1
|
Son H, Choi DH, Park K, Chung J, Kang BH, Kim HJ. Pseudologic Optical Circuit Method for Advanced Color Sensing in IGZO Phototransistor Arrays with Chlorophyll Absorption Layers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67909-67920. [PMID: 39620403 DOI: 10.1021/acsami.4c12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Recently, the elimination of color filters has become a key focus in photodetector research because of the potential to create more compact and cost-effective sensor systems. In this study, a novel concept of a filter-free color-discrimination photosensor using an indium gallium zinc oxide (IGZO, In/Ga/Zn = 3.1:2.6:1.0)-based phototransistor with an integrated chlorophyll absorption layer (CAL) and a solution-processed oxide absorption layer (SAL) was developed. Chlorophyll, known for its role in photosynthesis as a natural light absorber, offers distinct characteristics compared to conventional photodetectors (i.e., SAL/IGZO), whereby the photoresponsivity decreases with increasing wavelength. Using the ability of chlorophyll to absorb blue and red light, the proposed CAL/IGZO phototransistor exhibited a higher photoresponsivity to red light than to green light. The device achieved a photoresponsivity of 1570 A/W for red light and 681 A/W for green light, with a photosensitivity of 8.35 × 105 and 8.96 × 104 and a detectivity of 8.47 × 1011 and 6.80 × 1010 Jones, respectively, under an illumination intensity of 1 mW/mm2. Furthermore, by integrating the proposed CAL/IGZO phototransistor with a SAL/IGZO phototransistor, which exhibited a different order of photoresponse across RGB wavelengths, an innovative color-discrimination pixel pseudologic circuit was successfully developed. The capability of this circuit to distinguish colors across various light intensities was validated through experimental data and SPICE simulations, with the output voltage ranges confirmed as -2.61 to -3.51 V for red, 1.56 to 2.69 V for green, and -0.22 to -0.68 V for blue over light intensities from 0.1 to 3 mW/mm2. This innovative approach allows effective color detection without conventional color filters, providing an advanced solution for photodetection technologies.
Collapse
Affiliation(s)
- Hyunji Son
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- LG Display Co., Ltd. 245, LG-ro, Wollong-myeon, Paju-si, Gyeonggi-do 10845, Republic of Korea
| | - Dong Hyun Choi
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyungho Park
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jusung Chung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Byung Ha Kang
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyun Jae Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Leng Y, Lv Z, Huang S, Xie P, Li H, Zhu S, Sun T, Zhou Y, Zhai Y, Li Q, Ding G, Zhou Y, Han S. A Near-Infrared Retinomorphic Device with High Dimensionality Reservoir Expression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411225. [PMID: 39390822 PMCID: PMC11602693 DOI: 10.1002/adma.202411225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Physical reservoir-based reservoir computing (RC) systems for intelligent perception have recently gained attention because they require fewer computing resources. However, the system remains limited in infrared (IR) machine vision, including materials and physical reservoir expression power. Inspired by biological visual perception systems, the study proposes a near-infrared (NIR) retinomorphic device that simultaneously perceives and encodes narrow IR spectral information (at ≈980 nm). The proposed device, featuring core-shell upconversion nanoparticle/poly (3-hexylthiophene) (P3HT) nanocomposite channels, enables the absorption and conversion of NIR into high-energy photons to excite more photo carriers in P3HT. The photon-electron-coupled dynamics under the synergy of photovoltaic and photogating effects influence the nonlinearity and high dimensionality of the RC system under narrow-band NIR irradiation. The device also exhibits multilevel data storage capability (≥8 levels), excellent stability (≥2000 s), and durability (≥100 cycles). The system accurately identifies NIR static and dynamic handwritten digit images, achieving recognition accuracies of 91.13% and 90.07%, respectively. Thus, the device tackles intricate computations like solving second-order nonlinear dynamic equations with minimal errors (normalized mean squared error of 1.06 × 10⁻3 during prediction).
Collapse
Affiliation(s)
- Yan‐Bing Leng
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077P. R. China
| | - Ziyu Lv
- College of Electronics and Information EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Shengming Huang
- College of Electronics and Information EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Peng Xie
- Institute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
| | - Hua‐Xin Li
- College of Electronics and Information EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Shirui Zhu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077P. R. China
| | - Tao Sun
- Institute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
| | - You Zhou
- Institute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
| | - Yongbiao Zhai
- College of Electronics and Information EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Qingxiu Li
- Institute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
| | - Guanglong Ding
- Institute for Advanced StudyShenzhen UniversityShenzhen518060P. R. China
| | - Ye Zhou
- Institute for Advanced StudyShenzhen UniversityShenzhen518060P. R. China
| | - Su‐Ting Han
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077P. R. China
| |
Collapse
|
3
|
Wang W, Tian W, Chen F, Wang J, Zhai W, Li L. Filter-Less Color-Selective Photodetector Derived from Integration of Parallel Perovskite Photoelectric Response Units. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404968. [PMID: 38897182 DOI: 10.1002/adma.202404968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Color-selective photodetectors (PDs) play an indispensable role in spectral recognition, image sensing, and other fields. Nevertheless, complex filters and delicate optical paths in such devices significantly increase their complexity and size, which subsequently impede their integration in smart optoelectronic chips for universal applications. This work demonstrates the successful fabrication of filter-less color-selective perovskite PDs by integrating three perovskite units with different photoresponse on a single chip. The variation in photoresponse is attributed to different quantities of SnO2 nanoparticles, synthesized through controlled ultrasonic treatment on the surface of the electron transportation layer SnS2, which selectively absorb short-wavelength light, thus increasing the relative transmittance of long-wavelength light and enhancing the photoresponse of the units to long wavelengths. By integrating any two units and deriving the formula for the wavelength to the responsivity ratio, a wavelength sensor is developed which can accurately identify incident light in the range of 400-700 nm with a minimum error <3 nm. Furthermore, the device integrating three units with different photoresponse can identify red, green and blue in polychromatic light to achieve color imaging with a relative error <6%. This work provides valuable insights into wavelength identification and color imaging of perovskite PDs.
Collapse
Affiliation(s)
- Wencan Wang
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Tian
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, China
| | - Fang Chen
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jianyuan Wang
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Zhai
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, China
| |
Collapse
|
4
|
Chen D, Han Z, Zhang J, Xue L, Liu S. Additive Manufacturing Provides Infinite Possibilities for Self-Sensing Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400816. [PMID: 38767180 PMCID: PMC11267329 DOI: 10.1002/advs.202400816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Integrating sensors and other functional parts in one device can enable a new generation of integrated intelligent devices that can perform self-sensing and monitoring autonomously. Applications include buildings that detect and repair damage, robots that monitor conditions and perform real-time correction and reconstruction, aircraft capable of real-time perception of the internal and external environment, and medical devices and prosthetics with a realistic sense of touch. Although integrating sensors and other functional parts into self-sensing intelligent devices has become increasingly common, additive manufacturing has only been marginally explored. This review focuses on additive manufacturing integrated design, printing equipment, and printable materials and stuctures. The importance of the material, structure, and function of integrated manufacturing are highlighted. The study summarizes current challenges to be addressed and provides suggestions for future development directions.
Collapse
Affiliation(s)
- Daobing Chen
- The Institute of Technological ScienceWuhan UniversitySouth Donghu Road 8Wuhan430072China
| | - Zhiwu Han
- The Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchunJilin130022China
| | - Junqiu Zhang
- The Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchunJilin130022China
| | - Longjian Xue
- School of Power and Mechanical EngineeringWuhan UniversitySouth Donghu Road 8Wuhan430072China
| | - Sheng Liu
- The Institute of Technological ScienceWuhan UniversitySouth Donghu Road 8Wuhan430072China
| |
Collapse
|
5
|
Li N, Jabegu T, He R, Yun S, Ghosh S, Maraba D, Olunloyo O, Ma H, Okmi A, Xiao K, Wang G, Dong P, Lei S. Covalently-Bonded Laminar Assembly of Van der Waals Semiconductors with Polymers: Toward High-Performance Flexible Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310175. [PMID: 38402424 DOI: 10.1002/smll.202310175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Indexed: 02/26/2024]
Abstract
Van der Waals semiconductors (vdWS) offer superior mechanical and electrical properties and are promising for flexible microelectronics when combined with polymer substrates. However, the self-passivated vdWS surfaces and their weak adhesion to polymers tend to cause interfacial sliding and wrinkling, and thus, are still challenging the reliability of vdWS-based flexible devices. Here, an effective covalent vdWS-polymer lamination method with high stretch tolerance and excellent electronic performance is reported. Using molybdenum disulfide (MoS2 )and polydimethylsiloxane (PDMS) as a case study, gold-chalcogen bonding and mercapto silane bridges are leveraged. The resulting composite structures exhibit more uniform and stronger interfacial adhesion. This enhanced coupling also enables the observation of a theoretically predicted tension-induced band structure transition in MoS2 . Moreover, no obvious degradation in the devices' structural and electrical properties is identified after numerous mechanical cycle tests. This high-quality lamination enhances the reliability of vdWS-based flexible microelectronics, accelerating their practical applications in biomedical research and consumer electronics.
Collapse
Affiliation(s)
- Ningxin Li
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| | - Tara Jabegu
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| | - Rui He
- Department of Mechanical Engineering, George Mason University, Fairfax, VA, 22030, USA
| | - Seokjoon Yun
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sujoy Ghosh
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Diren Maraba
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| | - Olugbenga Olunloyo
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Hedi Ma
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Aisha Okmi
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Pei Dong
- Department of Mechanical Engineering, George Mason University, Fairfax, VA, 22030, USA
| | - Sidong Lei
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
6
|
Zhu S, Xie T, Lv Z, Leng YB, Zhang YQ, Xu R, Qin J, Zhou Y, Roy VAL, Han ST. Hierarchies in Visual Pathway: Functions and Inspired Artificial Vision. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301986. [PMID: 37435995 DOI: 10.1002/adma.202301986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
The development of artificial intelligence has posed a challenge to machine vision based on conventional complementary metal-oxide semiconductor (CMOS) circuits owing to its high latency and inefficient power consumption originating from the data shuffling between memory and computation units. Gaining more insights into the function of every part of the visual pathway for visual perception can bring the capabilities of machine vision in terms of robustness and generality. Hardware acceleration of more energy-efficient and biorealistic artificial vision highly necessitates neuromorphic devices and circuits that are able to mimic the function of each part of the visual pathway. In this paper, we review the structure and function of the entire class of visual neurons from the retina to the primate visual cortex within reach (Chapter 2) are reviewed. Based on the extraction of biological principles, the recent hardware-implemented visual neurons located in different parts of the visual pathway are discussed in detail in Chapters 3 and 4. Furthermore, valuable applications of inspired artificial vision in different scenarios (Chapter 5) are provided. The functional description of the visual pathway and its inspired neuromorphic devices/circuits are expected to provide valuable insights for the design of next-generation artificial visual perception systems.
Collapse
Affiliation(s)
- Shirui Zhu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tao Xie
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yan-Bing Leng
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Qi Zhang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Runze Xu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingrun Qin
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, 999077, P. R. China
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
7
|
Yoon HH, Fernandez HA, Nigmatulin F, Cai W, Yang Z, Cui H, Ahmed F, Cui X, Uddin MG, Minot ED, Lipsanen H, Kim K, Hakonen P, Hasan T, Sun Z. Miniaturized spectrometers with a tunable van der Waals junction. Science 2022; 378:296-299. [PMID: 36264793 DOI: 10.1126/science.add8544] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Miniaturized computational spectrometers, which can obtain incident spectra using a combination of device spectral responses and reconstruction algorithms, are essential for on-chip and implantable applications. Highly sensitive spectral measurement using a single detector allows the footprints of such spectrometers to be scaled down while achieving spectral resolution approaching that of benchtop systems. We report a high-performance computational spectrometer based on a single van der Waals junction with an electrically tunable transport-mediated spectral response. We achieve high peak wavelength accuracy (∼0.36 nanometers), high spectral resolution (∼3 nanometers), broad operation bandwidth (from ∼405 to 845 nanometers), and proof-of-concept spectral imaging. Our approach provides a route toward ultraminiaturization and offers unprecedented performance in accuracy, resolution, and operation bandwidth for single-detector computational spectrometers.
Collapse
Affiliation(s)
- Hoon Hahn Yoon
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.,QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| | - Henry A Fernandez
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.,QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| | - Fedor Nigmatulin
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.,QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| | - Weiwei Cai
- Key Lab of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongyin Yang
- College of Information Science and Electronic Engineering and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Hanxiao Cui
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Faisal Ahmed
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland
| | - Xiaoqi Cui
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.,QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| | - Md Gius Uddin
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.,QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| | - Ethan D Minot
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Harri Lipsanen
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Pertti Hakonen
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| | - Tawfique Hasan
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland.,QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto 00076, Finland
| |
Collapse
|