1021/jacs.4c14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Strategic design of solid-state proton-conducting electrolytes for application in anhydrous proton-exchange membrane fuel cells (PEMFCs) has gained burgeoning interest due to a spectrum of advantageous features, including higher CO tolerance and ease in the water management systems. Toward this direction, crystalline materials like metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), and polyoxometalates (POMs) are emerging PEM materials, offering strategic structural engineering through crystallography, thus enabling ultrahigh anhydrous proton conductivity up to 10-2-10-1 S/cm. This Perspective highlights significant progress achieved thus far with such crystalline platforms in the domain of anhydrous proton conduction across a wide temperature window (sub-zero to above 100 °C). Based on their structural backgrounds, these platforms are categorized into four classes (viz. MOFs, COFs, HOFs, and POMs) with a detailed evolutionary timeline since their emergence early in 2009. Insightful discussions with a key focus on the strategies undertaken to attain anhydrous proton conductivity along with implementation in fuel cell technology through membrane electrode assembly are presented. A section on "Critical Analysis and Future Prospects" provides decisive key viewpoints on those overlooked issues with future endorsement (e.g., performance assessment with CO tolerance analysis and fuel cell test stand) for further development while comparing them with other anhydrous platforms from both academic and industrial perspectives.
Collapse
Affiliation(s)
- Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Apu Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Subhodeep Moni
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Dirk Volkmer
- Chair of Solid State and Materials Chemistry, Institute of Physics, Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
4
|
Yan J, Wang Q, Zhu J, Tong S, Guo S. Cost-Effective Synthesis of Carbazole-Based Nanoporous Organic Polymers for SO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9913-9922. [PMID: 39879325 DOI: 10.1021/acsami.4c21694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Sulfur dioxide (SO2), a pervasive air pollutant, poses significant environmental and health risks, necessitating advanced materials for its efficient capture. Nanoporous organic polymers (NOPs) have emerged as promising candidates; however, their development is often hindered by high synthesis temperatures, complex precursors, and limited SO2 selectivity. Herein, we report a room-temperature, cost-effective synthesis of carbazole-based nanoporous organic polymers (CNOPs) using 1,3,5-trioxane and paraldehyde, offering a significant advancement over traditional Friedel-Crafts alkylation methods. The resulting CNOPs exhibit a high surface area of up to 842 m2·g-1 and feature ultramicroporous structures optimized for SO2 adsorption. At 298 K and 1 bar, the CNOPs demonstrated SO2 adsorption capacities of up to 9.39 mmol·g-1. Ideal adsorbed solution theory (IAST) calculations revealed outstanding selectivities of 105 for SO2/CO2 and 6139 for SO2/N2 mixtures, supported by breakthrough experiments demonstrating superior separation performance. This work not only provides a straightforward synthetic route for CNOPs but also offers valuable insights into the design and development of porous materials tailored for enhanced SO2 capture, addressing critical environmental and health challenges.
Collapse
Affiliation(s)
- Jun Yan
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Qilin Wang
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jiangli Zhu
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Sihan Tong
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengwei Guo
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
5
|
Meng C, Zhao Y, Zhu W, Ben T. High Proton Conductivity of Acid Impregnated COFs Stabilized by Post-Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409238. [PMID: 39586928 DOI: 10.1002/smll.202409238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/03/2024] [Indexed: 11/27/2024]
Abstract
The investigation of proton conduction processes within artificial nanopores using phosphoric acid (H3PO4) and sulfuric acid (H2SO4) not only sheds light on the mechanisms of proton conduction for these strong acids in confined environments, while also provides critical insights into the proper understanding of biological transmembrane proton transport. However, the synthesis of stable and acid-resistant host frameworks is yet a major challenges. By following that, the present study is conducted with the aim of improving the chemical stability of an imine-based COF (CPOF-10) by converting it into an amide-linked COF (CPOF-11) via a post-oxidative approach. In which, the integration of an appropriate amount of imidazole groups into the framework facilitates the efficient impregnation of liquid proton-conducting acids. The obtained results indicate the ten times greater proton conductivity of H3PO4@CPOF-11 than that of H3PO4@CPOF-10, thereby, successfully achieving 8.63 × 10-2 S cm-1 at 160 °C, under nitrogen (N2) atmosphere. Moreover, the highly stable CPOF-11 tolerated H2SO4 doping, delivering a high proton conductivity of up to 1.70 × 10-1 S cm-1 at 140 °C, with a significantly low activation energy of 0.05 eV. To the best of the knowledge, this activation energy (0.05 eV) of H2SO4@CPOF-11 is found to be one of the lowest value among all the reported proton-conducting materials. Thus, this study will provide new understanding for the fabrication of advanced porous organic materials in fuel cells application.
Collapse
Affiliation(s)
- Chenxi Meng
- Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yu Zhao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Weidong Zhu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Teng Ben
- Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310000, P. R. China
| |
Collapse
|
6
|
Wang S, Fu Y, Wang F, Wang X, Yang Y, Wang M, Wang J, Lin E, Ma H, Chen Y, Cheng P, Zhang Z. Scalable Melt Polymerization Synthesis of Covalent Organic Framework Films for Room Temperature Low-Concentration SO 2 Detection. J Am Chem Soc 2024; 146:33509-33517. [PMID: 39604810 DOI: 10.1021/jacs.4c10879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The development of highly efficient sensors for low-concentration SO2 at room temperature is important for human health and fine chemistry, but it still faces critical challenges. Herein, a scalable olefin-linked covalent organic framework (COF) with an ultramicroporous structure and abundant binding sites is first developed as the SO2 sensing material. The COF can adsorb SO2 of 220 cm3/g at 1 bar and 40 cm3/g at 0.01 bar and 298 K, surpassing all reported COFs. The computational and kinetic adsorption studies deeply unveil the selective adsorption mechanism for low-concentration SO2. Furthermore, the multicomponent gas mixture breakthrough experiments confirm that the COF can specifically capture low-concentration (2000 ppm) SO2. We innovated a melt polymerization technology to fabricate COF films with adjustable substrates and film thicknesses. COF films are directly grown on the interdigital electrodes to prepare the SO2 sensor device, which possesses a low detection limit (86 ppb) and excellent selectivity for SO2 in the presence of 10 other potentially interfering gases. Compared to other reported SO2 sensors, its overall performance is among the top. Prominently, the sensor maintains a stable output signal for more than two months, and recovery can be easily achieved by simply purifying nitrogen at room temperature without heating. This study marks the first use of COFs for SO2 sensing, opening new possibilities for COFs in the detection of low-concentration toxic gases and manufacturing gas sensor devices.
Collapse
Affiliation(s)
- Sa Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yu Fu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fengdong Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiyuan Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yi Yang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Mengjin Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jian Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - En Lin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Gong W, Gao P, Gao Y, Xie Y, Zhang J, Tang X, Wang K, Wang X, Han X, Chen Z, Dong J, Cui Y. Modulator-Directed Counterintuitive Catenation Control for Crafting Highly Porous and Robust Metal-Organic Frameworks with Record High SO 2 Uptake Capacity. J Am Chem Soc 2024; 146:31807-31815. [PMID: 39511479 DOI: 10.1021/jacs.4c10723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sulfur dioxide (SO2) is an important industrial feedstock that can be directly utilized or catalytically transformed to value-added chemicals such as sulfuric acid. The development of regenerable porous sorbents for the highly efficient storage and energy-minimal release of toxic SO2 operating under ambient conditions has attracted growing interest. Herein, we report the topology-guided construction of highly porous acs-type metal-organic frameworks (MOFs) through a counterintuitive modulator-directed catenation control approach. In contrast to the conventional modulator facilitated coordination competition that favors the thermodynamic catenated phase, we show that the elevation of modulator concentration can promote the formation of the noncatenated phase probably through a sublattice dissolution pathway. The assembly of a custom-designed trigonal prismatic triptycene-quinoxaline linker and trinuclear Fe3O cluster affords either the threefold catenated SJTU-219 or noncatenated SJTU-220 with desired acs net. Impressively, the synthetic approach is applicable to various metal ions, including Al3+, V3+, and even Ti4+. The noncatenated SJTU-220 exhibits an extraordinary SO2 sorption capacity of 29.6 mmol g-1 at 298 K and 1 bar, surpassing all reported solid sorbents. The uptake capacity can be further raised to 35.6 mmol g-1 via the replacement of Fe3+ with kinetically more inert Cr3+, resulting in a staggering ∼329-fold volume reduction compared with free ideal SO2 gas. Computational simulations suggest that unique Fe3+···S(SO2) interactions dominate the SO2 seeding process, facilitating the efficient packing of SO2 molecules in the large channels. Besides, the exceptionally low uptake at the low pressure region implies global weak framework-SO2 interactions, which offer great potential for practically implementing an "easy-on/easy-off" SO2 delivery system.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfu Gao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifei Gao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Jingjing Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kun Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaoliang Wang
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Xing Han
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Zhang J, Li X, Hu H, Huang H, Li H, Sun X, Ma T. Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization. Nat Commun 2024; 15:9576. [PMID: 39505870 PMCID: PMC11541737 DOI: 10.1038/s41467-024-53834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Covalent organic frameworks have emerged as a thriving family in the realm of photocatalysis recently, yet with concerns about their high exciton dissociation energy and sluggish charge transfer. Herein, a strategy to enhance the built-in electric field of series β-keto-enamine-based covalent organic frameworks by ionic polarization method is proposed. The ionic polarization is achieved through a distinctive post-synthetic quaternization reaction which can endow the covalent organic frameworks with separated charge centers comprising cationic skeleton and iodide counter-anions. The stronger built-in electric field generated between their cationic framework and iodide anions promotes charge transfer and exciton dissociation efficiency. Moreover, the introduced iodide anions not only serve as reaction centers with lowered H* formation energy barrier, but also act as electron extractant suppressing the recombination of electron-hole pairs. Therefore, the photocatalytic performance of the covalent organic frameworks shows notable improvement, among which the CH3I-TpPa-1 can deliver an high H2 production rate up to 9.21 mmol g-1 h-1 without any co-catalysts, representing a 42-fold increase compared to TpPa-1, being comparable to or possibly exceeding the current covalent organic framework photocatalysts with the addition of Pt co-catalysts.
Collapse
Affiliation(s)
- Jiahe Zhang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
| | - Xiaoning Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Haijun Hu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, China
| | - Hui Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Xiaodong Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China.
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia.
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia.
| |
Collapse
|
9
|
Sun J, Hou Z, Wang J, Yang P, Li S, Liu C, Shen C, Liu Z. A robust amphiphilic ionic covalent organic framework intercalated into functionalized graphene oxide hybrid membranes for ultrafast extraction uranium from wastewater. WATER RESEARCH 2024; 265:122320. [PMID: 39197392 DOI: 10.1016/j.watres.2024.122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
The efficient capture of uranium from wastewater is crucial for environmental remediation and the sustainable development of nuclear energy, yet it poses considerable challenges. In this study, amphiphilic ionic covalent organic framework intercalated into graphene oxide (GO) nanosheets functionalized with polyethyleneimine (PEI) were used to construct hybrid membranes with ultrafast uranium adsorption. These hybrid membranes achieved equilibrium in just 10 min and the adsorption capacity was as high as 358.8 mg g-1 at pH = 6. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analyses revealed that the strong interaction between sulfonic acid groups and uranyl ions was the primary reason for the high adsorption capacity and selectivity. The extended transition state and natural orbitals for chemical valence (ETS-NOCV) analysis revealed that the interaction between the 7 s and 5f orbitals of uranyl and the 2p orbitals of S and O in the sulfonate was the primary reason for the strong interaction between the sulfonate and the uranyl ion. This research presents an effective method for the rapid extraction of uranium from wastewater.
Collapse
Affiliation(s)
- Jian Sun
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Zewei Hou
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - JiaFu Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Peipei Yang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Songwei Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Zhong Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| |
Collapse
|
10
|
Yan J, Zhu J, Tong S, Wang Q, Wang Z. Engineering Nanoporous Polyaminal Networks for Superior SO 2 Capture and Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39359234 DOI: 10.1021/acsami.4c14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Designing adsorbent materials with high SO2 adsorption capacities and selectivity remains a significant challenge in flue gas desulfurization. This work focuses on developing two nitrogen-rich nanoporous polyaminal networks (NPANs), which demonstrate promising capabilities for SO2 adsorption and separation. Two nitrogen-rich nanoporous polyaminal networks, NPAN-5 and NPAN-6, were synthesized via a one-pot method using thiophene-2,5-dicarbaldehyde and furan-2,5-dicarbaldehyde with 1,4-bis(2,4-diamino-1,3,5-triazine)-benzene, respectively. The Brunauer-Emmett-Teller (BET) specific surface areas of NPANs range from 838 to 956 m2·g-1. At 298 K and pressures of 0.1 and 1.0 bar, NPAN-5, featuring thiophene units, demonstrates a SO2 adsorption uptake of 5.14 and 9.63 mmol·g-1, respectively, surpassing many previously reported materials. Furthermore, at room temperature, NPAN-6, containing furan moieties, exhibits unprecedented selectivity for SO2 over CO2 and N2, with ratios reaching up to 78 and 9321, respectively. Dynamic breakthrough experiments reveal that NPANs effectively separate SO2 from a ternary gas mixture comprising SO2, CO2, and N2 at concentrations of 0.2, 10, and 89.8%, respectively. Notably, NPAN-6 achieves a prolonged SO2 retention time of 218 min·g-1 and a saturation adsorption uptake of 0.42 mmol·g-1. The remarkable SO2 adsorption capacities and selectivities demonstrated by these nitrogen-rich nanoporous polyaminal networks underscore their potential to revolutionize industrial flue gas desulfurization.
Collapse
Affiliation(s)
- Jun Yan
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jiangli Zhu
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Sihan Tong
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Qilin Wang
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Zefeng Wang
- College of Ecology, Lishui University, Lishui 323000, China
- R&D Center of Green Manufacturing New Materials and Technology of Synthetic Leather Sichuan University-Lishui University, Lishui 323000, China
| |
Collapse
|
11
|
Chen Z, Zheng H, Zhang J, Jiang Z, Bao C, Yeh CH, Lai NC. Covalent organic frameworks derived Single-Atom cobalt catalysts for boosting oxygen reduction reaction in rechargeable Zn-Air batteries. J Colloid Interface Sci 2024; 670:103-113. [PMID: 38759265 DOI: 10.1016/j.jcis.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
The design and development of high-performance and long-life Pt-free catalysts for the oxygen reduction reaction (ORR) is of great important with respect to metal-air batteries and fuel cells. Herein, a new low-cost covalent organic frameworks (COFs)-derived CoNC single-atoms catalyst (SAC) is fabricated and compared with the engineered nanoparticle (NP) counterpart for ORR activity. The ORR performance of the SAC catalyst (CoSA@NC) surpasses the NP counterpart (CoNP-NC) under the same operation condition. CoSA@NC also achieves improved long-term durability and better methanol tolerance compared with the Pt/C. The zinc-air battery assembled by the CoSA@NC cathode delivers a higher power density and energy density than that of commercial Pt/C catalyst. Molecular dynamics (MD) is performed to explain the spontaneous evolution from clusters to single-atom metal configuration and density functional theory (DFT) calculations find that CoSA@NC possesses lower d-band center, resulting in weaker interaction between the surface and the O-containing intermediates. Consequently, the reductive desorption of OH*, the rate-determine step, is further accelerated.
Collapse
Affiliation(s)
- Zhenghao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinhui Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Cheng Bao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chen-Hao Yeh
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan.
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
12
|
Tong S, Zhu J, Wang Z, Yan J. Highly Selective SO 2 Capture by Triazine-Functionalized Triphenylamine-Based Nanoporous Organic Polymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42717-42725. [PMID: 39086140 DOI: 10.1021/acsami.4c08905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The emissions of sulfur dioxide (SO2) from combustion exhaust gases pose significant risks to public health and the environment due to their harmful effects. Therefore, the development of highly efficient adsorbent polymers capable of capturing SO2 with high capacity and selectivity has emerged as a critical challenge in recent years. However, existing polymers often exhibit poor SO2/CO2 and SO2/N2 selectivity. Herein, we report two triazine-functionalized triphenylamine-based nanoporous organic polymers (ANOP-6 and ANOP-7) that demonstrate both good SO2 uptake and high SO2/CO2 and SO2/N2 selectivity. These polymers were synthesized through cost-effective Friedel-Crafts reactions using cyanuric chloride, 3,6-diphenylaminecarbazole, and 2,2',7,7'-tetrakis(diphenylamino)-9,9'-spirobifluorene. The resultant ANOPs are composed of triazine and triphenylamine units and feature an ultramicroporous structure. Remarkably, ANOPs exhibit impressive adsorption capacities for SO2, with uptakes of approximately 3.31-3.72 mmol·g-1 at 0.1 bar, increasing to 9.52-9.94 mmol·g-1 at 1 bar. The static adsorption isotherms effectively illustrate the ability of ANOPs to separate SO2 from SO2/CO2 and SO2/N2 mixtures. At 298 K and 1 bar, ANOP-6 shows outstanding selectivity toward SO2/CO2 (248) and SO2/N2 (13146), surpassing all previously reported triazine-based nanoporous organic polymers. Additionally, dynamic breakthrough tests demonstrate the superior separation properties of ANOPs for SO2 from an SO2/CO2/N2 mixture. ANOPs exhibit a breakthrough time of 73.1 min·g-1 and a saturated SO2 capacity of 0.53 mmol·g-1. These results highlight the exceptional adsorption properties of ANOPs for SO2, indicating their promising potential for the highly efficient capture of SO2 from flue gas.
Collapse
Affiliation(s)
- Sihan Tong
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jiangli Zhu
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Zefeng Wang
- College of Ecology, Lishui University, Lishui 323000, China
- R&D Center of Green Manufacturing New Materials and Technology of Synthetic Leather, Sichuan University-Lishui University, Lishui 323000, China
| | - Jun Yan
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
13
|
Altaf A, Khan I, Khan A, Sadiq S, Humayun M, Khan S, Zaman S, Khan A, Abumousa RA, Bououdina M. Metal/Covalent Organic Framework Encapsulated Lead-Free Halide Perovskite Hybrid Nanocatalysts: Multifunctional Applications, Design, Recent Trends, Challenges, and Prospects. ACS OMEGA 2024; 9:34220-34242. [PMID: 39157131 PMCID: PMC11325423 DOI: 10.1021/acsomega.4c04532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
Perovskites are bringing revolutionization in a various fields due to their exceptional properties and crystalline structure. Most specifically, halide perovskites (HPs), lead-free halide perovskites (LFHPs), and halide perovskite quantum dots (HPs QDs) are becoming hotspots due to their unique optoelectronic properties, low cost, and simple processing. HPs QDs, in particular, have excellent photovoltaic and optoelectronic applications because of their tunable emission, high photoluminescence quantum yield (PLQY), effective charge separation, and low cost. However, practical applications of the HPs QDs family have some limitations such as degradation, instability, and deep trap states within the bandgap, structural inflexibility, scalability, inconsistent reproducibility, and environmental concerns, which can be covered by encapsulating HPs QDs into porous materials like metal-organic frameworks (MOFs) or covalent-organic frameworks (COFs) that offer protection, prevention of aggregation, tunable optical properties, flexibility in structure, enhanced biocompatibility, improved stability under harsh conditions, consistency in production quality, and efficient charge separation. These advantages of MOFs-COFs help HPs QDs harness their full potential for various applications. This review mainly consists of three parts. The first portion discusses the perovskites, halide perovskites, lead-free perovskites, and halide perovskite quantum dots. In the second portion, we explore MOFs and COFs. In the third portion, particular emphasis is given to a thorough evaluation of the development of HPs QDs@MOFs-COFs based materials for comprehensive investigations for next-generation materials intended for diverse technological applications, such as CO2 conversion, pollutant degradation, hydrogen generation, batteries, gas sensing, and solar cells. Finally, this review will open a new gateway for the synthesis of perovskite-based quantum dots.
Collapse
Affiliation(s)
- Anam Altaf
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Iltaf Khan
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Aftab Khan
- College
of Material Science and Engineering, Beijing
University of Chemical Technology, Beijing 100029, China
| | - Samreen Sadiq
- Jiangsu
Key Laboratory of Sericultural and Animal Biotechnology, School of
Biotechnology, Jiangsu University of Science
and Technology, Zhenjiang 212100, China
| | - Muhammad Humayun
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Shoaib Khan
- College
of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Saeed Zaman
- College of
Chemistry, Liaoning University, Shenyang 110036, China
| | - Abbas Khan
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Rasha A. Abumousa
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
14
|
Tao S, Jiang D. Accelerating Anhydrous Proton Transport in Covalent Organic Frameworks: Pore Chemistry and its Impacts. Angew Chem Int Ed Engl 2024; 63:e202408296. [PMID: 38843109 DOI: 10.1002/anie.202408296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 07/17/2024]
Abstract
Proton conduction is important in both fundamental research and technological development. Here we report designed synthesis of crystalline porous covalent organic frameworks as a new platform for high-rate anhydrous proton conduction. By developing nanochannels with different topologies as proton pathways and loading neat phosphoric acid to construct robust proton carrier networks in the pores, we found that pore topology is crucial for proton conduction. Its effect on increasing proton conductivity is in an exponential mode other than linear fashion, endowing the materials with exceptional proton conductivities exceeding 10-2 S cm-1 over a broad range of temperature and a low activation energy barrier down to 0.24 eV. Remarkably, the pore size controls conduction mechanism, where mesopores promote proton conduction via a fast-hopping mechanism, while micropores follow a sluggish vehicle process. Notably, decreasing phosphoric acid loading content drastically reduces proton conductivity and greatly increases activation energy barrier, emphasizing the pivotal role of well-developed proton carrier network in proton transport. These findings and insights unveil a new general and transformative guidance for designing porous framework materials and systems for high-rate ion conduction, energy storage, and energy conversion.
Collapse
Affiliation(s)
- Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
15
|
Zhang T, Xia Y, Xie YD, Du HJ, Shi ZQ, Hu HL, Zhang H, Guo ZC, Li G. Superprotonic conductivity of ketoenamine covalent-organic frameworks grafted by imidazole-based units. J Colloid Interface Sci 2024; 665:554-563. [PMID: 38552572 DOI: 10.1016/j.jcis.2024.03.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
The achievement of covalent organic frameworks (COFs) with high stability and exceptional proton conductivity is of tremendous practical importance and challenge. Given this, we hope to prepare the highly stable COFs carrying CN connectors and enhance their proton conductivity via a post-modification approach. Herein, one COF, TpTta, was successfully synthesized by employing 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)-trianiline (Tta) as starting materials, which has a β-ketoenamine structure bearing a large amount of -NH groups and intramolecular H-bonds. TpTta was then post-modified by inserting imidazole (Im) and histamine (His) molecules, yielding the corresponding COFs, Im@TpTta and His@TpTta, respectively. As a result, their proton conductivities were surveyed under changeable temperatures (30-100 °C) and relative humidities (68-98 %), revealing a degree of temperature and humidity dependence. Impressively, under identical conditions, the optimum proton conductivities of the two post-modified COFs are 1.14 × 10-2 (Im@TpTta) and 3.45 × 10-3 S/cm (His@TpTta), which are significantly greater than that of the pristine COF, TpTta (2.57 × 10-5 S/cm). Finally, their proton conduction mechanisms were hypothesized based on the computed activation energy values, water vapor adsorption values, and structural properties of these COFs. Additionally, the excellent electrochemical stability of the produced COFs was expressed, as well as the prospective application value.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China; Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Yu Xia
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Ya-Dian Xie
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Hai-Jun Du
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, PR China.
| | - Hai-Liang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China.
| | - Hong Zhang
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Zhong-Cheng Guo
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
16
|
Yan G, Zhang X. Interlayer Interactions and Macroscopic Property Calculations of Squaric-Acid-Linked Zwitterionic Covalent Organic Frameworks: Structures, Photocatalytic Carrier Transport, and a DFT Study. Molecules 2024; 29:2739. [PMID: 38930807 PMCID: PMC11207002 DOI: 10.3390/molecules29122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Squaric-acid-linked zwitterionic covalent organic frameworks (Z-COFs), assembled through interlayer interactions, are emerging as potential materials in the field of photocatalysis. However, the study of their interlayer interactions has been largely overlooked. To address this, this work systematically calculated interlayer interactions via density functional theory (DFT) and analyzed the differences in interlayer interactions of different structures of Z-COFs through interlayer slippage, planarity, and an independent gradient model based on the Hirshfeld partition (IGMH). Furthermore, it revealed the relationship between the interactions and the macroscopic photocatalytic carrier transport performance of the material. The results indicated that both preventing interlayer slippage and enhancing planarity can enhance the interlayer interactions of Z-COFs, thereby improving their macroscopic carrier transport performance in photocatalysis.
Collapse
Affiliation(s)
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, China;
| |
Collapse
|
17
|
He N, Zou Y, Chen C, Tan M, Zhang Y, Li X, Jia Z, Zhang J, Long H, Peng H, Yu K, Jiang B, Han Z, Liu N, Li Y, Ma L. Constructing ordered and tunable extrinsic porosity in covalent organic frameworks via water-mediated soft-template strategy. Nat Commun 2024; 15:3896. [PMID: 38719899 PMCID: PMC11079003 DOI: 10.1038/s41467-024-48160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
As one of the most attractive methods for the synthesis of ordered hierarchically porous crystalline materials, the soft-template method has not appeared in covalent organic frameworks (COFs) due to the incompatibility of surfactant self-assembly and guided crystallization process of COF precursors in the organic phase. Herein, we connect the soft templates to the COF backbone through ionic bonds, avoiding their crystallization incompatibilities, thus introducing an additional ordered arrangement of soft templates into the anionic microporous COFs. The ion exchange method is used to remove the templates while maintaining the high crystallinity of COFs, resulting in the construction of COFs with ordered hierarchically micropores/mesopores, herein named OHMMCOFs (OHMMCOF-1 and OHMMCOF-2). OHMMCOFs exhibit significantly enhanced functional group accessibility and faster mass transfer rate. The extrinsic porosity can be adjusted by changing the template length, concentration, and ratio. Cationic guanidine-based COFs (OHMMCOF-3) are also constructed using the same method, which verifies the scalability of the soft-template strategy. This work provides a path for constructing ordered and tunable extrinsic porosity in COFs with greatly improved mass transfer efficiency and functional group accessibility.
Collapse
Affiliation(s)
- Ningning He
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Yingdi Zou
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Cheng Chen
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Minghao Tan
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Yingdan Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Xiaofeng Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, PR China
| | - Zhimin Jia
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Jie Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Honghan Long
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Haiyue Peng
- Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Kaifu Yu
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Bo Jiang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Ziqian Han
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Ning Liu
- Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Yang Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China.
| | - Lijian Ma
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
18
|
Liu L, Ma Y, Li B, Yin L, Zang HY, Zhang N, Bi H, Wang S, Zhu G. Continuous Ultrathin Zwitterionic Covalent Organic Framework Membrane Via Surface-Initiated Polymerization Toward Superior Water Retention. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308499. [PMID: 38009797 DOI: 10.1002/smll.202308499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Efficient construction of proton transport channels in proton exchange membranes maintaining conductivity under varied humidity is critical for the development of fuel cells. Covalent organic frameworks (COFs) hold great potential in providing precise and fast ion transport channels. However, the preparation of continuous free-standing COF membranes retaining their inherent structural advantages to realize excellent proton conduction performance is a major challenge. Herein, a zwitterionic COF material bearing positive ammonium ions and negative sulphonic acid ions is developed. Free-standing COF membrane with adjustable thickness is constructed via surface-initiated polymerization of COF monomers. The porosity, continuity, and stability of the membranes are demonstrated via the transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) characterization. The rigidity of the COF structure avoids swelling in aqueous solution, which improves the chemical stability of the proton exchange membranes and improves the performance stability. In the higher humidity range (50-90%), the prepared zwitterionic COF membrane exhibits superior capability in retaining the conductivity compared to COF membrane merely bearing sulphonic acid group. The established strategy shows the potential for the application of zwitterionic COF in the proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Lin Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yu Ma
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Bo Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Liying Yin
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Ying Zang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ning Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hai Bi
- Ji Hua Laboratory, Foshan, 528200, P. R. China
| | - Shaolei Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
19
|
Chen Y, Guo M, Wang Z, Mo X, Hu F, Du Y. A novel electrochemical immunosensor for sensitive detection of depression marker Apo-A4 based on bipyridine-functionalized covalent organic frameworks. Mikrochim Acta 2024; 191:179. [PMID: 38443677 DOI: 10.1007/s00604-024-06260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
A novel electrochemical immunosensor for detecting potential depression biomarker Apolipoprotein A4 (Apo-A4) was developed using a multi-signal amplification approach. Firstly, the sensor utilized a modified electrode material, NG-PEI-COF, combining bipyridine-functionalized covalent organic framework (COF) and polyethyleneimine-functionalized nitrogen-doped graphene (NG-PEI), providing high surface area and excellent electron transfer capability for the first-stage amplification in electrical signal conduction. Subsequently, gold nanoparticles (AuNPs) were further electrodeposited onto the electrode, providing good biocompatibility and abundant binding sites for immobilizing the target antigen, thus achieving the second-stage amplification in target recognition and binding. To address the lack of redox properties of the antigen, a tracer probe was formed by loading AuNPs, anti-Apo-A4, and toluidine blue (TB) successively onto COF, leading to the third-stage amplification in signal conversion. The constructed electrochemical immunosensor TB/Ab/AuNPs/COF-Apo-A4/AuNPs/NG-PEI-COF/GCE exhibited excellent detection performance against Apo-A4 with a linear range of 0.01 to 300 ng mL-1 and had a low detection limit of 2.16 pg mL-1 (S/N = 3). In addition, the biosensor had good reproducibility (RSD = 2.31%), stability, and significant anti-interference performance toward other depression biomarkers. The sensor has been successfully used for the quantitative detection of Apo-A4 in serum, providing potential applications for detecting Apo-A4 in the clinic and serving as a reference for constructing sensing methods based on COF.
Collapse
Affiliation(s)
- Yan Chen
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Min Guo
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Zixia Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xiaohui Mo
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Fangdi Hu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| | - Yongling Du
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
20
|
Zheng X, Qiu W, Cui J, Liu H, Zhao Y, Zhang J, Zhang Z, Zhao Y. Donor-Acceptor Interactions Enhanced Colorimetric Sensors for Both Acid and Base Vapor Based on Two-Dimensional Covalent Organic Frameworks. Chemistry 2024; 30:e202303004. [PMID: 38189555 DOI: 10.1002/chem.202303004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 01/09/2024]
Abstract
Due to the high surface area and uniform porosity of covalent organic frameworks (COFs), they exhibit superior properties in capturing and detecting even trace amounts of gases in the air. However, the COFs materials that possess dual detected functionality are still less reported. Here, an imine-based COF containing thiophene as a donor and triazine as an acceptor to form spatial-distribution-defined D-A structures was prepared. D-A system between thiophene and triazine facilitates the charge transfer process during the protonation process of the imine and the triazine units. The obtained COF exhibits simultaneous sensing ability toward both acidic and alkaline vapors with obvious colorimetric sensing functionality.
Collapse
Affiliation(s)
- Xuhan Zheng
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Wenqi Qiu
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Jialin Cui
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Hui Liu
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Yunzheng Zhao
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Jianming Zhang
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Zhenxiu Zhang
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Yingjie Zhao
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| |
Collapse
|
21
|
Guo J, Kong S, Lian Y, Zhao M. Recent bio-applications of covalent organic framework-based nanomaterials. Chem Commun (Camb) 2024; 60:918-934. [PMID: 38168699 DOI: 10.1039/d3cc04368a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Appearing as a new class of functional organic materials, covalent organic frameworks (COFs) have aroused a huge wave of interest in versatile fields ever since they were first proposed in 2005. Thanks to but not limited to their ultralight weights, high surface areas, ordered channels, variable functional groups and well-defined crystal structures, the applications of COF-based biomaterials in the fields of drug loading and delivery, photodynamic therapy, photothermal therapy, bioimaging, etc. are comprehensively summarized and introduced. The existing challenges and future prospects for this emerging but hot research direction are also discussed. It is hoped that this review will serve as a guidance for future research on COFs as multifunctional bioplatforms.
Collapse
Affiliation(s)
- Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Shuyue Kong
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Ye Lian
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China.
| | - Meiting Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
22
|
Yan M, Hao Q, Diao S, Zhou F, Yichen C, Jiang N, Zhao C, Ren XR, Yu F, Tong J, Wang D, Liu H. Smart Home Sleep Respiratory Monitoring System Based on a Breath-Responsive Covalent Organic Framework. ACS NANO 2024; 18:728-737. [PMID: 38118144 DOI: 10.1021/acsnano.3c09018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A smart home sleep respiratory monitoring system based on a breath-responsive covalent organic framework (COF) was developed and utilized to monitor the sleep respiratory behavior of real sleep apnea patients in this work. The capacitance of the interdigital electrode chip coated with COFTPDA-TFPy exhibits thousands-level reversible responses to breath humidity gases, with subsecond response time and robustness against environmental humidity. A miniaturized printed circuit board, an open-face-mask-based respiratory sensor, and a smartphone app were constructed for the wearable wireless smart home sleep respiratory monitoring system. Leveraging the sensitive and rapid reversible response of COFs, the COF-based respiratory monitoring system can effectively record normal breath, rapid breath, and breath apnea, enabling over a thousand cycles of hour-level continuous monitoring during daily wear. Next, we took the groundbreaking step of advancing the humidity sensor to the clinical trial stage. In clinical experiments on real sleep apnea patients, the COF-based respiratory monitoring system successfully recorded hour-level sleep respiratory data and differentiated the breathing behavior characteristics and severity of sleep apnea patients and subjects with normal sleep function and primary snoring patients. This work successfully advanced humidity sensors into clinical research for real patients and demonstrated the enormous application potential of COF materials in clinical diagnosis.
Collapse
Affiliation(s)
- Mengwen Yan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Qing Hao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Shanyan Diao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Fan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chen Yichen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Nan Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chao Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Xiao-Rui Ren
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital, Nanjing, China Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital, Nanjing, China Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
23
|
Cao Y, Zhang Y, Han C, Liu S, Zhang S, Liu X, Zhang B, Pan F, Sun J. Zwitterionic Covalent Organic Framework Based Electrostatic Field Electrocatalysts for Durable Lithium-Sulfur Batteries. ACS NANO 2023; 17:22632-22641. [PMID: 37933557 DOI: 10.1021/acsnano.3c06826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Lithium-sulfur batteries (LSBs) are one of the most promising candidates for next-generation energy storage systems. To develop long-life LSBs, there is an urgent need to develop functional materials with higher catalytic activity toward polysulfides and reduced dendritic lithium growth. Herein, an electrostatic field electrocatalyst is designed in a zwitterionic covalent organic framework (COF) with a "two birds with one stone" ability for simultaneously overcoming obstacles in the lithium metal anode and sulfur cathode. The synergism between cationic and anionic moieties in the zwitterionic COF creates an electrostatic field for bidirectionally catalyzing S cathode conversion. Besides, the rational design of zwitterionic COF as a separator modification layer allows lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) dissociation and fast lithium-ion conduction, which alleviates lithium dendrite growth and thus improves the cycling life of LSBs. This contribution not only pioneers the application of zwitterionic COF in the field of LSBs but also highlights the potential of electrostatic field electrocatalysts.
Collapse
Affiliation(s)
- Yu Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yiming Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chengyu Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shuo Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shaojie Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Baoshan Zhang
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou City 324000, Zhejiang Province, China
| | - Fusheng Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jie Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou City 324000, Zhejiang Province, China
| |
Collapse
|
24
|
Fu Y, Wu Y, Zeng J, Wang S, Li X, Zhang W, Ma H. Dispersing LiCl in Zwitterionic COF for Highly Efficient Ammonia Storage and Separation. Chemistry 2023; 29:e202302462. [PMID: 37642408 DOI: 10.1002/chem.202302462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Efficient and inherently safe NH3 storage and separation are of significant importance for the chemical industry. Herein, we proposed zwitterionic COF as a porous host to disperse LiCl for highly efficient NH3 storage and separation with record adsorption capacity. The equivalently cationic and anionic groups in the channels of zwitterionic COF could act as two separated sites to facilitate the dispersion of LiCl, hence the optimal composite exhibits a high capture capacity of 44.98 mmol/g at 25 °C and 1 bar, far exceeding other existing porous materials. Notably, the adsorption capacity is completely reversible and the efficient separation of NH3 from NH3 /CO2 /N2 mixture is achieved through breakthrough experiments. DFT calculation combined with XPS and 7 Li NMR experimental results give insight into the interaction between zwitterionic COF and LiCl. This work extends possibilities for the development of efficient adsorbents for NH3 storage and separation.
Collapse
Affiliation(s)
- Yu Fu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yue Wu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahui Zeng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shanshan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyu Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenxiang Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
25
|
Zhang Z, Xu Y. Hydrothermal Synthesis of Highly Crystalline Zwitterionic Vinylene-Linked Covalent Organic Frameworks with Exceptional Photocatalytic Properties. J Am Chem Soc 2023; 145:25222-25232. [PMID: 37856866 DOI: 10.1021/jacs.3c08220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Ionic covalent organic frameworks (COFs) featuring both crystallinity and ionic characteristics have attracted tremendous attention in recent years. Compared with single anion- or cation-containing ionic COFs, zwitterionic COFs possess unique functionalities beyond single ionic COFs such as tunable charge density and superhydrophilic and highly ion-conductive characteristics, endowing them with huge potential in various applications. However, it remains a considerable challenge to directly synthesize robust, highly crystalline zwitterionic COFs from the original building blocks. Herein, we report a green hydrothermal synthesis strategy to prepare highly crystalline zwitterionic vinylene-linked COFs (ZVCOFs) from the predesigned zwitterionic building block by utilizing 4-dimethylaminopyridine (DMAP) as the high-efficiency catalyst for the first time. Detailed theoretical calculations and experiments revealed that both the high catalytic activity of DMAP and the unique role of water contributed to the formation of highly crystalline ZVCOFs. It was found that the participation of water could not only remarkably reduce the activation energy barrier and thus enhance the reaction reversibility but also enable the hydration of zwitterionic sites and facilitate ordered layered arrangement, which are favorable for the ZVCOF crystallization. Benefiting from the highly π-conjugated structure and hydrophilic characteristic, the obtained ZVCOFs achieved an ultrahigh sacrificial photocatalytic hydrogen evolution rate of 2052 μmol h-1 under visible light irradiation with an apparent quantum yield up to 47.1% at 420 nm, superior to nearly all COF-based photocatalysts ever reported. Moreover, the ZVCOFs could be deposited on a support as a photocatalytic film device, which demonstrated a remarkable photocatalytic performance of 402.1 mmol h-1 m-2 for hydrogen evolution.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
26
|
Li M, Chu J, Ding D, Li T, Su E, Song Y, Yang YF, She Y, Jia J. Towards high-performance nonlinear optical materials through embedding a D-A system into β-ketoenamine-linked COFs. Chem Commun (Camb) 2023. [PMID: 37991933 DOI: 10.1039/d3cc04845d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Two covalent organic framework (COF) films supported by a glass substrate were obtained by solvothermal reaction of an electron donor with electron acceptor 1,3,5-triformylbenzene (TF) or 2,4,6-triformylphloroglucinol (TFP), respectively. The TFP-BD film exhibits a nonlinear absorption coefficient of -3.01 × 105 cm GW-1. The TFP-BD film can aggregate electrons around the connected monomer through the D-A effect due to its highly polar and electronegative carbonyl oxygen atoms, thereby modulating the electronic structure of the COFs. This work provides a novel approach for the structural modulation of optical materials with strong nonlinearity.
Collapse
Affiliation(s)
- Mingyan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiahui Chu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Debo Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Tingting Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Endian Su
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yinglin Song
- School of Physical Science and Technology, Soochow University, Suzhou 215123, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jianhong Jia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
27
|
Zhang SL, Guo ZC, Su AR, Yang J, Li ZF, Si YB, Li G. Comparative Study on Proton Conductivity and Mechanism Analysis of Two Imidazole Modified Imine-Based Covalent Organic Frameworks. Chemistry 2023; 29:e202302146. [PMID: 37449402 DOI: 10.1002/chem.202302146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
This work elucidates the potential impact of intramolecular H-bonds within the pore walls of covalent organic frameworks (COFs) on proton conductivity. Employing DaTta and TaTta as representative hosts, it was observed that their innate proton conductivities (σ) are both unsatisfactory and σ(DaTta)<σ(TaTta). Intriguingly, the performance of both imidazole-loaded products, Im@DaTta and Im@TaTta is greatly improved, and the σ of Im@DaTta (0.91×10-2 S cm-1 ) even surpasses that of Im@TaTta (3.73×10-3 S cm-1 ) under 100 °C and 98 % relative humidity. The structural analysis, gas adsorption tests, and activation energy calculations forecast the influence of imidazole on the H-bonded system within the framework, leading to observed changes in proton conductivity. It is hypothesized that intramolecular H-bonds within the COF framework impede efficient proton transmission. Nevertheless, the inclusion of an imidazole group disrupts these intramolecular bonds, leading to the formation of an abundance of intermolecular H-bonds within the pore channels, thus contributing to a dramatic increase in proton conductivity. The related calculation of Density Functional Theory (DFT) provides further evidence for this inference.
Collapse
Affiliation(s)
- Shuai-Long Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| | - Zhong-Cheng Guo
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| | - An-Ran Su
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| | - Jian Yang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| | - Zi-Feng Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| | - Yu-Bing Si
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| |
Collapse
|
28
|
Joseph V, Nagai A. Recent advancements of covalent organic frameworks (COFs) as proton conductors under anhydrous conditions for fuel cell applications. RSC Adv 2023; 13:30401-30419. [PMID: 37849707 PMCID: PMC10578502 DOI: 10.1039/d3ra04855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Recent electrochemical energy conversion devices require more advanced proton conductors for their broad applications, especially, proton exchange membrane fuel cell (PEMFC) construction. Covalent organic frameworks (COFs) are an emerging class of organic porous crystalline materials that are composed of organic linkers and connected by strong covalent bonds. The unique characteristics including well-ordered and tailorable pore channels, permanent porosity, high degree of crystallinity, excellent chemical and thermal stability, enable COFs to be the potential proton conductors in fuel cell devices. Generally, proton conduction of COFs is dependent on the amount of water (extent of humidity). So, the constructed fuel cells accompanied complex water management system which requires large radiators and airflow for their operation at around 80 °C to avoid overheating and efficiency roll-off. To overcome such limitations, heavy-duty fuel cells require robust proton exchange membranes with stable proton conduction at elevated temperatures. Thus, proton conducting COFs under anhydrous conditions are in high demand. This review summarizes the recent progress in emerging COFs that exhibit proton conduction under anhydrous conditions, which may be prospective candidates for solid electrolytes in fuel cells.
Collapse
Affiliation(s)
| | - Atsushi Nagai
- Ensemble3 - Centre of Excellence Wólczyńska 133 01-919 Warszawa Poland
| |
Collapse
|
29
|
Li W, Bie Z, Zhang C, Xu X, Wang S, Yang Y, Zhang Z, Yang X, Lim KH, Wang Q, Wang WJ, Li BG, Liu P. Combinatorial Synthesis of Covalent Organic Framework Particles with Hierarchical Pores and Their Catalytic Application. J Am Chem Soc 2023; 145:19283-19292. [PMID: 37585603 DOI: 10.1021/jacs.3c04995] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Precise tailoring of the aggregation state of covalent organic frameworks (COFs) to form a hierarchical porous structure is critical to their performance and applications. Here, we report a one-pot and one-step strategy of using dynamic combinatorial chemistry to construct imine-based hollow COFs containing meso- and macropores. It relies on a direct copolymerization of three or more monomers in the presence of two monofunctional competitors. The resulting particle products possess high crystallinity and hierarchical pores, including micropores around 0.93 nm, mesopores widely distributed in the range of 3.1-32 nm, and macropores at about 500 nm, while the specific surface area could be up to 748 m2·g-1, with non-micropores accounting for 60% of the specific surface area. The particles demonstrate unique advantages in the application as nanocarriers for in situ loading of Pd catalysts at 93.8% loading efficiency in the copolymerization of ethylene and carbon monoxide. The growth and assembly of the copolymer could thus be regulated to form flower-shaped particles, efficiently suppressing the fouling of the reactor. The copolymer's weight-average molecular weight and the melting temperature are also highly improved. Our method provides a facile way of fabricating COFs with hierarchical pores for advanced applications in catalysis.
Collapse
Affiliation(s)
- Wei Li
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhengwei Bie
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chi Zhang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xintong Xu
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Song Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yuhao Yang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Ziyang Zhang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xuan Yang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Khak Ho Lim
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Qingyue Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Wen-Jun Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Bo-Geng Li
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Pingwei Liu
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
30
|
Guo Y, Wei J, Ying Y, Liu Y, Zhou W, Yu Q. Recent Progress of Crystalline Porous Frameworks for Intermediate-Temperature Proton Conduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11166-11187. [PMID: 37533296 DOI: 10.1021/acs.langmuir.3c01205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Proton exchange membranes (PEMs), especially for work under intermediate temperatures (100-200 °C), have attracted great interest because of the high CO toleration and facial water management of the corresponding proton exchange membrane fuel cells (PEMFCs). Traditional polymer PEMs faced challenges of low stability and proton carrier leaking. Crystalline porous materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are promising to overcome these issues contributed by nanometer-sized channels. Herein we summarized the recent development of MOF/COF-based intermediate-temperature proton conductors. The strategies of framework engineering and pore impregnation were introduced in detail for raising proton conductivity. The proton-conducting mechanism was described as well. This spotlight will provide new insight into the fabrication of MOF/COF proton conductors under intermediate-temperature and anhydrous conditions.
Collapse
Affiliation(s)
- Yi Guo
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Junsheng Wei
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yu Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weiqiang Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qing Yu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
31
|
Ji H, Qiao D, Yan G, Dong B, Feng Y, Qu X, Jiang Y, Zhang X. Zwitterionic and Hydrophilic Vinylene-Linked Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37845-37854. [PMID: 37489898 DOI: 10.1021/acsami.3c08250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Developing effective synthetic strategies as well as broadening functionalities for zwitterionic materials that comprise moieties with equimolar cationic and anionic groups still remains a huge challenge. Herein, we develop two zwitterionic vinylene-linked covalent organic frameworks (Zi-VCOF-1 and Zi-VCOF-2) that are a type of novel hydrophilic material. Zi-VCOF-1 and Zi-VCOF-2 are obtained directly through the convenient Knoevenagel condensation of new sulfonic-pyridinium zwitterionic monomers with aromatic aldehyde derivatives. This is the first report on zwitterionic COFs being constructed by the bottom-up functionalization approach from predesigned zwitterionic monomers. Both Zi-VCOFs exhibit a high photocatalytic hydrogen evolution rate (HER) because of their appropriate optical property and outstanding hydrophilicity. Specifically, Zi-VCOF-1 and Zi-VCOF-2 show photocatalytic HER of 13,547 and 5057 μmol h-1 g-1, respectively. Interestingly, the photocatalytic HER of Zi-VCOF-1 is about 2.68 times of that of Zi-VCOF-2, although they differ by only one methyl group in sulfonic-pyridinium zwitterionic pairs. The photocatalytic HER of Zi-VCOF-1 is not only the highest in the vinylene-linked COFs but also outstanding among the most reported COFs. This is the first application of zwitterionic COFs for photocatalytic hydrogen evolution, which would open a new frontier in zwitterionic COFs and be helpful for the design of other photocatalytic materials.
Collapse
Affiliation(s)
- Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Danyang Qiao
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Beibei Dong
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yu Jiang
- School of Pharmacy, Nantong University, Nantong 226019, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
32
|
Chen XR, Zhang CR, Liu X, Liang RP, Qiu JD. Ionic covalent organic framework for selective detection and adsorption of TcO 4-/ReO 4. Chem Commun (Camb) 2023. [PMID: 37455640 DOI: 10.1039/d3cc02429f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Herein, a novel fluorescent ionic covalent organic framework (BTTA-BDNP) based on a linked carbazole unit was constructed for the synchronous monitoring and capture of TcO4-/ReO4-. BTTA-BDNP has a fast fluorescence response time with a low detection limit (66.7 nM) for ReO4- (a non-radioactive substitute for TcO4-). Meanwhile, the high charge density and hydrophobic skeleton of BTTA-BDNP enable it to exhibit rapid and selective trapping of ReO4- in complex environments.
Collapse
Affiliation(s)
- Xiao-Rong Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Cheng-Rong Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
33
|
Yue JY, Song LP, Shi YH, Zhang L, Pan ZX, Yang P, Ma Y, Tang B. Chiral Ionic Covalent Organic Framework as an Enantioselective Fluorescent Sensor for Phenylalaninol Determination. Anal Chem 2023. [PMID: 37454333 DOI: 10.1021/acs.analchem.3c01637] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Phenylalaninol (PAL) is a significant chemical intermediate widely utilized in drug development and chiral synthesis, for instance, as a reactant for bicyclic lactams and oxazoloisoindolinones. Since the absolute stereochemical configuration significantly impacts biological action, it is crucial to evaluate the concentration and enantiomeric content of PAL in a quick and convenient manner. Herein, an effective PAL enantiomer recognition method was reported based on a chiral ionic covalent organic framework (COF) fluorescent sensor, which was fabricated via one-step postquaternization modification of an achiral COF by (1R, 2S, 5R)-2-isopropyl-5-methylcyclohexyl-carbonochloridate (L-MTE). The formed chiral L-TB-COF can be applied as a chiral fluorescent sensor to recognize the stereochemical configuration of PAL, which displayed a turn-on fluorescent response for R-PAL over that of S-PAL with an enantioselectivity factor of 16.96. Nonetheless, the single L-MTE molecule had no chiral recognition ability for PAL. Moreover, the ee value of PAL can be identified by L-TB-COF. Furthermore, density functional theory (DFT) calculations demonstrated that the chiral selectivity came from the stronger binding affinity between L-TB-COF and R-PAL in comparison to that with S-PAL. L-TB-COF is the first chiral ionic COF employed to identify chiral isomers by fluorescence. The current work expands the range of applications for ionic COFs and offers fresh suggestions for creating novel chiral fluorescent sensors.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Ying-Hao Shi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Zi-Xian Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P.R. China
| |
Collapse
|
34
|
Yu J, Luo L, Shang H, Sun B. Rational Fabrication of Ionic Covalent Organic Frameworks for Chemical Analysis Applications. BIOSENSORS 2023; 13:636. [PMID: 37367001 DOI: 10.3390/bios13060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
The rapid development of advanced material science boosts novel chemical analytical technologies for effective pretreatment and sensitive sensing applications in the fields of environmental monitoring, food security, biomedicines, and human health. Ionic covalent organic frameworks (iCOFs) emerge as a class of covalent organic frameworks (COFs) with electrically charged frames or pores as well as predesigned molecular and topological structures, large specific surface area, high crystallinity, and good stability. Benefiting from the pore size interception effect, electrostatic interaction, ion exchange, and recognizing group load, iCOFs exhibit the promising ability to extract specific analytes and enrich trace substances from samples for accurate analysis. On the other hand, the stimuli response of iCOFs and their composites to electrochemical, electric, or photo-irradiating sources endows them as potential transducers for biosensing, environmental analysis, surroundings monitoring, etc. In this review, we summarized the typical construction of iCOFs and focused on their rational structure design for analytical extraction/enrichment and sensing applications in recent years. The important role of iCOFs in the chemical analysis was fully highlighted. Finally, the opportunities and challenges of iCOF-based analytical technologies were also discussed, which may be beneficial to provide a solid foundation for further design and application of iCOFs.
Collapse
Affiliation(s)
- Jing Yu
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Liuna Luo
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hong Shang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bing Sun
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
35
|
Wang FD, Yang LJ, Wang XX, Rong Y, Yang LB, Zhang CX, Yan FY, Wang QL. Pyrazine-Functionalized Donor-Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H 2 Evolution with High Proton Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207421. [PMID: 36890778 DOI: 10.1002/smll.202207421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Indexed: 06/08/2023]
Abstract
The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.
Collapse
Affiliation(s)
- Feng-Dong Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Li-Juan Yang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Xin-Xin Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yi Rong
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Li-Bin Yang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Fang-You Yan
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
36
|
Achar SK, Bernasconi L, DeMaio RI, Howard KR, Johnson JK. In Silico Demonstration of Fast Anhydrous Proton Conduction on Graphanol. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37192530 DOI: 10.1021/acsami.3c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Development of new materials capable of conducting protons in the absence of water is crucial for improving the performance, reducing the cost, and extending the operating conditions for proton exchange membrane fuel cells. We present detailed atomistic simulations showing that graphanol (hydroxylated graphane) will conduct protons anhydrously with very low diffusion barriers. We developed a deep learning potential (DP) for graphanol that has near-density functional theory accuracy but requires a very small fraction of the computational cost. We used our DP to calculate proton self-diffusion coefficients as a function of temperature, to estimate the overall barrier to proton diffusion, and to characterize the impact of thermal fluctuations as a function of system size. We propose and test a detailed mechanism for proton conduction on the surface of graphanol. We show that protons can rapidly hop along Grotthuss chains containing several hydroxyl groups aligned such that hydrogen bonds allow for conduction of protons forward and backward along the chain without hydroxyl group rotation. Long-range proton transport only takes place as new Grotthuss chains are formed by rotation of one or more hydroxyl groups in the chain. Thus, the overall diffusion barrier consists of a convolution of the intrinsic proton hopping barrier and the intrinsic hydroxyl rotation barrier. Our results provide a set of design rules for developing new anhydrous proton conducting membranes with even lower diffusion barriers.
Collapse
Affiliation(s)
- Siddarth K Achar
- Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Leonardo Bernasconi
- Center for Research Computing and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ruby I DeMaio
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Katlyn R Howard
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - J Karl Johnson
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
37
|
Oanta AK, Pelkowski CE, Strauss MJ, Dichtel WR. Competition between side-chain interactions dictates 2D polymer stacking order. Chem Commun (Camb) 2023; 59:6203-6206. [PMID: 37128983 DOI: 10.1039/d3cc01016c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Interrogating the stacking of two-dimensional polymers (2DPs) as a function of chemical composition is important to leverage their properties. We explore the dependence of 2DP crystallinity and porosity on variable amounts of zwitterions contained within the pores and find that high zwitterion loadings consistently diminish 2DP materials quality. A competition between disruptive zwitterion electrostatic forces and alkyl stabilization directs the stacking order of each 2DP and demonstrates the contrasting effects of side chain composition on 2DP crystallinity and porosity.
Collapse
Affiliation(s)
- Alexander K Oanta
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| | - Chloe E Pelkowski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
38
|
He N, Liu B, Jiang B, Li X, Jia Z, Zhang J, Long H, Zhang Y, Zou Y, Yang Y, Xiong S, Cao K, Li Y, Ma L. Monomer Symmetry-Regulated Defect Engineering: In Situ Preparation of Functionalized Covalent Organic Frameworks for Highly Efficient Capture and Separation of Carbon Dioxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16975-16983. [PMID: 36943036 DOI: 10.1021/acsami.2c22435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing crystalline porous materials with highly efficient CO2 selective adsorption capacity is one of the key challenges to carbon capture and storage (CCS). In current studies, much more attention has been paid to the crystalline and porous properties of crystalline porous materials for CCS, while the defects, which are unavoidable and ubiquitous, are relatively neglected. Herein, for the first time, we propose a monomer-symmetry regulation strategy for directional defect release to achieve in situ functionalization of COFs while exposing uniformly distributed defect-aldehyde groups as functionalization sites for selective CO2 capture. The regulated defective COFs possess high crystallinity, good structural stability, and a large number of organized and functionalized aldehyde sites, which exhibit one of the highest selective separation values of all COF sorbing materials in CO2/N2 selective adsorption (128.9 cm3/g at 273 K and 1 bar, selectivity: 45.8 from IAST). This work not only provides a new strategy for defect regulation and in situ functionalization of COFs but also provides a valuable approach in the design and preparation of new adsorbents for CO2 adsorption and CO2/N2 selective separation.
Collapse
Affiliation(s)
- Ningning He
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Boyu Liu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Bo Jiang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaofeng Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Zhimin Jia
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Jie Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Honghan Long
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Yingdan Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Yingdi Zou
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Yuqin Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Shunshun Xiong
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Kecheng Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yang Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Lijian Ma
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
39
|
Cai L, Yang J, Lai Y, Liang Y, Zhang R, Gu C, Kitagawa S, Yin P. Dynamics and Proton Conduction of Heterogeneously Confined Imidazole in Porous Coordination Polymers. Angew Chem Int Ed Engl 2023; 62:e202211741. [PMID: 36583606 DOI: 10.1002/anie.202211741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
The nanoconfinement of proton carrier molecules may contribute to the lowing of their proton dissociation energy. However, the free proton transportation does not occur as easily as in liquid due to the restricted molecular motion from surface attraction. To resolve the puzzle, herein, imidazole is confined in the channels of porous coordination polymers with tunable geometries, and their electric/structural relaxations are quantified. Imidazole confined in a square-shape channels exhibits dynamics heterogeneity of core-shell-cylinder model. The core and shell layer possess faster and slower structural dynamics, respectively, when compared to the bulk imidazole. The dimensions and geometry of the nanochannels play an important role in both the shielding of the blocking effect from attractive surfaces and the frustration filling of the internal proton carrier molecules, ultimately contributing to the fast dynamics and enhanced proton conductivity.
Collapse
Affiliation(s)
- Linkun Cai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Yuling Liang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Rongchun Zhang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
40
|
Meng X, Peng Q, Wen J, Song K, Peng L, Wu T, Cong C, Ye H, Zhou Q. Sulfonated poly(ether ether ketone) membranes for vanadium redox flow battery enabled by the incorporation of ionic liquid‐covalent organic framework complex. J Appl Polym Sci 2023. [DOI: 10.1002/app.53802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Xiaoyu Meng
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Qiwang Peng
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Jihong Wen
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Kai Song
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Luman Peng
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Tianyu Wu
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Chuanbo Cong
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Haimu Ye
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Qiong Zhou
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| |
Collapse
|
41
|
Bhunia S, Peña-Duarte A, Li H, Li H, Sanad MF, Saha P, Addicoat MA, Sasaki K, Strom TA, Yacamán MJ, Cabrera CR, Seshadri R, Bhattacharya S, Brédas JL, Echegoyen L. [2,1,3]-Benzothiadiazole-Spaced Co-Porphyrin-Based Covalent Organic Frameworks for O 2 Reduction. ACS NANO 2023; 17:3492-3505. [PMID: 36753696 DOI: 10.1021/acsnano.2c09838] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Designing N-coordinated porous single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) is a promising approach to achieve enhanced energy conversion due to maximized atom utilization and higher activity. Here, we report two Co(II)-porphyrin/ [2,1,3]-benzothiadiazole (BTD)-based covalent organic frameworks (COFs; Co@rhm-PorBTD and Co@sql-PorBTD), which are efficient SAC systems for O2 electrocatalysis (ORR). Experimental results demonstrate that these two COFs outperform the mass activity (at 0.85 V) of commercial Pt/C (20%) by 5.8 times (Co@rhm-PorBTD) and 1.3 times (Co@sql-PorBTD), respectively. The specific activities of Co@rhm-PorBTD and Co@sql-PorBTD were found to be 10 times and 2.5 times larger than that of Pt/C, respectively. These COFs also exhibit larger power density and recycling stability in Zn-air batteries compared with a Pt/C-based air cathode. A theoretical analysis demonstrates that the combination of Co-porphyrin with two different BTD ligands affords two crystalline porous electrocatalysts having different d-band center positions, which leads to reactivity differences toward alkaline ORR. The strategy, design, and electrochemical performance of these two COFs offer a pyrolysis-free bottom-up approach that avoids the creation of random atomic sites, significant metal aggregation, or unpredictable structural features.
Collapse
Affiliation(s)
- Subhajit Bhunia
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Armando Peña-Duarte
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Huifang Li
- College of Electromechanical Engineering, Qingdao University of Science and Technology, No. 99 Songling Road, Qingdao, Shandong266061, China
| | - Hong Li
- Department of Chemistry and Biochemistry, The University of Arizona, 1041 East Lowell Street, Tucson, Arizona85721-0088, United States
| | - Mohamed Fathi Sanad
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Pranay Saha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
| | - Matthew A Addicoat
- Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, NottinghamNG11 8NS, United Kingdom
| | - Kotaro Sasaki
- Chemistry Department, Brookhaven National Laboratory, Upton, New York11973, United States
| | - T Amanda Strom
- Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California93106, United States
| | - Miguel José Yacamán
- Department of Applied Physics and Materials Science, Northern Arizona University, 525 South Beaver Street, Flagstaff, Arizona86011, United States
| | - Carlos R Cabrera
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Ram Seshadri
- Materials Research Laboratory and Materials Department, University of California, Santa Barbara, California93106, United States
| | - Santanu Bhattacharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India
- Department of Organic Chemistry, Indian Institute of Science, Tala Marg, Bangalore560 012, India
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, 1041 East Lowell Street, Tucson, Arizona85721-0088, United States
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| |
Collapse
|
42
|
Hao Q, Ren XR, Chen Y, Zhao C, Xu J, Wang D, Liu H. A sweat-responsive covalent organic framework film for material-based liveness detection and sweat pore analysis. Nat Commun 2023; 14:578. [PMID: 36732512 PMCID: PMC9894872 DOI: 10.1038/s41467-023-36291-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Covalent organic frameworks have shown considerable application potential and exceptional properties in the construction of stimulus-responsive materials. Here, we designed a sweat-responsive covalent organic framework film for material-based fingerprint liveness detection. When exposed to human sweat, the COFTPDA-TFPy film can transform from yellow to red. The COFTPDA-TFPy film, when touched by living fingers, can produce the naked-eye-identified fingerprint pattern through the sweat-induced color change, while artificial fake fingerprints cannot. This technique, which we named material-based liveness detection, can thus intuitively discern living fingers from fake fingerprints with a 100% accuracy rate. Additionally, the distribution of sweat pores on human skin can also be collected and analyzed by shortening the contact time. By merely washing them with ethanol, all the samples can be utilized again. This work inventively accomplished material-based liveness detection and naked-eye-identified sweat pore analysis and highlighted their potential for use in clinical research and personal identification.
Collapse
Affiliation(s)
- Qing Hao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu, 210096, China.
| | - Xiao-Rui Ren
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Yichen Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu, 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu, 210096, China
| | - Jingyi Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu, 210096, China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
43
|
Hao L, Jia S, Qiao X, Lin E, Yang Y, Chen Y, Cheng P, Zhang Z. Pore Geometry and Surface Engineering of Covalent Organic Frameworks for Anhydrous Proton Conduction. Angew Chem Int Ed Engl 2023; 62:e202217240. [PMID: 36478518 DOI: 10.1002/anie.202217240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Developing new materials for anhydrous proton conduction under high-temperature conditions is significant and challenging. Herein, we create a series of highly crystalline covalent organic frameworks (COFs) via a pore engineering approach. We simultaneously engineer the pore geometry (generating concave dodecagonal nanopores) and pore surface (installing multiple functional groups such as -C=N-, -OH, -N=N- and -CF3 ) to improve the utilization efficiency and host-guest interaction of proton carriers, hence benefiting the enhancement of anhydrous proton conduction. Upon loading with H3 PO4 , COFs can realize a proton conductivity of 2.33×10-2 S cm-1 under anhydrous conditions, among the highest values of all COF materials. These materials demonstrate good stability and maintain high proton conductivity over a wide temperature range (80-160 °C). This work paves a new way for designing COFs for anhydrous proton conduction applications, which shows great potential as high-temperature proton exchange membranes.
Collapse
Affiliation(s)
- Liqin Hao
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shuping Jia
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xueling Qiao
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - En Lin
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi Yang
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China.,State Key Laboratory of Medicinal Chemical biology, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Frontiers Science, Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical biology, College of Chemistry, Nankai University, Tianjin, 300071, China.,State Key Laboratory of Medicinal Chemical biology, Nankai University, Tianjin, 300071, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Frontiers Science, Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
44
|
Zheng Y, Zhou Z, Jiao M, Wang L, Zhang J, Wu W, Wang J. Lamellar membrane with orderly aligned glycine molecules for efficient proton conduction. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
A cyclophosphazene-derived porous organic polymer with P-N linkage for environmental adsorption applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Dual-sided symmetric crystalline orientation of covalent organic framework membranes for unidirectional anhydrous proton conduction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Sun M, Feng J, Feng Y, Xin X, Ding Y, Sun M. Preparation of ionic covalent organic frameworks and their applications in solid-phase extraction. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Zhang R, Zhang Z, Ke Q, Zhou B, Cui G, Lu H. Covalent Organic Frameworks with Ionic Liquid-Moieties (ILCOFs): Structures, Synthesis, and CO 2 Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3615. [PMID: 36296805 PMCID: PMC9612033 DOI: 10.3390/nano12203615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
CO2, an acidic gas, is usually emitted from the combustion of fossil fuels and leads to the formation of acid rain and greenhouse effects. CO2 can be used to produce kinds of value-added chemicals from a viewpoint based on carbon capture, utilization, and storage (CCUS). With the combination of unique structures and properties of ionic liquids (ILs) and covalent organic frameworks (COFs), covalent organic frameworks with ionic liquid-moieties (ILCOFs) have been developed as a kind of novel and efficient sorbent, catalyst, and electrolyte since 2016. In this critical review, we first focus on the structures and synthesis of different kinds of ILCOFs materials, including ILCOFs with IL moieties located on the main linkers, on the nodes, and on the side chains. We then discuss the ILCOFs for CO2 capture and conversion, including the reduction and cycloaddition of CO2. Finally, future directions and prospects for ILCOFs are outlined. This review is beneficial for academic researchers in obtaining an overall understanding of ILCOFs and their application of CO2 conversion. This work will open a door to develop novel ILCOFs materials for the capture, separation, and utilization of other typical acid, basic, or neutral gases such as SO2, H2S, NOx, NH3, and so on.
Collapse
|
49
|
Li J, Wang J, Shui F, Yi M, Zhang Z, Liu X, Zhang L, You Z, Yang R, Yang S, Li B, Bu XH. Superhigh intrinsic proton conductivity in densely carboxylic covalent organic framework. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Shi J, Su M, Li H, Lai D, Gao F, Lu Q. Two-Dimensional Imide-Based Covalent Organic Frameworks with Tailored Pore Functionality as Separators for High-Performance Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42018-42029. [PMID: 36097371 DOI: 10.1021/acsami.2c10917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modifying the separator of lithium-sulfur batteries (LSBs) is considered to be one of the most effective strategies for relieving the notorious polysulfide shuttle effect. Constructing a stable, lightweight, and effective LSB separator is still a big challenge but highly desirable. Herein, a stable and lightweight imide-based covalent organic framework (COF-TpPa) is facilely fabricated on reduced graphene oxide (rGO) through an oxygen-free solvothermal technique. With the directing effect of rGO and changing the side functional group of the monomer, the morphology and the pore tailoring of COF-TpPa can be simultaneously achieved and two-dimensional (2D) COF nanosheets with different functionalities (such as -SO3H and -Cl) are successfully constructed on rGO films. The specific functional groups inside the COF's pore channels and the narrowed pore size result in efficient absorption and restriction of Li2Sn for weakening the "shuttle effect". Meanwhile, the 2D COF nanosheets on the rGO is a favorable morphology for better exploiting pores inside the COF materials. As a result, the COF-SO3H-modified separator, consisting of rGO and COF-TpPa-SO3H, exhibits a high specific capacity (1163.4 mA h/g at 0.2 C) and a desirable cyclic performance (60.2% retention rate after 1000 cycles at 2.0 C) for LSBs. Our study provides a feasible strategy to rationally design functional COFs and boosts their applications in various energy storage systems.
Collapse
Affiliation(s)
- Jiangwei Shi
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Mengfei Su
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Dawei Lai
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Feng Gao
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|