1
|
Lee S, Kim H, Kim S, Son H, Han JS, Kim UJ. Machine Vision with a CMOS-Based Hyperspectral Imaging Sensor Enables Sensing Meat Freshness. ACS Sens 2025; 10:236-245. [PMID: 39721943 DOI: 10.1021/acssensors.4c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Imaging spectral information of materials and analysis of its properties have become an intriguing tool for consumer electronics used for food inspection, beauty care, etc. Those sensory physical quantities are difficult to quantify. Hyperspectral imaging cameras, which capture the figure and spectral information simultaneously, can be a good candidate for nondestructive remote sensing. In this study, with the aid of a hyperspectral imaging system (HIS) and machine learning (ML) techniques, meat freshness is converted into a measurable physical quantity, i.e., the freshness index (FI). Herein, the FI is defined as meat fluorescence, which has a strong correlation with the bacterial density. Combined with ML techniques, hyperspectral data are processed more efficiently. By employing linear discriminant and quadratic component analyses, the FI can be estimated from its decision boundary after hyperspectral data are obtained in an unknown freshness state. We demonstrate that the HIS integrated with ML performs as the artificial eye and brain, which is advanced machine vision for consumer electronics, including refrigerators and smartphones. Advanced sensing versatility utilized by computational sensing systems allows hyper-personalization and hyper-customization of human life.
Collapse
Affiliation(s)
- Suyeon Lee
- Samsung Advanced Institute of Technology, Suwon, Gyeonggi-do 16678, Republic of Korea
| | - Hyochul Kim
- Samsung Advanced Institute of Technology, Suwon, Gyeonggi-do 16678, Republic of Korea
| | - Seokin Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyungbin Son
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeong Su Han
- Home Appliance Division, Samsung Electronics, Suwon, Gyeonggi-do 16678, Republic of Korea
| | - Un Jeong Kim
- Department of Physics, Dongguk university, Seoul 04620, Republic of Korea
| |
Collapse
|
2
|
He J, Lin C, Hu Y, Gu S, Deng H, Shen Z. Research progress of graphene-based nanomaterials in the diagnosis and treatment of head and neck cancer. Sci Prog 2024; 107:368504241291342. [PMID: 39574301 PMCID: PMC11585035 DOI: 10.1177/00368504241291342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Head and neck cancer (HNC) is the sixth most common cancer in the world, and its incidence is increasing year by year. Due to the late-stage diagnosis and poor prognosis of HNC, as well as the limitations of traditional treatment methods, it is urgent to improve early detection rates and explore alternative treatment approaches. Graphene-based nanomaterials (GBNs) have been widely applied in biomedical fields due to their high surface area, excellent photothermal properties, and high loading capacity. This literature review introduces the functionalization and biocompatibility of GBNs, followed by a focus on their applications in the diagnosis and treatment of HNC. This includes their potential as bioimaging or biosensing platforms for diagnosis and monitoring, as well as their research progress in chemotherapy drug delivery, phototherapy, and gene transfection. The tremendous potential of GBNs as a platform for combination therapies is emphasized. Finally, in this literature review, we briefly discuss the toxicity and limitations of GBNs in the current research and provide an outlook on their future clinical applications in the diagnosis and treatment of HNC.
Collapse
Affiliation(s)
- Jiali He
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chen Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yanghao Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shanshan Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Sim JH, Yoo J, Lee ML, Han SH, Han SK, Lee JY, Yi SW, Nam J, Kim DS, Yang YS. Deep Learning Model for Cosmetic Gel Classification Based on a Short-Time Fourier Transform and Spectrogram. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25825-25835. [PMID: 38738662 DOI: 10.1021/acsami.4c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Cosmetics and topical medications, such as gels, foams, creams, and lotions, are viscoelastic substances that are applied to the skin or mucous membranes. The human perception of these materials is complex and involves multiple sensory modalities. Traditional panel-based sensory evaluations have limitations due to individual differences in sensory receptors and factors such as age, race, and gender. Therefore, this study proposes a deep-learning-based method for systematically analyzing and effectively identifying the physical properties of cosmetic gels. Time-series friction signals generated by rubbing the gels were measured. These signals were preprocessed through short-time Fourier transform (STFT) and continuous wavelet transform (CWT), respectively, and the frequency factors that change over time were distinguished and analyzed. The deep learning model employed a ResNet-based convolution neural network (CNN) structure with optimization achieved through a learning rate scheduler. The optimized STFT-based 2D CNN model outperforms the CWT-based 2D and 1D CNN models. The optimized STFT-based 2D CNN model also demonstrated robustness and reliability through k-fold cross-validation. This study suggests the potential for an innovative approach to replace traditional expert panel evaluations and objectively assess the user experience of cosmetics.
Collapse
Affiliation(s)
- Jae Ho Sim
- Materials and Components Research Division, Superintelligence Creative research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Jengsu Yoo
- Materials and Components Research Division, Superintelligence Creative research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Myung Lae Lee
- Materials and Components Research Division, Superintelligence Creative research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | | | | | - Jeong Yu Lee
- Basic Research & Innovation Division, R&I Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Sung Won Yi
- Basic Research & Innovation Division, R&I Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Jin Nam
- Basic Research & Innovation Division, R&I Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Dong Soo Kim
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Yong Suk Yang
- Materials and Components Research Division, Superintelligence Creative research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| |
Collapse
|
4
|
Nakamura H, Ezaki R, Matsumura G, Chung CC, Hsu YC, Peng YR, Fukui A, Chueh YL, Kiriya D, Takei K. Solution-Processed Flexible Temperature Sensor Array for Highly Resolved Spatial Temperature and Tactile Mapping Using ESN-Based Data Interpolation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19198-19204. [PMID: 38578032 DOI: 10.1021/acsami.4c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
High-performance flexible temperature sensors are crucial in various technological applications, such as monitoring environmental conditions and human healthcare. The ideal characteristics of these sensors for stable temperature monitoring include scalability, mechanical flexibility, and high sensitivity. Moreover, simplicity and low power consumption will be essential for temperature sensor arrays in future integrated systems. This study introduces a solution-based approach for creating a V2O5 nanowire network temperature sensor on a flexible film. Through optimization of the fabrication conditions, the sensor exhibits remarkable performance, sustaining long-term stability (>110 h) with minimal hysteresis and excellent sensitivity (∼-1.5%/°C). In addition, this study employs machine learning techniques for data interpolation among sensors, thereby enhancing the spatial resolution of temperature measurements and adding tactile mapping without increasing the sensor count. Introducing this methodology results in an improved understanding of temperature variations, advancing the capabilities of flexible-sensor arrays for various applications.
Collapse
Affiliation(s)
- Haruki Nakamura
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Ryota Ezaki
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Guren Matsumura
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Chia-Chen Chung
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chieh Hsu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ren Peng
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Akito Fukui
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daisuke Kiriya
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Kuniharu Takei
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| |
Collapse
|
5
|
Lee JH, Cho K, Kim JK. Age of Flexible Electronics: Emerging Trends in Soft Multifunctional Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310505. [PMID: 38258951 DOI: 10.1002/adma.202310505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/27/2023] [Indexed: 01/24/2024]
Abstract
With the commercialization of first-generation flexible mobiles and displays in the late 2010s, humanity has stepped into the age of flexible electronics. Inevitably, soft multifunctional sensors, as essential components of next-generation flexible electronics, have attracted tremendous research interest like never before. This review is dedicated to offering an overview of the latest emerging trends in soft multifunctional sensors and their accordant future research and development (R&D) directions for the coming decade. First, key characteristics and the predominant target stimuli for soft multifunctional sensors are highlighted. Second, important selection criteria for soft multifunctional sensors are introduced. Next, emerging materials/structures and trends for soft multifunctional sensors are identified. Specifically, the future R&D directions of these sensors are envisaged based on their emerging trends, namely i) decoupling of multiple stimuli, ii) data processing, iii) skin conformability, and iv) energy sources. Finally, the challenges and potential opportunities for these sensors in future are discussed, offering new insights into prospects in the fast-emerging technology.
Collapse
Affiliation(s)
- Jeng-Hun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Jang-Kyo Kim
- Department of Mechanical Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Park J, Lee Y, Cho S, Choe A, Yeom J, Ro YG, Kim J, Kang DH, Lee S, Ko H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem Rev 2024; 124:1464-1534. [PMID: 38314694 DOI: 10.1021/acs.chemrev.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.
Collapse
Affiliation(s)
- Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
7
|
Ma T, Zhang M. Data-Driven Contact-Based Thermosensation for Enhanced Tactile Recognition. SENSORS (BASEL, SWITZERLAND) 2024; 24:369. [PMID: 38257462 PMCID: PMC10819413 DOI: 10.3390/s24020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Thermal feedback plays an important role in tactile perception, greatly influencing fields such as autonomous robot systems and virtual reality. The further development of intelligent systems demands enhanced thermosensation, such as the measurement of thermal properties of objects to aid in more accurate system perception. However, this continues to present certain challenges in contact-based scenarios. For this reason, this study innovates by using the concept of semi-infinite equivalence to design a thermosensation system. A discrete transient heat transfer model was established. Subsequently, a data-driven method was introduced, integrating the developed model with a back propagation (BP) neural network containing dual hidden layers, to facilitate accurate calculation for contact materials. The network was trained using the thermophysical data of 67 types of materials generated by the heat transfer model. An experimental setup, employing flexible thin-film devices, was constructed to measure three solid materials under various heating conditions. Results indicated that measurement errors stayed within 10% for thermal conductivity and 20% for thermal diffusion. This approach not only enables quick, quantitative calculation and identification of contact materials but also simplifies the measurement process by eliminating the need for initial temperature adjustments, and minimizing errors due to model complexity.
Collapse
Affiliation(s)
| | - Min Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| |
Collapse
|
8
|
Wu J, Sang M, Zhang J, Sun Y, Wang X, Zhang J, Pang H, Luo T, Pan S, Xuan S, Gong X. Ultra-Stretchable Spiral Hybrid Conductive Fiber with 500%-Strain Electric Stability and Deformation-Independent Linear Temperature Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207454. [PMID: 36808686 DOI: 10.1002/smll.202207454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Indexed: 05/11/2023]
Abstract
Stretchable configuration occupies priority in devising flexible conductors used in intelligent electronics and implantable sensors. While most conductive configurations cannot suppress electrical variations against extreme deformation and ignore inherent material characteristics. Herein, a spiral hybrid conductive fiber (SHCF) composed of aramid polymeric matrix and silver nanowires (AgNWs) coating is fabricated through shaping and dipping processes. The homochiral coiled configuration mimicked by plant tendrils not only enables its high elongation (958%), but also generates a superior deformation-insensitive effect to existing stretchable conductors. The resistance of SHCF maintains remarkable stability against extreme strain (500%), impact damage, air exposure (90 days), and cyclic bending (150 000 times). Moreover, the thermal-induced densification of AgNWs on SHCF achieves precise and linear temperature response toward a broad range (-20 to 100 °C). Its sensitivity further manifests high independence to tensile strain (0%-500%), allowing for flexible temperature monitoring of curved objects. Such unique strain-tolerant electrical stability and thermosensation hold broad prospects for SHCF in lossless power transferring and expeditious thermal analysis.
Collapse
Affiliation(s)
- Jianpeng Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Jingyi Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Yuxi Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Xinyi Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Junshuo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Haoming Pang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Shaoshan Pan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, P. R. China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
9
|
Mamunya Y, Maruzhenko O, Kolisnyk R, Iurzhenko M, Pylypenko A, Masiuchok O, Godzierz M, Krivtsun I, Trzebicka B, Pruvost S. Pyroresistive Properties of Composites Based on HDPE and Carbon Fillers. Polymers (Basel) 2023; 15:polym15092105. [PMID: 37177251 PMCID: PMC10180648 DOI: 10.3390/polym15092105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Electrothermal processes were studied in pyroresistive composites based on high-density polyethylene (HDPE) containing 8 vol.% carbon black (CB), 8 vol.% carbon fibers (CF), and their mixture 4 vol.% CB + 4 vol.% CF. It is shown that the kinetic heating curves of composites are well described by an exponential dependence with a certain heating rate constant k for each type of composite. After a short heating time, the equilibrium temperature Te is reached in the sample. When the applied voltage exceeds a certain value, the Te value decreases due to the presence of the positive temperature coefficient of resistance (PTC) effect. Due to the PTC effect, the composites exhibit a self-regulating effect relative to the Te. Relations between the applied voltage, electric power, and equilibrium temperature are found, the Te value depends on the applied voltage according to the quadratic law whereas there is a linear relationship between the Te and electric power. A possible application of such pyroresistive composites is resistance welding of plastics using a heating element (HE) made of a pyroresistive material. The use of HDPE-CB composite to create HE for resistance welding is demonstrated and the welded joint of HDPE parts obtained using HE is shown.
Collapse
Affiliation(s)
- Yevgen Mamunya
- Institute of Macromolecular Chemistry of NAS of Ukraine, Kharkovskoe Chaussee 48, 02160 Kyiv, Ukraine
- E.O. Paton Electric Welding Institute of NAS of Ukraine, Kazymyra Malevycha 11, 03680 Kyiv, Ukraine
- International Polish-Ukrainian Research Laboratory ADPOLCOM
| | - Oleksii Maruzhenko
- E.O. Paton Electric Welding Institute of NAS of Ukraine, Kazymyra Malevycha 11, 03680 Kyiv, Ukraine
- International Polish-Ukrainian Research Laboratory ADPOLCOM
| | - Roman Kolisnyk
- E.O. Paton Electric Welding Institute of NAS of Ukraine, Kazymyra Malevycha 11, 03680 Kyiv, Ukraine
- International Polish-Ukrainian Research Laboratory ADPOLCOM
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, Union St SE 200, Minneapolis, MN 55455, USA
| | - Maksym Iurzhenko
- E.O. Paton Electric Welding Institute of NAS of Ukraine, Kazymyra Malevycha 11, 03680 Kyiv, Ukraine
- International Polish-Ukrainian Research Laboratory ADPOLCOM
| | - Andrii Pylypenko
- Institute of Macromolecular Chemistry of NAS of Ukraine, Kharkovskoe Chaussee 48, 02160 Kyiv, Ukraine
| | - Olha Masiuchok
- E.O. Paton Electric Welding Institute of NAS of Ukraine, Kazymyra Malevycha 11, 03680 Kyiv, Ukraine
- International Polish-Ukrainian Research Laboratory ADPOLCOM
| | - Marcin Godzierz
- International Polish-Ukrainian Research Laboratory ADPOLCOM
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland
| | - Igor Krivtsun
- E.O. Paton Electric Welding Institute of NAS of Ukraine, Kazymyra Malevycha 11, 03680 Kyiv, Ukraine
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland
| | - Sébastien Pruvost
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, CEDEX, F-69621 Villeurbanne, France
| |
Collapse
|
10
|
Wu J, Fan X, Liu X, Ji X, Shi X, Wu W, Yue Z, Liang J. Highly Sensitive Temperature-Pressure Bimodal Aerogel with Stimulus Discriminability for Human Physiological Monitoring. NANO LETTERS 2022; 22:4459-4467. [PMID: 35608193 DOI: 10.1021/acs.nanolett.2c01145] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multimodal sensor with high sensitivity, accurate sensing resolution, and stimuli discriminability is very desirable for human physiological state monitoring. A dual-sensing aerogel is fabricated with independent pyro-piezoresistive behavior by leveraging MXene and semicrystalline polymer to assemble shrinkable nanochannel structures inside multilevel cellular walls of aerogel for discriminable temperature and pressure sensing. The shrinkable nanochannels, controlled by the melt flow-triggered volume change of semicrystalline polymer, act as thermoresponsive conductive channels to endow the pyroresistive aerogel with negative temperature coefficient of resistance of -10.0% °C-1 and high accuracy within 0.2 °C in human physiological temperature range of 30-40 °C. The flexible cellular walls, working as pressure-responsive conductive channels, enable the piezoresistive aerogel to exhibit a pressure sensitivity up to 777 kPa-1 with a detectable pressure limit of 0.05 Pa. The pyro-piezoresistive aerogel can detect the temperature-dependent characteristics of pulse pressure waveforms from artery vessels under different human body temperature states.
Collapse
Affiliation(s)
- Jinhua Wu
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin 300350, China
| | - Xiangqian Fan
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin 300350, China
| | - Xue Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin 300350, China
| | - Xinyi Ji
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin 300350, China
| | - Xinlei Shi
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin 300350, China
| | - Wenbin Wu
- Department of Microelectronics, Nankai University, Tianjin 300350, China
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin 300350, China
| | - Jiajie Liang
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin 300350, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300350, China
| |
Collapse
|