1
|
Miao H, Wang P, Wu J, Li X, Du Y, Yan H, You Q, Dong W, Li L. Highly efficient and broad-spectrum antibacterial carbon dots combat antibiotic resistance. Talanta 2025; 281:126926. [PMID: 39305757 DOI: 10.1016/j.talanta.2024.126926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Bacterial infections have become a major global public health issue, particularly with the emergence of multidrug-resistant strains. Therefore, developing non-antibiotic antimicrobial agents is crucial for treating drug-resistant bacterial infections. Building on previous research into natural products as novel antibacterial agents, this study synthesized curcumin-derived carbon dots using curcumin and ethylenediamine as raw materials through a hydrothermal method. The resulting carbon dots not only improved the water solubility and stability of curcumin but also exhibited highly efficient broad-spectrum antibacterial activity. Detailed investigations into the antibacterial performance and mechanisms of the carbon dots were conducted through experiments such as minimum inhibitory concentration (MIC) determination, live/dead bacterial staining, morphological studies, nucleic acid concentration detection, and reactive oxygen species (ROS) detection. The results indicated that the carbon dots significantly damaged the structural integrity of bacteria and generated large amounts of ROS. They exhibited remarkable antibacterial effects against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, and effectively inhibited drug-resistant MRSA. Their antibacterial efficacy was notably superior to that of broad-spectrum antibiotics such as chloramphenicol and Sulfadiazine. This study highlights the potential application of curcumin-derived carbon dots in combating bacterial infections and provides valuable insights for developing novel antibacterial agents derived from natural products.
Collapse
Affiliation(s)
- Huimin Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Panyong Wang
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Jie Wu
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xinlu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Yuwei Du
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Haiyang Yan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Qiannan You
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Wenfei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Li Li
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| |
Collapse
|
2
|
Liu Y, Zhao Y, Guo S, Qin D, Yan J, Cheng H, Zhou J, Ren J, Sun L, Peng H, Wu X, Li B. Copper doped carbon dots modified bacterial cellulose with enhanced antibacterial and immune regulatory functions for accelerating wound healing. Carbohydr Polym 2024; 346:122656. [PMID: 39245512 DOI: 10.1016/j.carbpol.2024.122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
The microenvironment of wound healing is susceptible to bacterial infection, chronic inflammation, oxidative stress, and inadequate angiogenesis, requiring the development of innovative wound dressings with antibacterial, anti-inflammatory, antioxidant, and angiogenic capabilities. This research crafted a new multifunctional bacterial cellulose composite membrane infused with copper-doped carbon dots (BC/Cu(II)-RCDs). Findings validated the successful loading of copper-doped carbon dots onto the BC membrane via hydrogen bonding interactions. Compared to the pure BC membrane, the BC/Cu(II)-RCDs composite membrane exhibited significantly enhanced hydrophilicity, tensile properties, and thermal stability. Diverse in vitro assays demonstrated excellent biocompatibility and antibacterial activity of BC/Cu(II)-RCDs composite membranes, alongside their ability to expedite the inflammatory phase and stimulate angiogenesis. In vivo trials corroborated the membrane's ability to foster epithelial regeneration, collagen deposition, and tissue regrowth in full-thickness skin wounds in rats while also curbing inflammation in infected full-thickness skin wounds. More importantly, the treatment of the BC/Cu(II)-RCDs composite membrane may result in the activation of VEGF and MAPK signaling proteins, which are key players in cell migration, angiogenesis, and skin tissue development. In essence, the developed BC/Cu(II)-RCDs composite membrane shows promise for treating infected wounds and serves as a viable alternative material for medicinal bandages.
Collapse
Affiliation(s)
- Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Susu Guo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Danlei Qin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jingyu Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jianing Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Hongyi Peng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China.
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
3
|
Feng S, Peng X, Deng Y, Luo Y, Shi S, Wei X, Pu X, Yu X. Biomimetic Nanozyme-Decorated Smart Hydrogel for Promoting Chronic Refractory Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59862-59879. [PMID: 39441846 DOI: 10.1021/acsami.4c13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Chronic refractory wounds have become a serious threat to human health and are characterized by prolonged inflammation, recurrent bacterial infections, and elevated ROS levels. However, current therapeutic strategies usually target a unilateral healing function and are unable to tackle the complexity and sensitivity of chronic refractory wound healing. This study fabricated a biomimetic nanozyme based on rhein (Cu-rhein NSs), which effectively mimics the activity of superoxide dismutase (SOD) for scavenging various free radicals. Additionally, zinc oxide microspheres (ZnO MSs) were prepared to enhance the antibacterial activity and mechanical properties of the modified hydrogel. Cu-rhein NSs and ZnO MSs were comodified onto an extracellular matrix-mimetic dual-network smart hydrogel constructed from oxidized sodium alginate, gelatin, and borax via dynamic borate and Schiff base bonds. The smart hydrogel presented the good biocompatibility and targeted the unique acidic microenvironment with high oxidative stress of chronic refractory wounds, intelligently releasing bionic nanozymes to effectively eliminate bacteria, reduce inflammatory responses, and scavenge multiple free radicals for reducing ROS. In vivo experiments on the rat model based on diabetic infection showed that the smart hydrogel could effectively eliminate bacteria, promote vascular regeneration and collagen deposition, reduce inflammatory response, and accelerate the healing of diabetic-infected wounds (almost complete healing within 14 days). The advantages of an intelligent, biomimetic tissue regeneration cascade management strategy against diabetic infected wound healing are highlighted.
Collapse
Affiliation(s)
- Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Yiqing Deng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Wei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
4
|
Pan G, Wang H, Li Z, Zheng J, Peng B, Duan Q, Zhang M. Photodynamic therapy based on bismuth oxyiodide nanoparticles for nondestructive tooth whitening. Colloids Surf B Biointerfaces 2024; 243:114133. [PMID: 39096622 DOI: 10.1016/j.colsurfb.2024.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Achieving a desired whitening effect through short treatments without using peroxide and without compromising the integrity of tooth enamel remains a challenge in teeth whitening. Here, we developed a highly safe and efficient photodynamic therapy (PDT) strategy based on visible light-activated bismuth oxyiodide nanoparticles for nondestructive tooth whitening. The Bi7O9I3 nanoparticles (NPs) exhibited efficient photocatalytic activity owing to their narrow band gap, effectively harnessing the broad spectrum of visible light to generate ample electrons and holes. Meanwhile, the presence of oxygen vacancies, low oxidation state Bi3+ and the high specific surface area endow Bi7O9I3 NPs with effective electron-hole separation ability and potent redox potentials. Empowered by these characteristics, Bi7O9I3 NPs effectively catalyzed O2 into radicals (O2•-), facilitating the degradation of dental surface pigment molecules for tooth whitening. Concurrently, they eradicated oral bacteria and bacterial biofilms adhering to tooth surfaces, thereby having a positive effect on the effectiveness of tooth whitening. This PDT strategy with Bi7O9I3 NPs shows broad application prospects in tooth whitening.
Collapse
Affiliation(s)
- Ge Pan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China; State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Haoyu Wang
- Department of Orthodontics, Stomatological Hospital of Jilin University, Changchun 130022, PR China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Jinyao Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Bo Peng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China.
| | - Miaomiao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
5
|
Venkatachalam V. Quantum dots in dental applications: paving the way for a promising future. Eur Arch Paediatr Dent 2024:10.1007/s40368-024-00954-y. [PMID: 39441484 DOI: 10.1007/s40368-024-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Affiliation(s)
- V Venkatachalam
- Department of Research Analytics, Saveetha Dental Collage and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
6
|
Chen S, Zhang K, Chen C, Liu F, Zeng L, Yang X, An X, Wang L, Dai T. Iron Single-Atom Nanozyme with Inflammation-Suppressing for Inhibiting Multidrug-Resistant Bacterial Infection and Facilitating Wound Healing. ACS Biomater Sci Eng 2024. [PMID: 39425636 DOI: 10.1021/acsbiomaterials.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Infection with drug-resistant bacteria and the formation of biofilms are the main factors contributing to wound healing insufficiency. Antibacterial agents with enzyme-like properties have exhibited considerable potential for efficient eradication of drug-resistant microorganisms due to their superior sensitivities and minimal side effects. In this work, we prepared a kind of Fe-centered single-atom nanozyme (Fe-SAzyme) with high biocompatibility and stability via a facile one-pot hydrothermal method, which was suitable for the treatment of wounds infected with drug-resistant bacteria. The Fe-SAzyme exhibited remarkable peroxidase-like catalytic activities, catalyzing the conversion of hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals (•OH), which could not only damage bacterial cells but also inhibit, disrupt, and eradicate the formation of bacterial biofilms. Thus, Fe-SAzyme demonstrated a broad-spectrum antibacterial performance capable of effectively eliminating multidrug-resistant bacteria. The coexistence of ferrous (Fe2+) and ferric (Fe3+) ions in Fe-SAzyme conferred the nanozyme with anti-inflammatory activity, effectively suppressing excessive inflammation. Meanwhile, Fe-SAzyme could significantly downregulate inflammatory cytokines tumor necrosis factor-α and interleukin-1β and upregulate growth factors VEGF and epidermal growth factor, which can prevent bacterial infection, mitigate inflammation, promote fibroblast proliferation, and improve wound closure. Thus, Fe-SAzyme had shown favorable therapeutic efficiency in promoting bacteria-infected wound healing. This study provides Fe-SAzyme as a promising candidate for the development of new strategies to treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Shiwen Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Kaiyan Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Chaoxi Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Fan Liu
- Yancheng Technician College Jiangsu Province, Yancheng, Jiangsu 224005, China
| | - Lin Zeng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Xiaolong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Xiaofang An
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Lu Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Tao Dai
- College of Chemistry & Environment, Southwest Minzu University, Chengdu, Sichuan 614401, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Liu X, Qian R, Li B, Zhang Y, Han Y. Sono-Catalytic Tooth Whitening and Oral Health Enhancement with Oxygen Vacancies-Enriched Mesoporous TiO 2 Nanospheres: A Nondestructive Approach for Daily Tooth Care. ACS Biomater Sci Eng 2024; 10:6634-6647. [PMID: 39348292 DOI: 10.1021/acsbiomaterials.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Tooth discoloration and the breeding of oral microorganisms pose threats to both one's aesthetic appearance and oral health. Clinical whitening agents based on H2O2 with high concentrations are effective in tooth whitening and bacterial elimination but may also cause enamel demineralization, gingival irritation, or cytotoxicity, necessitating professional supervision. Herein, leveraging sono-catalysis effects, a nondestructive and convenient tooth whitening strategy was developed, utilizing oxygen vacancies (OVs)-enriched mesoporous TiO2 nanospheres. The introduction of OVs leads to TiO2 bandgap narrowing, boosting the generation of reactive oxygen species (ROS) by TiO2 under ultrasound treatment. Additionally, through the chemocatalysis effect, the ROS yield can be further augmented by employing OVs-enriched TiO2 in conjunction with an extremely low concentration of H2O2 (1%) during ultrasound treatment. Hence, under ultrasound treatment simulating daily tooth brushing using an electronic toothbrush, the combination of OVs-enriched TiO2 and 1% H2O2 proves to be effective in whitening teeth stained by tea, coffee, and mix juice. Furthermore, the combination of OVs-enriched TiO2 and 1% H2O2 demonstrates potent bacterial-killing and biofilm-eradicating effects under ultrasound treatment within an extremely short duration (5 min). Additionally, given the mesoporous structure, curcumin, serving as an anti-inflammatory agent, can be efficiently loaded into OVs-enriched TiO2 and then controllably released through ultrasound treatment. The curcumin-loaded TiO2 facilitates the transition of macrophages to the anti-inflammatory M2 phenotype, potentially alleviating oral inflammation induced by bacterial infection without showing any biotoxicity. The OVs-enriched TiO2 based sono-catalysis tooth whitening procedure provides the convenience of whitening teeth during daily brushing without requiring professional supervision.
Collapse
Affiliation(s)
- Xiaoqi Liu
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Runliu Qian
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Li
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yingang Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yong Han
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
8
|
Guo B, Tao Y, Yang T, Su X, Tan X, Tian W, Xie L. Biomaterials based on advanced oxidation processes in tooth whitening: fundamentals, progress, and models. J Mater Chem B 2024; 12:9459-9477. [PMID: 39193628 DOI: 10.1039/d4tb01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The increasing desire for aesthetically pleasing teeth has resulted in the widespread use of tooth whitening treatments. Clinical tooth whitening products currently rely on hydrogen peroxide formulations to degrade dental pigments through oxidative processes. However, they usually cause side effects such as tooth sensitivity and gingival irritation due to the use of high concentrations of hydrogen peroxide or long-time contact. In recent years, various novel materials and reaction patterns have been developed to tackle the issues related to H2O2-based tooth whitening. These can be broadly classified as advanced oxidation processes (AOPs). AOPs generate free radicals that have potent oxidizing properties, which can thereby increase the oxidation power and/or reduce the exposure time and can probably minimize the side effects of tooth bleaching. While there have been several reviews on clinical tooth whitening and the application of novel nanomaterials, a review based on the concept of AOPs in tooth bleaching application has not yet been conducted. This review describes the common types and mechanisms of AOPs, summarizes the latest research progress of new tooth bleaching materials based on AOPs, and proposes a model for tooth bleaching and a rate control step at the molecular level. The paper also reviews the shortcomings and suggests future development directions.
Collapse
Affiliation(s)
- Bingyi Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610299, China
| | - Yun Tao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Tiantian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaofan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
9
|
Dai S, Yao L, Liu L, Cui J, Su Z, Zhao A, Yang P. Carbon dots-supported Zn single atom nanozymes for the catalytic therapy of diabetic wounds. Acta Biomater 2024; 186:454-469. [PMID: 39098446 DOI: 10.1016/j.actbio.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Diabetic wound treatment continues to be a significant clinical issue due to higher levels of oxidative stress, susceptibility to bacterial infections, and chronic inflammatory responses during healing. We rationally developed and synthesized an ultra-small carbon dots (C-dots) loaded with zinc single-atom nanozyme (Zn/C-dots) with the aim of promoting wounds healing by nanocatalytic treatment, especially targeting its complex pathological microenvironment. Zinc single atoms and C-dots form a dual catalytic system with higher enzymatic activity. Furthermore, the Zn/C-dots nanozyme effectively enters cells, accumulates at mitochondria, and removes excess ROS, protecting cells from oxidative stress damage and limiting the release of pro-inflammatory cytokines, hence reducing inflammation. Zinc can synergistically increase the antibacterial action of C-dots (the effective antibacterial rate of 100 µg/mL Zn/C-dots was above 90 %). Unlike traditional C-dots, Zn/C-dots can cause endothelial cell migration and the formation of new blood vessels. In vitro cytotoxicity, blood compatibility, and in vivo toxicity studies of Zn/C-dots show that they are biocompatible. We subsequently utilized the Zn/C-dots nanozymes to treat diabetic rats' chronic wounds for external use, combining them with ROS-responsive hydrogels to create an antioxidative system (H-Zn/C-dots). The hydrogels anchored the Zn/C-dots nanozymes to the wound, allowing for long-term treatment. The results revealed that H-Zn/C-dots can considerably reduce inflammation, accelerate angiogenesis, collagen deposition, and promote tissue remodeling at the diabetic wound site. After 14 days, the wound area had decreased to approximately 9.19 %, making it a potential treatment. STATEMENT OF SIGNIFICANCE: An ultra-small carbon dot with a zinc single-atom nanozyme was designed and manufactured. Zn/C-dots possess antibacterial, ROS-scavenging, and angiogenesis activities. In vivo, the multifunctional ROS-responsive hydrogel incorporating Zn/C-dots could speed up diabetic wound healing.
Collapse
Affiliation(s)
- Sheng Dai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Li Yao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Luying Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiawei Cui
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhaogui Su
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Ansha Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Ping Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
10
|
Duan J, Li B, Liu Y, Han T, Ye F, Xia H, Liu K, He J, Wang X, Cai Q, Meng W, Zhu S. Ultra-Photostable Bacterial-Seeking Near-Infrared CPDs for Simultaneous NIR-II Bioimaging and Antibacterial Therapy. Adv Healthc Mater 2024:e2401131. [PMID: 39225395 DOI: 10.1002/adhm.202401131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Bacterial infections can pose significant health risks as they have the potential to cause a range of illnesses. These infections can spread rapidly and lead to complications if not promptly diagnosed and treated. Therefore, it is of great significance to develop a probe to selectively target and image pathogenic bacteria while simultaneously killing them, as there are currently no effective clinical solutions available. This study presents a novel approach using near-infrared carbonized polymer dots (NIR-CPDs) for simultaneous in vivo imaging and treatment of bacterial infections. The core-shell structure of the NIR-CPDs facilitates their incorporation into bacterial cell membranes, leading to an increase in fluorescence brightness and photostability. Significantly, the NIR-CPDs exhibit selective bacterial-targeting properties, specifically identifying Staphylococcus aureus (S. aureus) while sparing Escherichia coli (E. coli). Moreover, under 808 nm laser irradiation, the NIR-CPDs exhibit potent photodynamic effects by generating reactive oxygen species that target and damage bacterial membranes. In vivo experiments on infected mouse models demonstrate not only precise imaging capabilities but also significant therapeutic efficacy, with marked improvements in wound healing. The study provides the dual-functional potential of NIR-CPDs as a highly effective tool for the advancement of medical diagnostics and therapeutics in the fight against bacterial infections.
Collapse
Affiliation(s)
- Jingyi Duan
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Jilin Provincial Key Laboratory of Science and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, P. R. China
| | - Baosheng Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yanqun Liu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Jilin Provincial Key Laboratory of Science and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, P. R. China
| | - Tianyang Han
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Fengming Ye
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Jilin Provincial Key Laboratory of Science and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, P. R. China
| | - Huan Xia
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Jilin Provincial Key Laboratory of Science and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, P. R. China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Jie He
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Jilin Provincial Key Laboratory of Science and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, P. R. China
| | - Xueke Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Jilin Provincial Key Laboratory of Science and Technology for Stomatology Nanoengineering, Jilin University, Changchun, 130021, P. R. China
| | - Qing Cai
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Weiyan Meng
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
11
|
Zhang H, Gao L, Qi X, Ma H, Zhang S, Wang Z, Jin L, Shen Y. An injectable chitosan-based hydrogel incorporating carbon dots with dual enzyme-mimic activities for synergistically treatment of bacteria infected wounds. Colloids Surf B Biointerfaces 2024; 241:114006. [PMID: 38870646 DOI: 10.1016/j.colsurfb.2024.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Bacterial infections pose a serious threat to human health, and the emergence of superbugs and the growing antibiotic resistance phenomenon have made the development of novel antimicrobial products. In this paper, an ultrasmall Cu, N co-doped carbon dots (CDs-Cu-N) with excellent peroxidase mimic activity and enhanced catalase mimic activity was successfully prepared and anchored to an injectable chitosan (CS)-based hybrid hydrogel. As expected, the CDs-Cu-N-H2O2-CS hybrid hydrogel maintains the excellent enzyme-mimicking properties of CDs-Cu-N and shows superior antibacterial property, which has been proven to effectively promote the healing of S. aureus-infected wounds with good biocompatibility. Benefitting from the dual-enzyme-mimic activity of CDs-Cu-N, the hybrid hydrogel not only can catalyze the generation of highly toxic ROS from low concentration of H2O2 to inhibit the bacterial infections, but also can significantly promote the wound tissue repair and regeneration by improving the anoxic microenvironment and promoting neovascularization. In addition, this hybrid hydrogel also possessed excellent injectability and moldability. It can adapt to various the irregular shapes of acute wounds, maintaining a moist and safe microenvironment while prolonging the action time of nanozyme on wounds, thus promoting wound healing. This injectable hybrid hydrogel shows great potential applications in the field of wound infection management.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Lu Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Xiaodan Qi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Huijun Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Shengnan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Zhifei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| |
Collapse
|
12
|
Wang Y, Li T, Lin L, Wang D, Feng L. Copper-doped cherry blossom carbon dots with peroxidase-like activity for antibacterial applications. RSC Adv 2024; 14:27873-27882. [PMID: 39224643 PMCID: PMC11367405 DOI: 10.1039/d4ra04614e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Safety concerns arising from bacteria present a significant threat to human health, underscoring the pressing need for the exploration of novel antimicrobial materials. Nanozymes, as a new type of nanoscale material, have attracted widespread attention for antibacterial applications owing to their ability to mimic the catalytic activity of natural enzymes. In this work, we have constructed copper-doped cherry blossom carbon dots (Cu-CDs) with excellent peroxidase-like (POD) activity using a one-pot hydrothermal method. The utilization of cherry blossom as a natural material precursor significantly enhances its biocompatibility. Furthermore, the incorporation of copper ions initiates Fenton-like reaction-triggered POD-like catalytic activity, effectively eradicating bacteria by converting hydrogen peroxide (H2O2) into hydroxyl radicals (·OH). The antibacterial test results demonstrate that Cu-CDs exhibit a bactericidal efficacy of over 90% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). This study presents a novel environmentally friendly nanozyme material derived from natural sources, exhibiting significant antimicrobial properties and offering innovative insights for the advancement of antimicrobial materials.
Collapse
Affiliation(s)
- Yitong Wang
- QianWeichang College, Shanghai University Shanghai 200444 China
| | - Tianliang Li
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
| | - Lixing Lin
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
| | - Dong Wang
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
| | - Lingyan Feng
- QianWeichang College, Shanghai University Shanghai 200444 China
- Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai Engineering Research Center of Organ Repair, Shanghai University Shanghai 200444 China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education Shanghai 200444 China
| |
Collapse
|
13
|
Zhang H, Bai J, Chen X, Wang L, Peng W, Zhao Y, Weng J, Zhi W, Wang J, Zhang K, Zhang X. Constructing a highly efficient multifunctional carbon quantum dot platform for the treatment of infectious wounds. Regen Biomater 2024; 11:rbae105. [PMID: 39238613 PMCID: PMC11377098 DOI: 10.1093/rb/rbae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Antibiotic resistance poses a huge threat to public health, which has increased the difficulty and transmission of disease treatment, as well as the burden and cost of medical institutions. In response to the current problems and challenges in inflammation control and treatment of bacterial infected wounds, inspired by antibacterial mechanisms based on active elements such as N, S, Cu and tannic acid (TA), a highly efficient multifunctional carbon quantum dot platform was proposed in this study and constructed through their special assembly in a solvothermal reaction system for the treatment of infected wounds. By introducing active elements such as N, S and Cu, this carbon quantum dot platform is endowed with antibacterial properties, while also achieving good angiogenesis promoting performance through the use of ion Cu. Meanwhile, the good antioxidant activity of TA (one of the precursors used) enables this platform to have better immunomodulatory performance in vivo. The research results on the treatment of bacterial infection models indicate that the multifunctional carbon quantum dots obtained can accelerate the healing of infected wounds by inhibiting bacterial infection, regulating immunoreaction, accelerating collagen deposition and promoting angiogenesis. This multifunctional carbon quantum dot platform shows good clinical application prospects in treating bacterial infected wounds. Additionally, the fluorescence characteristics of such carbon dots can be expected to realize visual therapy in the future.
Collapse
Affiliation(s)
- Hangzhen Zhang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiafan Bai
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiangli Chen
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linyu Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuancong Zhao
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jie Weng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Zhi
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianxin Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
15
|
Zhou C, Wang Q, Cao H, Jiang J, Gao L. Nanozybiotics: Advancing Antimicrobial Strategies Through Biomimetic Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403362. [PMID: 38874860 DOI: 10.1002/adma.202403362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Infectious diseases caused by bacterial, viral, and fungal pathogens present significant global health challenges. The rapid emergence of antimicrobial resistance exacerbates this issue, leading to a scenario where effective antibiotics are increasingly scarce. Traditional antibiotic development strategies are proving inadequate against the swift evolution of microbial resistance. Therefore, there is an urgent need to develop novel antimicrobial strategies with mechanisms distinct from those of existing antibiotics. Nanozybiotics, which are nanozyme-based antimicrobials, mimic the catalytic action of lysosomal enzymes in innate immune cells to kill infectious pathogens. This review reinforces the concept of nanozymes and provides a comprehensive summary of recent research advancements on potential antimicrobial candidates. Initially, nanozybiotics are categorized based on their activities, mimicking either oxidoreductase-like or hydrolase-like functions, thereby highlighting their superior mechanisms in combating antimicrobial resistance. The review then discusses the progress of nanozybiotics in treating bacterial, viral, and fungal infections, confirming their potential as novel antimicrobial candidates. The translational potential of nanozybiotic-based products, including hydrogels, nanorobots, sprays, bandages, masks, and protective clothing, is also considered. Finally, the current challenges and future prospects of nanozybiotic-related products are explored, emphasizing the design and antimicrobial capabilities of nanozybiotics for future applications.
Collapse
Affiliation(s)
- Caiyu Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Qian Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| |
Collapse
|
16
|
Xiang L, An Z, Wu X, Wang J, Cai S, Lu Y, Li L, Huang W, Wu D, Lu L, Shi S, Bi H, Kou X. Carbon Dot-Loaded Apoptotic Vesicles Improve the Liver Kupffer Cell-Mediated Antibacterial Effect to Synergistically Alleviate Sepsis. ACS NANO 2024; 18:16726-16742. [PMID: 38888383 DOI: 10.1021/acsnano.4c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Sepsis is a lethal systemic inflammatory disease against infection that lacks effective therapeutic approaches. Liver resident macrophage Kupffer cell (KC)-initiated bacterial clearance is crucial for the host to defend against infection. However, it remains unclear whether this process also governs the antibacterial therapy of sepsis that would be used to improve therapeutic outcomes. Here, we found that copper-doped carbon dots (Cu-CDs) exhibited superior antibacterial capabilities in vitro but displayed limited therapeutic effects in septic mice due to their limited ability to target the liver and restore KC antimicrobial capacity. Thus, we developed a composite nanodrug of copper-doped carbon dot-loaded apoVs (CC-apoVs) that combined the antibacterial ability of Cu-CDs and liver KC targeting features of apoV. Moreover, intravenous injection of CC-apoVs markedly alleviated the systemic infection and decreased the mortality of septic mice compared to Cu-CD and apoV infusion alone. Mechanistically, CC-apoV injection rescued impaired liver KCs during sepsis and enhanced their ability to capture and kill bloodborne bacteria. In addition, apoV-promoted macrophage killing of bacteria could be blocked by the inhibition of small GTPase Rab5. This study reveals a liver KC-targeted therapeutic strategy for sepsis and provides a nanodrug CC-apoV to improve the host antibacterial defense and amplify the therapeutic effect of the nanodrug.
Collapse
Affiliation(s)
- Lei Xiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhe An
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaoyan Wu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Jinyang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Simin Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yongxi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Longchuang Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Weiying Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Di Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
17
|
Li H, Zhang D, Bao P, Li Y, Liu C, Meng T, Wang C, Wu H, Pan K. Recent Advances in Functional Hydrogels for Treating Dental Hard Tissue and Endodontic Diseases. ACS NANO 2024; 18:16395-16412. [PMID: 38874120 DOI: 10.1021/acsnano.4c02754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Oral health is the basis of human health, and almost everyone has been affected by oral diseases. Among them, endodontic disease is one of the most common oral diseases. Limited by the characteristics of oral biomaterials, clinical methods for endodontic disease treatment still face large challenges in terms of reliability and stability. The hydrogel is a kind of good biomaterial with an adjustable 3D network structure, excellent mechanical properties, and biocompatibility and is widely used in the basic and clinical research of endodontic disease. This Review discusses the recent advances in functional hydrogels for dental hard tissue and endodontic disease treatment. The emphasis is on the working principles and therapeutic effects of treating different diseases with functional hydrogels. Finally, the challenges and opportunities of hydrogels in oral clinical applications are discussed and proposed. Some viewpoints about the possible development direction of functional hydrogels for oral health in the future are also put forward. Through systematic analysis and conclusion of the recent advances in functional hydrogels for dental hard tissue and endodontic disease treatment, this Review may provide significant guidance and inspiration for oral disease and health in the future.
Collapse
Affiliation(s)
- Huixu Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, P. R. China
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Ding Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Pingping Bao
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Ying Li
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Chaoge Liu
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
- Department of Oramaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
| | - Tingting Meng
- Department of Endodontics in the first clinical division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Chao Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, P. R. China
| | - Heting Wu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, P. R. China
| | - Keqing Pan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, P. R. China
- School of Stomatology, Qingdao University, Qingdao 266003, P. R. China
| |
Collapse
|
18
|
Qi J, Zhang P, Zhang T, Zhang R, Zhang Q, Wang J, Zong M, Gong Y, Liu X, Wu X, Li B. Metal-doped carbon dots for biomedical applications: From design to implementation. Heliyon 2024; 10:e32133. [PMID: 38868052 PMCID: PMC11168406 DOI: 10.1016/j.heliyon.2024.e32133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Carbon dots (CDs), as a new kind of fluorescent nanomaterials, show great potential for application in several fields due to their unique nano-size effect, easy surface functionalization, controllable photoluminescence, and excellent biocompatibility. Conventional preparation methods for CDs typically involve top-down and bottom-up approaches. Doping is a major step forward in CDs design methodology. Chemical doping includes both non-metal and metal doping, in which non-metal doping is an effective strategy for modulating the fluorescence properties of CDs and improving photocatalytic performance in several areas. In recent years, Metal-doped CDs have aroused the interest of academics as a promising nano-doping technique. This approach has led to improvements in the physicochemical and optical properties of CDs by altering their electron density distribution and bandgap capacity. Additionally, the issues of metal toxicity and utilization have been addressed to a large extent. In this review, we categorize metals into two major groups: transition group metals and rare-earth group metals, and an overview of recent advances in biomedical applications of these two categories, respectively. Meanwhile, the prospects and the challenges of metal-doped CDs for biomedical applications are reviewed and concluded. The aim of this paper is to break through the existing deficiencies of metal-doped CDs and fully exploit their potential. I believe that this review will broaden the insight into the synthesis and biomedical applications of metal-doped CDs.
Collapse
Affiliation(s)
- Jin Qi
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Tong Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Qingmei Zhang
- Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Jue Wang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Yajuan Gong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Xiaoming Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 Shanxi, China
| |
Collapse
|
19
|
Yang M, Du D, Hao Y, Meng Z, Zhang H, Liu Y. Preparation of an injectable zinc-containing hydrogel with double dynamic bond and its potential application in the treatment of periodontitis. RSC Adv 2024; 14:19312-19321. [PMID: 38887645 PMCID: PMC11181151 DOI: 10.1039/d4ra00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Periodontal tissue regeneration continues to face significant clinical challenges. Periodontitis leads to alveolar bone resorption and even tooth loss due to persistent microbial infection and persistent inflammatory response. As a promising topical drug delivery system, the application of hydrogels in the controlled release of periodontal bioactive drugs has aroused great interest. Therefore, the design and preparation of an injectable hydrogel with self-repairing properties for periodontitis treatment is still in great demand. In this study, polysaccharide-based self-healing hydrogels with antimicrobial osteogenic properties were developed. Zinc ions are introduced into a dynamic cross-linking network formed by dynamic Schiff bases between carboxymethyl chitosan and oxidized hyaluronic acid via coordination bonds. The OC-Zn hydrogels exhibited good tissue adhesion, good fatigue resistance, excellent self-healing ability, low cytotoxicity, good broad-spectrum antimicrobial activity, and osteogenic activity. Therefore, the designed hydrogels allow the development of drug delivery systems as a potential treatment for periodontitis.
Collapse
Affiliation(s)
- Mei Yang
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Dejiang Du
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Zhaojian Meng
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Haiyu Zhang
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Yuhan Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| |
Collapse
|
20
|
Luo D, Liu X, Dai S, Yi J, Tang N, Cai Y, Bao X, Hu M, Liu Z. Highly Crystalline Copper Aluminum-Layered Double Hydroxides with Intrinsic Fenton-Like Catalytic Activity for Robust Oral Health Management. Inorg Chem 2024; 63:10691-10704. [PMID: 38805682 DOI: 10.1021/acs.inorgchem.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As the main challenge of dental healthcare, oral infectious diseases are highly associated with the colonization of pathogenic microbes. However, current antibacterial treatments in the field of stomatology still lack a facile, safe, and universal approach. Herein, we report the controllable synthesis of copper aluminum-layered double hydroxides (CuAl-LDHs) with high Fenton-like catalytic activity, which can be utilized in the treatment of oral infectious diseases with negligible side effects. Our strategy can efficiently avoid the unwanted doping of other divalent metal ions in the synthesis of Cu-contained LDHs and result in the formation of binary CuAl-LDHs with high crystallinity and purity. Evidenced by experimental and theoretical results, CuAl-LDHs exhibit excellent catalytic ability toward the ·OH generation in the presence of H2O2 and hold strong affinity toward bacteria, endowing them with great catalytic sterilization against both Gram-positive and Gram-negative bacteria. As expected, these CuAl-LDHs provide outstanding treatments for mucosal infection and periodontitis by promoting wound healing and remodeling of the periodontal microenvironment. Moreover, toxicity investigation demonstrates the overall safety. Accordingly, the current study not only provides a convenient and economic strategy for treating oral infectious diseases but also extends the development of novel LDH-based Fenton or Fenton-like antibacterial reagents for further biomedical applications.
Collapse
Affiliation(s)
- Danfeng Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiaocan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Shuang Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingzheng Yi
- Western Dental, Fresno, California 93726, United States
| | - Nan Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanting Cai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xingfu Bao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Min Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Song W, Zhao D, Guo F, Wang J, Wang Y, Wang X, Han Z, Fan W, Liu Y, Xu Z, Chen L. Additive manufacturing of degradable metallic scaffolds for material-structure-driven diabetic maxillofacial bone regeneration. Bioact Mater 2024; 36:413-426. [PMID: 39040493 PMCID: PMC11261217 DOI: 10.1016/j.bioactmat.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
The regeneration of maxillofacial bone defects associated with diabetes mellitus remains challenging due to the occlusal loading and hyperglycemia microenvironment. Herein, we propose a material-structure-driven strategy through the additive manufacturing of degradable Zn-Mg-Cu gradient scaffolds. The in situ alloying of Mg and Cu endows Zn alloy with admirable compressive strength for mechanical support and uniform degradation mode for preventing localized rupture. The scaffolds manifest favorable antibacterial, angiogenic, and osteogenic modulation capacity in mimicked hyperglycemic microenvironment, and Mg and Cu promote osteogenic differentiation in the early and late stages, respectively. In addition, the scaffolds expedite diabetic maxillofacial bone ingrowth and regeneration by combining the metabolic regulation effect of divalent metal cations and the hyperboloid and suitable permeability of the gradient structure. RNA sequencing further reveals that RAC1 might be involved in bone formation by regulating the transport and uptake of glucose related to GLUT1 in osteoblasts, contributing to cell function recovery. Inspired by bone healing and structural cues, this study offers an essential understanding of the designation and underlying mechanisms of the material-structure-driven strategy for diabetic maxillofacial bone regeneration.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Danlei Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Fengyuan Guo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xinyuan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhengshuo Han
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wenjie Fan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yijun Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
22
|
Wang P, You Q, Liu Y, Miao H, Dong WF, Li L. Combating infections from drug-resistant bacteria: Unleashing synergistic broad-spectrum antibacterial power with high-entropy MXene/CDs. Colloids Surf B Biointerfaces 2024; 238:113874. [PMID: 38581833 DOI: 10.1016/j.colsurfb.2024.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
The growing resistance of bacteria to antibiotics has posed challenges in treating associated bacterial infections, while the development of multi-model antibacterial strategies could efficient sterilization to prevent drug resistance. High-entropy MXene has emerged as a promising candidate for antibacterial synergy with inherent photothermal and photodynamic properties. Herein, a high-entropy nanomaterial of MXene/CDs was synthesized to amplify oxidative stress under near-infrared laser irradiation. Well-exfoliated MXene nanosheets have proven to show an excellent photothermal effect for sterilization. The incorporation of CDs could provide photo-generated electrons for MXene nanosheets to generate ROS, meanwhile reducing the recombination of electron-hole pairs to further accelerate the generation of photo-generated electrons. The MXene/CDs material demonstrates outstanding synergistic photothermal and photodynamic effects, possesses excellent biocompatibility and successfully eliminates drug-resistant bacteria as well as inhibits biofilm formation. While attaining a remarkable killing efficiency of up to 99.99% against drug-resistant Escherichia coli and Staphylococcus aureus, it also demonstrates outstanding antibacterial effects against four additional bacterial strains. This work not only establishes a synthesis precedent for preparing high-entropy MXene materials with CDs but also provides a potential approach for addressing the issue of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Qiannan You
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | - Yulu Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Huimin Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| |
Collapse
|
23
|
Ding Z, Song Q, Wang G, Zhong Z, Zhong G, Li H, Chen Y, Zhou X, Liu L, Yang S. Synthesis of organic-inorganic hybrid nanocomposites modified by catalase-like catalytic sites for the controlling of kiwifruit bacterial canker. RSC Adv 2024; 14:17571-17582. [PMID: 38828279 PMCID: PMC11140456 DOI: 10.1039/d4ra02006e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. Actinidiae (Psa), is one of the most important diseases in kiwifruit, creating huge economic losses to kiwifruit-growing countries around the world. Metal-based nanomaterials offer a promising alternative strategy to combat plant diseases induced by bacterial infection. However, it is still challenging to design highly active nanomaterials for controlling kiwifruit bacterial canker. Here, a novel multifunctional nanocomposite (ZnO@PDA-Mn) is designed that integrates the antibacterial activity of zinc oxide nanoparticles (ZnO NPs) with the plant reactive oxygen species scavenging ability of catalase (CAT) enzyme-like active sites through introducing manganese modified polydopamine (PDA) coating. The results reveal that ZnO@PDA-Mn nanocomposites can efficiently catalyze the conversion of H2O2 to O2 and H2O to achieve excellent CAT-like activity. In vitro experiments demonstrate that ZnO@PDA-Mn nanocomposites maintain the antibacterial activity of ZnO NPs and induce significant damage to bacterial cell membranes. Importantly, ZnO@PDA-Mn nanocomposites display outstanding curative and protective efficiencies of 47.7% and 53.8% at a dose of 200 μg mL-1 against Psa in vivo, which are superior to those of zinc thiozole (20.6% and 8.8%) and ZnO (38.7% and 33.8%). The nanocomposites offer improved in vivo control efficacy through direct bactericidal effects and decreasing oxidative damage in plants induced by bacterial infection. Our research underscores the potential of nanocomposites containing CAT-like active sites in plant protection, offering a promising strategy for sustainable disease management in agriculture.
Collapse
Affiliation(s)
- Zhenghao Ding
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Qingqing Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Guangdi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Zhuojun Zhong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Guoyong Zhong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Yuexin Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Liwei Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| |
Collapse
|
24
|
Jiang W, Peng J, Jiang N, Zhang W, Liu S, Li J, Duan D, Li Y, Peng C, Yan Y, Zhao Y, Han G. Chitosan Phytate Nanoparticles: A Synergistic Strategy for Effective Dental Caries Prevention. ACS NANO 2024; 18:13528-13537. [PMID: 38747549 DOI: 10.1021/acsnano.3c11806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dental caries is a widespread oral disease that poses a significant medical challenge. Traditional caries prevention methods, primarily the application of fluoride, often fall short in effectively destroying biofilms and preventing enamel demineralization, thereby providing limited efficacy in halting the progression of caries over time. To address this issue, we have developed a green and cost-effective synergistic strategy for the prevention of dental caries. By combining natural sodium phytate and chitosan, we have created chitosan-sodium phytate nanoparticles that offer both the antimicrobial properties of chitosan and the enamel demineralization-inhibiting capabilities of sodium phytate. In an ex vivo biofilm model of human teeth, we found that these nanoparticles effectively prevent biofilm buildup and acid damage to the mineralized tissue. Additionally, topical treatment of dental caries in rodent models has shown that these nanoparticles effectively suppress disease progression without negatively impacting oral microbiota diversity or causing harm to the gingival-mucosal tissues, unlike traditional prevention methods.
Collapse
Affiliation(s)
- Weibo Jiang
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Department of Orthodontics, Wuxi Stomatology Hospital, Health Road 6, Wuxi 214001, China
| | - Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Nan Jiang
- Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jianmin Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dengyi Duan
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yongfa Yan
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Gang Han
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| |
Collapse
|
25
|
Wang Z, Zhang X, Liu Q, Hu X, Mei J, Zhou J, Zhang X, Xu D, Zhu W, Su Z, Zhu C. Balancing Bioresponsive Biofilm Eradication and Guided Tissue Repair via Pro-Efferocytosis and Bidirectional Pyroptosis Regulation during Implant Surgery. ACS NANO 2024; 18:13196-13213. [PMID: 38717096 DOI: 10.1021/acsnano.4c02157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
There is an increasingly growing demand to balance tissue repair guidance and opportunistic infection (OI) inhibition in clinical implant surgery. Herein, we developed a nanoadjuvant for all-stage tissue repair guidance and biofilm-responsive OI eradication via in situ incorporating Cobaltiprotoporphyrin (CoPP) into Prussian blue (PB) to prepare PB-CoPP nanozymes (PCZs). Released CoPP possesses a pro-efferocytosis effect for eliminating apoptotic and progressing necrotic cells in tissue trauma, thus preventing secondary inflammation. Once OIs occur, PCZs with switchable nanocatalytic capacity can achieve bidirectional pyroptosis regulation. Once reaching the acidic biofilm microenvironment, PCZs possess peroxidase (POD)-like activity that can generate reactive oxygen species (ROS) to eradicate bacterial biofilms, especially when synergized with the photothermal effect. Furthermore, generated ROS can promote macrophage pyroptosis to secrete inflammatory cytokines and antimicrobial proteins for biofilm eradication in vivo. After eradicating the biofilm, PCZs possess catalase (CAT)-like activity in a neutral environment, which can scavenge ROS and inhibit macrophage pyroptosis, thereby improving the inflammatory microenvironment. Briefly, PCZs as nanoadjuvants feature the capability of all-stage tissue repair guidance and biofilm-responsive OI inhibition that can be routinely performed in all implant surgeries, providing a wide range of application prospects and commercial translational value.
Collapse
Affiliation(s)
- Zhengxi Wang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Department of Orthopedics, Anhui Provincial Hospital, Wannan Medical College, Wuhu, Anhui 246000, P. R. China
| | - Xudong Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Quan Liu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xianli Hu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiawei Mei
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jun Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dongdong Xu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Zheng Su
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
26
|
Priyadarshini E, Kumar R, Balakrishnan K, Pandit S, Kumar R, Jha NK, Gupta PK. Biofilm Inhibition on Medical Devices and Implants Using Carbon Dots: An Updated Review. ACS APPLIED BIO MATERIALS 2024; 7:2604-2619. [PMID: 38622845 DOI: 10.1021/acsabm.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Biofilms are an intricate community of microbes that colonize solid surfaces, communicating via a quorum-sensing mechanism. These microbial aggregates secrete exopolysaccharides facilitating adhesion and conferring resistance to drugs and antimicrobial agents. The escalating global concern over biofilm-related infections on medical devices underscores the severe threat to human health. Carbon dots (CDs) have emerged as a promising substrate to combat microbes and disrupt biofilm matrices. Their numerous advantages such as facile surface functionalization and specific antimicrobial properties, position them as innovative anti-biofilm agents. Due to their minuscule size, CDs can penetrate microbial cells, inhibiting growth via cytoplasmic leakage, reactive oxygen species (ROS) generation, and genetic material fragmentation. Research has demonstrated the efficacy of CDs in inhibiting biofilms formed by key pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Consequently, the development of CD-based coatings and hydrogels holds promise for eradicating biofilm formation, thereby enhancing treatment efficacy, reducing clinical expenses, and minimizing the need for implant revision surgeries. This review provides insights into the mechanisms of biofilm formation on implants, surveys major biofilm-forming pathogens and associated infections, and specifically highlights the anti-biofilm properties of CDs emphasizing their potential as coatings on medical implants.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
| | - Kalpana Balakrishnan
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal, 637215 Tamil Nadu, India
| | - Soumya Pandit
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
| | - Ranvijay Kumar
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105 Tamil Nadu, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401 Punjab, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310 Uttar Pradesh, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002 Uttarakhand, India
| |
Collapse
|
27
|
Ghasemlou M, Pn N, Alexander K, Zavabeti A, Sherrell PC, Ivanova EP, Adhikari B, Naebe M, Bhargava SK. Fluorescent Nanocarbons: From Synthesis and Structure to Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312474. [PMID: 38252677 DOI: 10.1002/adma.202312474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Nanocarbons are emerging at the forefront of nanoscience, with diverse carbon nanoforms emerging over the past two decades. Early cancer diagnosis and therapy, driven by advanced chemistry techniques, play a pivotal role in mitigating mortality rates associated with cancer. Nanocarbons, with an attractive combination of well-defined architectures, biocompatibility, and nanoscale dimension, offer an incredibly versatile platform for cancer imaging and therapy. This paper aims to review the underlying principles regarding the controllable synthesis, fluorescence origins, cellular toxicity, and surface functionalization routes of several classes of nanocarbons: carbon nanodots, nanodiamonds, carbon nanoonions, and carbon nanohorns. This review also highlights recent breakthroughs regarding the green synthesis of different nanocarbons from renewable sources. It also presents a comprehensive and unified overview of the latest cancer-related applications of nanocarbons and how they can be designed to interface with biological systems and work as cancer diagnostics and therapeutic tools. The commercial status for large-scale manufacturing of nanocarbons is also presented. Finally, it proposes future research opportunities aimed at engendering modifiable and high-performance nanocarbons for emerging applications across medical industries. This work is envisioned as a cornerstone to guide interdisciplinary teams in crafting fluorescent nanocarbons with tailored attributes that can revolutionize cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Center for Sustainable Products, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Navya Pn
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Katia Alexander
- School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter C Sherrell
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Minoo Naebe
- Carbon Nexus, Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Suresh K Bhargava
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
28
|
Fu C, Brand HS, Bikker FJ. The applications of carbon dots in oral health: A scoping review. Oral Dis 2024; 30:1861-1872. [PMID: 37530494 DOI: 10.1111/odi.14702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES This scoping review aims to provide an overview of the research and potential applications of carbon dots (CDs) for oral health purposes. DESIGN Systematic literature searches were performed on PubMed and Web of Science databases (up to February 2023). Two co-authors selected the published works independently and extracted the data in accordance with the PRISMA statement. Studies with the application of CDs for oral health purposes were included. RESULTS Among 152 articles, 19 articles were finally selected. Eight studies investigated the anti-microbial effects of CDs against, for example, oral pathogens, eight studies explored the applicability of CDs in relation to oral cancer, and three studies investigated CDs in relation to cell differentiation and tissue regeneration in oral health. The studies showed the promising potential of CDs in oral health, particularly for inducing bacterial killing by increasing reactive oxygen species, killing oral cancer cells via photodynamic therapeutic effects, and inducing dental pulp and periodontal bone regeneration. CONCLUSION The findings show that CDs have the potential to be utilized in the future for various oral health purposes. Besides, these results underline the broad-spectrum applicability of CDs, crossing the borders of oral health.
Collapse
Affiliation(s)
- Cuicui Fu
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Henk S Brand
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| |
Collapse
|
29
|
Zhu Z, Huang C, Liu L, Wang J, Gou X. Magnetically actuated pandanus fruit-like nanorobots for enhanced pH-stimulated drug release and targeted biofilm elimination in wound healing. J Colloid Interface Sci 2024; 661:374-388. [PMID: 38306747 DOI: 10.1016/j.jcis.2024.01.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Conventional antibiotic treatment struggles to eliminate biofilms in wounds due to the formation compact barrier. Herein, we fabricate magnetic pandanus fruit-like nanorobots (NRs) that function as drug carriers while exhibit excellent maneuverability for enhanced antibacterial tasks. Specifically, zeolitic imidazolate framework-8 (ZIF-8) is self-assembled on the surface of Fe3O4 nanoparticles, loaded with a small quantity of ciprofloxacin, and covered with a layer of polydopamine (PDA). Energized by external magnetic fields, the NRs (F@Z/C/P) are steered in defined direction to penetrate the infection tissues, and effectively arrive targeted areas for pH stimulated drug release and near-infrared triggered phototherapy, contributing to an antibacterial rate of >99.9 %. The Zn2+ in ZIF-8 and the catechol group in PDA form catechol-ZIF-8-drug structures, which effectively reduce drug release by 11 % in high pH environments and promote rapid drug release by 14 % in low pH environments compared to NRs without PDA. Additionally, F@Z/C/P can remove the biofilms and bacteria in Staphylococcus aureus infected wounds, and eventually be discharged from the infected site after treatment, leading to faster healing with an intact epidermis and minimal harm to surrounding tissues and organs. The study provides a promising strategy for tackling biofilm-associated infections in vivo through the use of multi-functional NRs.
Collapse
Affiliation(s)
- Zixin Zhu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China; Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Chenjun Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Laiyi Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Jiayi Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Xue Gou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China; Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China.
| |
Collapse
|
30
|
Hosseini Hooshiar M, Badkoobeh A, Kolahdouz S, Tadayonfard A, Mozaffari A, Nasiri K, Salari S, Safaralizadeh R, Yasamineh S. The potential use of nanozymes as an antibacterial agents in oral infection, periodontitis, and peri-implantitis. J Nanobiotechnology 2024; 22:207. [PMID: 38664778 PMCID: PMC11044492 DOI: 10.1186/s12951-024-02472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
Several studies suggest that oral pathogenic biofilms cause persistent oral infections. Among these is periodontitis, a prevalent condition brought on by plaque biofilm. It can even result in tooth loss. Furthermore, the accumulation of germs around a dental implant may lead to peri-implantitis, which damages the surrounding bone and gum tissue. Furthermore, bacterial biofilm contamination on the implant causes soft tissue irritation and adjacent bone resorption, severely compromising dental health. On decontaminated implant surfaces, however, re-osseointegration cannot be induced by standard biofilm removal techniques such as mechanical cleaning and antiseptic treatment. A family of nanoparticles known as nanozymes (NZs) comprise highly catalytically active multivalent metal components. The most often employed NZs with antibacterial activity are those that have peroxidase (POD) activity, among other types of NZs. Since NZs are less expensive, more easily produced, and more stable than natural enzymes, they hold great promise for use in various applications, including treating microbial infections. NZs have significantly contributed to studying implant success rates and periodontal health maintenance in periodontics and implantology. An extensive analysis of the research on various NZs and their applications in managing oral health conditions, including dental caries, dental pulp disorders, oral ulcers, peri-implantitis, and bacterial infections of the mouth. To combat bacteria, this review concentrates on NZs that imitate the activity of enzymes in implantology and periodontology. With a view to the future, there are several ways that NZs might be used to treat dental disorders antibacterially.
Collapse
Affiliation(s)
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Shirin Kolahdouz
- School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azadeh Tadayonfard
- Postgraduate Department of Prosthodontics, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Mozaffari
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Sara Salari
- Islamic Azad University of Medical Sciences, Esfahan, Iran
| | - Reza Safaralizadeh
- Restarative Dentistry, Department of Dental, Faculty Tabriz Medical University, Tabriz, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
31
|
Peng N, Wang J, Zhu H, Liu Z, Ren J, Li W, Wang Y. Protective effect of carbon dots as antioxidants on intestinal inflammation by regulating oxidative stress and gut microbiota in nematodes and mouse models. Int Immunopharmacol 2024; 131:111871. [PMID: 38492339 DOI: 10.1016/j.intimp.2024.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent chronic colitis disease with increasing incidence and prevalence year by year. The single efficacy and significant side effects of traditional IBD treatment drugs have promoted the flourishing development of new drugs. Inspired by many health benefits of carbon dots (CDs) based nanomedicine in biomedical applications, a metal-free carbon dots (CP-CDs) was synthesized from citric acid and polyethylene polyamine to treat colitis. Oxidative stress tests at the cellular and nematode levels demonstrated CP-CDs have good antioxidant effects, while the toxicity of CP-CDs to cells and nematodes is low. CP-CDs were further applied to dextran sodium sulfate (DSS)-induced colitis in mice models, and it was found that CP-CDs can reduce the disease activity index (DAI) score of colon tissue and restore the intestinal barrier. Further, the anti-colitis mechanisms of CP-CDs were explored, one of which is to regulate intestinal oxidative stress in inflammatory mice, further reducing the expression of inflammatory cytokines, and thus alleviating colitis. Notably, 16S rRNA sequence analysis showed that the abundance of beneficial bacteria (Ligilactobacillus and Enterorhabdus) in the intestinal tract increased, while that of harmful bacteria (unclassified_Clostridia_UCG_014) decreased after CP-CDs treatment, indicating that CP-CDs rebalancing the gut microbiota destroyed by DSS is another important mechanism. In short, these non-toxic carbon dots not only have the potential for multi-factor combined relief of colitis but also offer an alternative therapy medicine for patients suffering from IBD.
Collapse
Affiliation(s)
- Nannan Peng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| | - Haimei Zhu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Ziyue Liu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Jiayi Ren
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Wenjing Li
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
32
|
Fu C, Brand HS, Nazmi K, Werner A, van Splunter A, Bikker FJ. Carbon dots combined with phytosphingosine inhibit acid-induced demineralization of hydroxyapatite in vitro. Arch Oral Biol 2024; 160:105911. [PMID: 38335699 DOI: 10.1016/j.archoralbio.2024.105911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVES To study the effects of carbon dots (CDs), in combination with phytosphingosine (PHS), against acid-induced demineralization of hydroxyapatite in vitro. METHODS CDs were generated from citric acid and urea by microwave heating. Transmission electron microscope (TEM), FT-IR, and fluorescence intensity were used to characterize the CDs. A hydroxyapatite (HAp) model was used to investigate the protective effects of CDs, PHS, and their combinations with and without a salivary pellicle against acid-induced demineralization in vitro. Ca2+ release as a parameter to evaluate the inhibition of demineralization was measured by capillary electrophoresis. The interactions between CDs, PHS, and HAp discs were investigated using a fluorescence detector. RESULTS Uniform-sized CDs were synthesized, showing typical optical characteristics. CDs exhibited no inhibition of acid-induced demineralization in vitro, in contrast to PHS. Notably, a pre-coating of CDs increased the protective effects of PHS against acid-induced demineralization, which was not disturbed by the presence of a salivary pellicle and Tween 20. Scanning electron microscope (SEM) confirmed the binding and layers formed of both CDs and PHS to the HAp surfaces. Based on fluorescence spectra CDs binding to HAp seemed to be dependent on Ca2+ and PO43- interactions. CONCLUSIONS CDs combined with PHS showed protective effects against acid-induced demineralization of HAp discs in vitro.
Collapse
Affiliation(s)
- Cuicui Fu
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands.
| | - Henk S Brand
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands
| | - Arie Werner
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands
| | - Annina van Splunter
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands
| |
Collapse
|
33
|
Koul K, Jawanda IK, Soni T, Singh P, Sharma D, Kumari S. Quantum dots: a next generation approach for pathogenic microbial biofilm inhibition; mechanistic insights, existing challenges, and future potential. Arch Microbiol 2024; 206:158. [PMID: 38480540 DOI: 10.1007/s00203-024-03919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/16/2024]
Abstract
Quantum Dots (QDs) have emerged as versatile nanomaterials with origins spanning organic, inorganic, and natural sources, revolutionizing various biomedical applications, particularly in combating pathogenic biofilm formation. Biofilms, complex structures formed by microbial communities enveloped in exopolysaccharide matrices, pose formidable challenges to traditional antibiotics due to their high tolerance and resistance, exacerbating inefficacy issues in antibiotic treatments. QDs offer a promising solution, employing physical mechanisms like photothermal or photodynamic therapy to disrupt biofilms. Their efficacy is noteworthy, with lower susceptibility to resistance development and broad-spectrum action as compared to conventional antibiotic methods. The stability and durability of QDs ensure sustained biofilm activity, even in challenging environmental conditions. This comprehensive review delves into the synthesis, properties, and applications of Carbon Quantum Dots (CQDs), most widely used QDs, showcasing groundbreaking developments that position these nanomaterials at the forefront of cutting-edge research and innovation. These nanomaterials exhibit multifaceted mechanisms, disrupting cell walls and membranes, generating reactive oxygen species (ROS), and binding to nucleic materials, effectively inhibiting microbial proliferation. This opens transformative possibilities for healthcare interventions by providing insights into biofilm dynamics. However, challenges in size control necessitate ongoing research to refine fabrication techniques, ensure defect-free surfaces, and optimize biological activity. QDs emerge as microscopic yet potent tools, promising to contribute to a brighter future where quantum wonders shape innovative solutions to persistently challenging issues posed by pathogenic biofilms. Henceforth, this review aims to explore QDs as potential agents for inhibiting pathogenic microbial biofilms, elucidating the underlying mechanisms, addressing the current challenges, and highlighting their promising future potential.
Collapse
Affiliation(s)
- Khyati Koul
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | | | - Thomson Soni
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Pranjali Singh
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Divyani Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Seema Kumari
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
34
|
Zhang Y, Wang T, Dong X, Zhu C, Peng Q, Liu C, Zhang Y, Chen F, Zhang K. Salivary Amylase-Responsive Buccal Tablets Wipe Out Chemotherapy-Rooted Refractory Oral Mucositis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308439. [PMID: 38227382 PMCID: PMC10962474 DOI: 10.1002/advs.202308439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Oral mucositis (OM) is the most common and refractory complication of cancer chemotherapy and radiotherapy, severely affecting patients' life quality, lowering treatment tolerance, and discouraging patient compliance. Current OM delivery systems mostly affect the comfort of patient use and lead to poor compliance and unsatisfactory effects. Herein, salivary amylases (SAs)-responsive buccal tablets consisting of porous manganese-substituted Prussian blue (PMPB) nanocubes (NCs), anti-inflammatory apremilast (Apr) and starch controller have been engineered. PMPB NCs with large surface area can serve as carriers to load Apr, and their multienzyme-mimicking activity enables them to scavenge reactive oxygen species (ROS), which thus synergize with Apr to mitigate inflammation. More significantly, the starch controller can respond to abundant SAs in the oral cavity and realize the cascade, continuous, and complete drug release after enzymatic decomposition, which not only aids with high tissue affinity to prolong the resistance time but also improves the comfort of use. The preclinical study reveals that contributed by the above actions, such buccal tablets mitigate inflammation, promote endothelium proliferation and migration, and accelerate wound healing for repressing chemotherapy-originated intractable OM with positive oral microenvironment and shorter recovery time, thus holding high potentials in clinical translation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
| | - Taixia Wang
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
| | - Xiulin Dong
- Department of Pharmacy and Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengdu610072China
| | - Chunyan Zhu
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
- Department of Pharmacy and Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengdu610072China
| | - Qiuxia Peng
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
- Department of Pharmacy and Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengdu610072China
| | - Chang Liu
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
| | - Yifeng Zhang
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
| | - Fubo Chen
- Department of Medical Ultrasound and Department of StomatologyShanghai Tenth People's HospitalTongji University School of MedicineTongji UniversityNO. 301 Yan‐chang‐zhong RoadShanghai200072China
| | - Kun Zhang
- Department of Pharmacy and Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengdu610072China
| |
Collapse
|
35
|
Sheng J, Wu Y, Ding H, Feng K, Shen Y, Zhang Y, Gu N. Multienzyme-Like Nanozymes: Regulation, Rational Design, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211210. [PMID: 36840985 DOI: 10.1002/adma.202211210] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials with more than one enzyme-like activity are termed multienzymic nanozymes, and they have received increasing attention in recent years and hold huge potential to be applied in diverse fields, especially for biosensing and therapeutics. Compared to single enzyme-like nanozymes, multienzymic nanozymes offer various unique advantages, including synergistic effects, cascaded reactions, and environmentally responsive selectivity. Nevertheless, along with these merits, the catalytic mechanism and rational design of multienzymic nanozymes are more complicated and elusive as compared to single-enzymic nanozymes. In this review, the multienzymic nanozymes classification scheme based on the numbers/types of activities, the internal and external factors regulating the multienzymatic activities, the rational design based on chemical, biomimetic, and computer-aided strategies, and recent progress in applications attributed to the advantages of multicatalytic activities are systematically discussed. Finally, current challenges and future perspectives regarding the development and application of multienzymatic nanozymes are suggested. This review aims to deepen the understanding and inspire the research in multienzymic nanozymes to a greater extent.
Collapse
Affiliation(s)
- Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yuehuang Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Kaizheng Feng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yu Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
36
|
Gao F, Liu J, Tang Q, Jiang Y. The Guidelines for the Design and Synthesis of Transition Metal Atom Doped Carbon Dots. Chembiochem 2024; 25:e202300485. [PMID: 38103035 DOI: 10.1002/cbic.202300485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Atoms doping is a practical approach to modulate the physicochemical properties of carbon dots (CDs) and thus has garnered increasing attention in recent years. Compared to non-metal atoms, transition metal atoms (TMAs) possess more unoccupied orbitals and larger atomic radii. TMAs doping can significantly alter the electronic structure of CDs and bestow them with new intrinsic characteristics. TMAs-doped CDs have exhibited widespread application potential as a new class of single-atom-based nanomaterials. However, challenges remain for the successful preparation and precise design of TMAs-doped CDs. The key to successfully preparing TMA-doped CDs lies in anchoring TMAs to the carbon precursors before the reaction. Herein, taking the formation mechanism of TMAs-doped CDs as a starting point, we systematically summarized the ligands employed for synthesizing TMAs-doped CDs and proposed the synthetic strategy involving multiple ligands. Additionally, we summarize the functional properties imparted to CDs by different TMA dopants to guide the design of TMA-doped CDs with different functional characteristics. Finally, we describe the bottlenecks TMAs-doped CDs face and provide an outlook on their future development.
Collapse
Affiliation(s)
- Fucheng Gao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and child health care hospital of Shandong province, Jinan, 250014, Shandong, China
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Jiamei Liu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and child health care hospital of Shandong province, Jinan, 250014, Shandong, China
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Qunwei Tang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Yanyan Jiang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and child health care hospital of Shandong province, Jinan, 250014, Shandong, China
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| |
Collapse
|
37
|
Wang M, Lan S, Zhang W, Jin Q, Du H, Sun X, He L, Meng X, Su L, Liu G. Anti-Cancer Potency of Copper-Doped Carbon Quantum Dots Against Breast Cancer Progression. Int J Nanomedicine 2024; 19:1985-2004. [PMID: 38435754 PMCID: PMC10908338 DOI: 10.2147/ijn.s449887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction The anti-cancer potency of copper-doped carbon quantum dots (Cu-CDs) against breast cancer progression needs more detailed investigations. Methods With urea and ethylene glycol applied as carbon sources and copper sulfate used as a reactive dopant, Cu-CDs were synthesized in the current study by a one-step hydrothermal synthesis method, followed by the characterization and biocompatibility evaluations of Cu-CDs. Subsequently, the anti-cancer potency of Cu-CDs against breast cancer progression was confirmed by these biochemical, molecular, and transcriptomic assessments, including viability, proliferation, migration, invasion, adhesion, clonogenicity, cell cycle distribution, apoptosis, redox homeostasis, and transcriptomic assays of MDA-MB-231 cells. Results The biocompatibility of Cu-CDs was confirmed based on the non-significant changes in the pathological and physiological parameters in the Cu-CDs treated mice, as well as the noncytotoxic effect of Cu-CDs on normal cells. Moreover, the Cu-CDs treatments not only decreased the viability, proliferation, migration, invasion, adhesion, and clonogenicity of MDA-MB-231 cells but also induced the redox imbalance, cell cycle arrest, and apoptosis of MDA-MB-231 cells via ameliorating the mitochondrial dysfunctions and regulating the MAPK signaling pathway. Conclusion Our findings confirmed the biosafety and excellent anti-cancer potency of Cu-CDs against breast cancer progression by tapping into mechanisms that disrupt malignant behaviors and oxidative homeostasis of breast cancer cells.
Collapse
Affiliation(s)
- Mengqi Wang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Shuting Lan
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Hua Du
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiaomei Sun
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lijun He
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiangyun Meng
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
38
|
Wang W, Xu W, Zhang J, Xu Y, Shen J, Zhou N, Li Y, Zhang M, Tang BZ. One-Stop Integrated Nanoagent for Bacterial Biofilm Eradication and Wound Disinfection. ACS NANO 2024; 18:4089-4103. [PMID: 38270107 DOI: 10.1021/acsnano.3c08054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
To meet the requirements of biomedical applications in the antibacterial realm, it is of great importance to explore nano-antibiotics for wound disinfection that can prevent the development of drug resistance and possess outstanding biocompatibility. Therefore, we attempted to synthesize an atomically dispersed ion (Fe) on phenolic carbon quantum dots (CQDs) combined with an organic photothermal agent (PTA) (Fe@SAC CQDs/PTA) via a hydrothermal/ultrasound method. Fe@SAC CQDs adequately exerted peroxidase-like activity while the PTA presented excellent photothermal conversion capability, which provided enormous potential in antibacterial applications. Based on our work, Fe@SAC CQDs/PTA exhibited excellent eradication of Escherichia coli (>99% inactivation efficiency) and Staphylococcus aureus (>99% inactivation efficiency) based on synergistic chemodynamic therapy (CDT) and photothermal therapy (PTT). Moreover, in vitro experiments demonstrated that Fe@SAC CQDs/PTA could inhibit microbial growth and promote bacterial biofilm destruction. In vivo experiments suggested that Fe@SAC CQDs/PTA-mediated synergistic CDT and PTT exhibited great promotion to wound disinfection and recovery effects. This work indicated that Fe@SAC CQDs/PTA could serve as a broad-spectrum antimicrobial nano-antibiotic, which was simultaneously beneficial for bacterial biofilm eradication, wound disinfection, and wound healing.
Collapse
Affiliation(s)
- Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wang Xu
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jianquan Zhang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
39
|
Yu R, Chen H, He J, Zhang Z, Zhou J, Zheng Q, Fu Z, Lu C, Lin Z, Caruso F, Zhang X. Engineering Antimicrobial Metal-Phenolic Network Nanoparticles with High Biocompatibility for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307680. [PMID: 37997498 DOI: 10.1002/adma.202307680] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Antibiotic-resistant bacteria pose a global health threat by causing persistent and recurrent microbial infections. To address this issue, antimicrobial nanoparticles (NPs) with low drug resistance but potent bactericidal effects have been developed. However, many of the developed NPs display poor biosafety and their synthesis often involves complex procedures and the antimicrobial modes of action are unclear. Herein, a simple strategy is reported for designing antimicrobial metal-phenolic network (am-MPN) NPs through the one-step assembly of a seeding agent (diethyldithiocarbamate), natural polyphenols, and metal ions (e.g., Cu2+ ) in aqueous solution. The Cu2+ -based am-MPN NPs display lower Cu2+ antimicrobial concentrations (by 10-1000 times) lower than most reported nanomaterials and negligible toxicity across various models, including, cells, blood, zebrafish, and mice. Multiple antimicrobial modes of the NPs have been identified, including bacterial wall disruption, reactive oxygen species production, and quinoprotein formation, with the latter being a distinct pathway identified for the antimicrobial activity of the polyphenol-based am-MPN NPs. The NPs exhibit excellent performance against multidrug-resistant bacteria (e.g., methicillin-resistant Staphylococcus aureus (MRSA)), efficiently inhibit and destroy bacterial biofilms, and promote the healing of MRSA-infected skin wounds. This study provides insights on the antimicrobial properties of metal-phenolic materials and the rational design of antimicrobial metal-organic materials.
Collapse
Affiliation(s)
- Rongxin Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jian He
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Zhichao Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinqin Zheng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Zhouping Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| |
Collapse
|
40
|
Li J, Zhao M, Liang J, Geng Z, Fan Y, Sun Y, Zhang X. Hollow Copper Sulfide Photothermal Nanodelivery Platform Boosts Angiogenesis of Diabetic Wound by Scavenging Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4395-4407. [PMID: 38247262 DOI: 10.1021/acsami.3c15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Sharply rising oxidative stress and ineffectual angiogenesis have imposed restrictions on diabetic wound healing. Here, a photothermal-responsive nanodelivery platform (HHC) was prepared by peroxidase (CAT)-loaded hollow copper sulfide dispersed in photocurable methacrylamide hyaluronan. The HHC could scavenge reactive oxygen species (ROS) and promote angiogenesis by photothermally driven CAT and Cu2+ release. Under near-infrared light irradiation, the HHC presented safe photothermal performance (<43 °C), efficient bacteriostatic ability against E. coli and S. aureus. It could rapidly release CAT into the external environment for decomposing H2O2 and oxygen generation to alleviate oxidative stress while promoting fibroblast migration and VEGF protein expression of endothelial cells by reducing intracellular ROS levels. The nanodelivery platform presented satisfactory therapeutic effects on murine diabetic wound healing by modulating tissue inflammation, promoting collagen deposition and increasing vascularization in the neodermis. This HHC provided a viable strategy for diabetic wound dressing design.
Collapse
Affiliation(s)
- Jiadong Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
41
|
Xu G, Liu K, Jia B, Dong Z, Zhang C, Liu X, Qu Y, Li W, Zhao M, Zhou H, Li YQ. Electron Lock Manipulates the Catalytic Selectivity of Nanozyme. ACS NANO 2024; 18:3814-3825. [PMID: 38230632 DOI: 10.1021/acsnano.3c12201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Nanomaterials with enzyme-mimicking functions, termed nanozymes, offer attractive opportunities for biocatalysis and biomedicine. However, manipulating nanozyme selectivity poses an insurmountable hurdle. Here, we propose the concept of an energy-governed electron lock that controls electron transfer between nanozyme and substrates to achieve selectivity manipulation of enzyme-like catalysis. An electron lock can be constructed and opened, via modulating the nanozyme's electron energy to match the energy barrier of enzymatic reactions. An iron-doped carbon dot (FeCD) nanozyme with easy-to-regulate electron energy is selected as a proof of concept. Through regulating the conduction band which dominates electron energy, activatable oxidase and selective peroxidase (POD) with substrate affinity 123-fold higher than that of natural horseradish peroxidase (HRP) is achieved. Furthermore, while maintaining selectivity, FeCDs exhibit catalytic kinetics comparable to that of HRP upon transforming photons into electrons. Superior selectivity, efficient catalysis, and undetectable biotoxicity energize FeCDs as potent targeted drugs on antibiotic-resistant bacterial abscesses. An electron lock provides a robust strategy to manipulate selectivity toward advanced nanozymes.
Collapse
Affiliation(s)
- Guopeng Xu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Kehan Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Bingqing Jia
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Zhenzhen Dong
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, People's Republic of China
| | - Chengmei Zhang
- Laboratory Animal Center of Shandong University, Jinan 250012, People's Republic of China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, People's Republic of China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
42
|
Wang X, Zhang R, Ma X, Xu Z, Ma M, Zhang T, Ma Y, Shi F. Carbon dots@noble metal nanoparticle composites: research progress report. Analyst 2024; 149:665-688. [PMID: 38205593 DOI: 10.1039/d3an01580g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Carbon dots@noble metal nanoparticle composites are formed by combining carbon dots and metal nanoparticles using various strategies. Carbon dots exhibit a reducing ability and function as stabilisers; consequently, metal-ion solutions can be directly reduced by them to synthesise gold, silver, and gold-silver alloy particles. Carbon dots@gold/silver/gold-silver particle composites have demonstrated the potential for several practical applications owing to their superior properties and simple preparation process. Until now, several review articles have been published to summarise fluorescent carbon dots or noble metal nanomaterials. Compared with metal-free carbon dots, carbon dots@noble metal nanoparticles have a unique morphology and structure, resulting in new physicochemical properties, which allow for sensing, bioimaging, and bacteriostasis applications. Therefore, to promote the effective development of carbon dots@noble metal nanoparticle composites, this paper primarily reviews carbon dots@gold/silver/gold-silver alloy nanoparticle composites for the first time in terms of the following aspects. (1) The synthesis strategies of carbon dots@noble metal nanoparticle composites are outlined. The principle and function of carbon dots in the synthesis strategies are examined. The advantages and disadvantages of these methods and composites are analysed. (2) The characteristics and properties of such composites are described. (3) The applications of these composite materials are summarised. Finally, the potentials and limitations of carbon dots@noble metal nanoparticle composites are discussed, thus laying the foundation for their further development.
Collapse
Affiliation(s)
- Xuejing Wang
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Renyin Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Xiaoyu Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Mingze Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Tieying Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
43
|
Zheng BD, Gan L, Tian LY, Chen GH. Protein/polysaccharide-based hydrogels loaded probiotic-mediated therapeutic systems: A review. Int J Biol Macromol 2023; 253:126841. [PMID: 37696368 DOI: 10.1016/j.ijbiomac.2023.126841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The natural characteristics of protein/polysaccharide-based hydrogels, as a potential drug delivery platform, have attracted extensive attention. Probiotics have attracted renewed interest in drug research because of their beneficial effects on host health. The idea of using probiotics loaded on protein/polysaccharide-based hydrogels as potential drugs to treat different diseases has been put forward and shows great prospects. Based on this, in this review, we highlight the design strategy of hydrogels loaded probiotic-mediated therapy systems and review the potential diseases that have been proved to be treatable in the laboratory, including promoting wound healing and improving intestinal health and vaginal health, and discuss the challenges existing in the current design.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Lei Gan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Li-Yuan Tian
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Guan-Hong Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
44
|
Pongchaikul P, Hajidariyor T, Khetlai N, Yu YS, Arjfuk P, Khemthong P, Wanmolee W, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Nanostructured N/S doped carbon dots/mesoporous silica nanoparticles and PVA composite hydrogel fabrication for anti-microbial and anti-biofilm application. Int J Pharm X 2023; 6:100209. [PMID: 37711848 PMCID: PMC10498006 DOI: 10.1016/j.ijpx.2023.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
Regarding the convergence of the worldwide epidemic, the appearance of bacterial infection has occasioned in a melodramatic upsurge in bacterial pathogens with confrontation against one or numerous antibiotics. The implementation of engineered nanostructured particles as a delivery vehicle for antimicrobial agent is one promising approach that could theoretically battle the setbacks mentioned. Among all nanoparticles, silica nanoparticles have been found to provide functional features that are advantageous for combatting bacterial contagion. Apart from that, carbon dots, a zero-dimension nanomaterial, have recently exhibited their photo-responsive property to generate reactive oxygen species facilitating to enhance microorganism suppression and inactivation ability. In this study, potentials of core/shell mesoporous silica nanostructures (MSN) in conjugation with carbon dots (CDs) toward antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli have been investigated. Nitrogen and sulfur doped CDs (NS/CDs) conjugated with MSN which were cost effective nanoparticles exhibited much superior antimicrobial activity for 4 times as much as silver nanoparticles against all bacteria tested. Among all nanoparticles tested, 0.40 M NS/CDs@MSN showed the greatest minimal biofilm inhibitory at very low concentration (< 0.125 mg mL-1), followed by 0.20 M NS/CDs@MSN (0.5 mg mL-1), CD@MSN (25 mg mL-1), and MSN (50 mg mL-1), respectively. Immobilization of NS/CDs@MSN in polyvinyl alcohol (PVA) hydrogel was performed and its effect on antimicrobial activity, biofilm controlling efficiency, and cytotoxicity toward fibroblast (NIH/3 T3 and L-929) cells was additionally studied for further biomedical applications. The results demonstrated that 0.40 M NS/CDs-MSN@PVA hydrogel exhibited the highest inhibitory effect on S. aureus > P. aeruginosa > E. coli. In addition, MTT assay revealed some degree of toxicity of 0.40 M NS/CDs-MSN@PVA hydrogel against L-929 cells by a slight reduction of cell viability from 100% to 81.6% when incubated in the extract from 0.40 M NS/CDs-MSN@PVA hydrogel, while no toxicity of the same hydrogel extract was detected toward NIH/3 T3 cells.
Collapse
Affiliation(s)
- Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn 10540, Thailand
| | - Tasnim Hajidariyor
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Navarat Khetlai
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Yu-Sheng Yu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei 10617, Taiwan
| | - Pariyapat Arjfuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn 10540, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok 10140, Thailand
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- National Health Research Institute, Zhunan: 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
45
|
Zhou Y, Sun P, Cao Y, Yang J, Wu Q, Peng J. Biocompatible copper formate-based nanoparticles with strong antibacterial properties for wound healing. J Nanobiotechnology 2023; 21:474. [PMID: 38072979 PMCID: PMC10710715 DOI: 10.1186/s12951-023-02247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Copper-based antibacterial materials have emerged as a potential alternative for combating bacterial infections, which continue to pose significant health risks. Nevertheless, the use of copper-based nanoparticles as antibacterial agents has faced challenges due to their toxicity towards cells and tissues. To overcome this obstacle, we propose a new approach using a contact-active copper-based nanoparticles called polydopamine (PDA)-coated copper-amine (Cuf-TMB@PDA). The positively charged surface of Cuf-TMB@PDA enables efficient targeting of negatively charged bacteria, allowing controlled release of Cu(II) into the bacterial cell membrane. Moreover, Cuf-TMB@PDA exhibits similar ·OH signals as Cuf-TMB suspensions in previous work. In cytotoxicity assays conducted over 72 h, Cuf-TMB@PDA demonstrated an efficacy of 98.56%, while releasing lower levels of Cu(II) that were less harmful to cells, resulting in enhanced antimicrobial effects. These antimicrobial properties are attributed to the synergistic effects of charge-contact activity of PDA, controlled release of Cu(II), and free radicals. Subsequent in vivo experiments confirmed the strong antimicrobial potency of Cuf-TMB@PDA and its ability to promote wound healing.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Ping Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongbin Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiahao Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China.
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Jian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China.
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
46
|
Yang M, Li H, Liu X, Huang L, Zhang B, Liu K, Xie W, Cui J, Li D, Lu L, Sun H, Yang B. Fe-doped carbon dots: a novel biocompatible nanoplatform for multi-level cancer therapy. J Nanobiotechnology 2023; 21:431. [PMID: 37978538 PMCID: PMC10655501 DOI: 10.1186/s12951-023-02194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Tumor treatment still remains a clinical challenge, requiring the development of biocompatible and efficient anti-tumor nanodrugs. Carbon dots (CDs) has become promising nanomedicines for cancer therapy due to its low cytotoxicity and easy customization. RESULTS Herein, we introduced a novel type of "green" nanodrug for multi-level cancer therapy utilizing Fe-doped carbon dots (Fe-CDs) derived from iron nutrient supplement. With no requirement for target moieties or external stimuli, the sole intravenous administration of Fe-CDs demonstrated unexpected anti-tumor activity, completely suppressing tumor growth in mice. Continuous administration of Fe-CDs for several weeks showed no toxic effects in vivo, highlighting its exceptional biocompatibility. The as-synthesized Fe-CDs could selectively induce tumor cells apoptosis by BAX/Caspase 9/Caspase 3/PARP signal pathways and activate antitumoral macrophages by inhibiting the IL-10/Arg-1 axis, contributing to its significant tumor immunotherapy effect. Additionally, the epithelial-mesenchymal transition (EMT) process was inhibited under the treatment of Fe-CDs by MAPK/Snail pathways, indicating the capacity of Fe-CDs to inhibit tumor recurrence and metastasis. CONCLUSIONS A three-level tumor treatment strategy from direct killing to activating immunity to inhibiting metastasis was achieved based on "green" Fe-CDs. Our findings reveal the broad clinical potential of Fe-CDs as a novel candidate for anti-tumor nanodrugs and nanoplatform.
Collapse
Affiliation(s)
- Mingxi Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China
| | - Haiqiu Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Boya Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Kexuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Wangni Xie
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.
| | - Laijin Lu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China.
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.
| | - Bai Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
47
|
Wang R, Pan Q, Li F, Guo J, Huo Y, Xu C, Xiong M, Cheng Z, Liu M, Lin J. Oxygen-carrying acid-responsive Cu/ZIF-8 for photodynamic antibacterial therapy against cariogenic Streptococcus mutans infection. Dalton Trans 2023; 52:16189-16196. [PMID: 37872796 DOI: 10.1039/d3dt02816j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Caries as a result of acid demineralization is the most common oral microbial infectious disease. Due to the small and complex intraoral operating space, it is challenging to completely remove Streptococcus mutans (S. mutans) and other cariogenic bacteria. As an intelligent acid-responsive photosensitive nanomaterial, O2-Cu/ZIF-8@Ce6/ZIF-8@HA (OCZCH) was chosen to adapt to the anaerobic and acidic microenvironment for inactivating S. mutans. In this work, OCZCH not only exhibits a regular nanomorphology in SEM and TEM images but also shows intelligent acid responsiveness as evidenced by the release of Ce6 and oxygen. When excited by near-infrared light at 650 nm, Ce6 releases reactive oxygen species (ROS) that act synergistically with internal oxygen to significantly enhance the antimicrobial therapeutic effect of photodynamic therapy (PDT). In vitro antimicrobial experiments showed that OCZCH could achieve an impressive sterilization effect against S. mutans and biofilm. Notably, the acid-producing ability of the bacteria was also significantly inhibited. With its oxygen-carrying photosensitizing properties, excellent responsiveness to acidic environments, and antimicrobial capacity under anaerobic conditions, OCZCH is considered an innovative candidate for clinical application in treating dental caries.
Collapse
Affiliation(s)
- Ruifeng Wang
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
- Weihai Stomatological Hospital, Weihai 264200, China
| | - Qiyuan Pan
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Fang Li
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Jingying Guo
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Yaru Huo
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Chao Xu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Manwen Xiong
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Min Liu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
48
|
Fang M, Lin L, Zheng M, Liu W, Lin R. Antibacterial functionalized carbon dots and their application in bacterial infections and inflammation. J Mater Chem B 2023; 11:9386-9403. [PMID: 37720998 DOI: 10.1039/d3tb01543b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Bacterial infections and inflammation pose a severe threat to human health and the social economy. The existence of super-bacteria and the increasingly severe phenomenon of antibiotic resistance highlight the development of new antibacterial agents. Due to low cytotoxicity, high biocompatibility, and different antibacterial mechanisms from those for antibiotics, functionalized carbon dots (FCDs) promise a new platform for the treatment of bacterial infectious diseases. However, few articles have systematically sorted out the available antibacterial mechanisms for FCDs and their application in the treatment of bacterial inflammation. This review focuses on the available antibacterial mechanisms for FCDs, including covalent and non-covalent interactions, reactive oxygen species, photothermal therapy, and size effect. Meanwhile, the design of antibacterial FCDs is introduced, including surface modification, doping, and combination with other nanomaterials. Furthermore, this review specifically concentrates on the research advances of antibacterial FCDs in the treatment of bacterial inflammation. Finally, the advantages and challenges of applying FCDs in practical antimicrobial applications are discussed.
Collapse
Affiliation(s)
- Meng Fang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Liping Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Muyue Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongguang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
49
|
Wang Y, Shi HD, Zhang HL, Yu Chen Y, Ren B, Tang Q, Sun Q, Zhang QL, Liu JG. A Multifunctional Nanozyme with NADH Dehydrogenase-Like Activity and Nitric Oxide Release under Near-Infrared Light Irradiation as an Efficient Therapeutic for Antimicrobial Resistance Infection and Wound Healing. Adv Healthc Mater 2023; 12:e2300568. [PMID: 37326411 DOI: 10.1002/adhm.202300568] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Indexed: 06/17/2023]
Abstract
In recent years, antimicrobial resistance (AMR) has become one of the greatest threats to human health. There is an urgent need to develop new antibacterial agents to effectively treat AMR infection. Herein, a novel nanozyme platform (Cu,N-GQDs@Ru-NO) is prepared, where Cu,N-doped graphene quantum dots (Cu,N-GQDs) are covalently functionalized with a nitric oxide (NO) donor, ruthenium nitrosyl (Ru-NO). Under 808 nm near-infrared (NIR) light irradiation, Cu,N-GQDs@Ru-NO demonstrates nicotinamide adenine dinucleotide (NADH) dehydrogenase-like activity for photo-oxidizing NADH to NAD+ , thus disrupting the redox balance in bacterial cells and resulting in bacterial death; meanwhile, the onsite NIR light-delivered NO effectively eradicates the methicillin-resistant Staphylococcus aureus (MRSA) bacterial and biofilms, and promotes wound healing; furthermore, the nanozyme shows excellent photothermal effect that enhances the antibacterial efficacy as well. With the combination of NADH dehydrogenase activity, photothermal therapy, and NO gas therapy, the Cu,N-GQDs@Ru-NO nanozyme displays both in vitro and in vivo excellent efficacy for MRSA infection and biofilm eradication, which provides a new therapeutic modality for effectively treating MRSA inflammatory wounds.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hong-Dong Shi
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, 650500, P. R. China
| | - Hai-Lin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu- Yu Chen
- Shenzhen Key Lab of Functional Polymer, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Bing Ren
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, P. R. China
| | - Qian-Ling Zhang
- Shenzhen Key Lab of Functional Polymer, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
50
|
Zhu H, Peng N, Liang X, Yang S, Cai S, Chen Z, Yang Y, Wang J, Wang Y. Synthesis, properties and mechanism of carbon dots-based nano-antibacterial materials. Biomed Mater 2023; 18:062002. [PMID: 37722396 DOI: 10.1088/1748-605x/acfada] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Antibiotics play an important role in the treatment of diseases, but bacterial resistance caused by their widespread and unreasonable use has become an urgent problem in clinical treatment. With the rapid advancement of nanoscience and nanotechnology, the development of nanomedicine has been transformed into a new approach to the problem of bacterial resistance. As a new type of carbon-based nanomaterial, carbon dots (CDs) have attracted the interest of antibacterial researchers due to their ease of preparation, amphiphilicity, facile surface functionalization, and excellent optical properties, among other properties. This article reviewed the synthesis methods and properties of various CDs and their composites in order to highlight the advancements in the field of CDs-based antibacterial agents. Then we focused on the relationship between the principal properties of CDs and the antibacterial mechanism, including the following: (1) the physical damage caused by the small size, amphiphilicity, and surface charge of CDs. (2) Photogenerated electron transfer characteristics of CDs that produce reactive oxygen species (ROS) in themselves or in other compounds. The ability of ROS to oxidize can lead to the lipid peroxidation of cell membranes, as well as damage proteins and DNA. (3) The nano-enzyme properties of CDs can catalyze reactions that generate ROS. (4) Synergistic antibacterial effect of CDs and antibiotics or other nanocomposites. Finally, we look forward to the challenges that CDs-based nanocomposites face in practical antibacterial applications and propose corresponding solutions to further expand the application potential of nanomaterials in the treatment of infectious diseases, particularly drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Haimei Zhu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Nannan Peng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Xiao Liang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Song Yang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Shenghao Cai
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Zifan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Yang Yang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, People's Republic of China
| |
Collapse
|