1
|
Cao Y, Zheng M, Shi J, Si J, Huang G, Ji Y, Hou Y, Ge Z. X-ray-Triggered Activation of Polyprodrugs for Synergistic Radiochemotherapy. Biomacromolecules 2024. [PMID: 39727263 DOI: 10.1021/acs.biomac.4c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
X-ray-induced photodynamic therapy (XPDT) can penetrate deeply into the tumor tissues to overcome the disadvantage of conventional PDT. However, the therapeutic efficacy of XPDT in cancer therapy is still restricted due to the insufficient reactive oxygen species (ROS) generation at a relatively low irradiation dosage. Herein, we present the tumor pH and ROS-responsive polyprodrug micelles to load the X-ray photosensitizer verteporfin (VP) as an ROS production enhancer. The block copolymer polyprodrug consisting of hydrophilic poly(ethylene glycol) (PEG) as well as the segments of thioketal-linked camptothecin (CPT) methacrylate (CPTKMA) and 2-(pentamethyleneimino)ethyl methacrylate (PEMA) (PEG-b-P(CPTKMA-co-PEMA)) can self-assemble into micelles in aqueous solution and encapsulate VP with a high loading efficiency of 67%. Inside tumor tissues, the zeta potential of the micelles can transform from neutral to positive for promoted cellular internalization under tumor acidity. Followed by X-ray irradiation at the dose of 4 Gy, efficient ROS generation in the presence of VP triggers CPT release. The VP-loaded polyprodrug micelles can finally ablate tumors efficiently via synergistic radiochemotherapy due to deep penetration of X-ray inside tumor tissues, ROS generation enhancement, and triggered CPT release. Consequently, this promising strategy represents a robust therapeutic modality for the enhanced radiochemotherapy of cancers.
Collapse
Affiliation(s)
- Yufei Cao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Moujiang Zheng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jiahong Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jiale Si
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Guopu Huang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yuanyuan Ji
- Department of Geriatric General Surgery, Scientific Research Center and Precision Medical Institute, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
2
|
Chen B, He Y, Bai L, Pan S, Wang Y, Mu M, Fan R, Han B, Huber PE, Zou B, Guo G. Radiation-activated PD-L1 aptamer-functionalized nanoradiosensitizer to potentiate antitumor immunity in combined radioimmunotherapy and photothermal therapy. J Mater Chem B 2024. [PMID: 39420720 DOI: 10.1039/d4tb01831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Reactive oxygen species (ROS)-mediated immunogenic cell death (ICD) is crucial in radioimmunotherapy by boosting innate antitumor immunity. However, the hypoxic tumor microenvironment (TME) often impedes ROS production, limiting the efficacy of radiotherapy. To tackle this challenge, a combination therapy involving radiotherapy and immune checkpoint blockade (ICB) with anti-programmed death-ligand 1 (PD-L1) has been explored to enhance antitumor effects and reprogram the immunosuppressive TME. Here, we introduce a novel PD-L1 aptamer-functionalized nanoradiosensitizer designed to augment radiotherapy by increasing X-ray deposition specifically at the tumor site. This innovative X-ray-activated nanoradiosensitizer, comprising gold-MnO2 nanoflowers, efficiently enhances ROS generation under single low-dose radiation and repolarizes M2-like macrophages, thereby boosting antitumor immunity. Additionally, the ICB inhibitor BMS-202 synergizes with the PD-L1 aptamer-assisted nanoradiosensitizer to block the PD-L1 receptor, promoting T cell activation. Furthermore, this nanoradiosensitizer exhibits exceptional photothermal conversion efficiency, amplifying the ICD effect. The PD-L1-targeted nanoradiosensitizer effectively inhibits primary tumor growth and eliminates distant tumors, underscoring the potential of this strategy in optimizing both radioimmunotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yinbo He
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Long Bai
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shulin Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yinggang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Min Mu
- Department of Radiation Oncology and Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Rangrang Fan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832002, China
| | - Peter Ernst Huber
- Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Department of Radiooncology and Radiotherapy, University Hospital Heidelberg, Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Bingwen Zou
- Department of Radiation Oncology and Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Song J, Feng Y, Yan J, Wang Y, Yan W, Yang N, Wu T, Liu S, Wang Y, Zheng N, He L, Zhang Y. Computed Tomography Imaging Guided Microenvironment-Responsive Ir@WO 3-x Dual-Catalytic Nanoreactor for Selective Radiosensitization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405192. [PMID: 39102342 PMCID: PMC11481196 DOI: 10.1002/advs.202405192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Radiotherapy (RT) is often administered, either alone or in combination with other therapies, for most malignancies. However, the degree of tumor oxygenation, damage to adjacent healthy tissues, and inaccurate guidance remain issues that result in discontinuation or failure of RT. Here, a multifunctional therapeutic platform based on Ir@WO3-x is developed which simultaneously addresses these critical issues above for precision radiosensitization. Ir@WO3-x nanoreactors exhibit strong absorption of X-ray, acting as radiosensitizers. Moreover, ultrasmall Ir enzyme-mimic nanocrystals (NCs) are decorated onto the surface of the nanoreactor, where NCs have catalyst-like activity and are sensitive to H2O2 in the tumor microenvironment (TME) under near infrared-II (NIR-II) light stimulation. They efficiently catalyze the conversion of H2O2 to O2, thereby ameliorating hypoxia, inhibiting the expression of HIF-1α, and enhancing RT-induced DNA damage in cancerous tissue, further improving the efficiency of RT. Additionally, in response to high H2O2 levels in TME, the Ir@WO3-x nanoreactor also exerts peroxidase-like activity, boosting exogenous ROS, which increases oxidative damage and enhances ROS-dependent death signaling. Furthermore, Ir@WO3-x can serve as a high-quality computed tomography contrast agent due to its high X-ray attenuation coefficient and generation of pronounced tumor-tissue contrast. This report highlights the potential of advanced health materials to enhance precision therapeutic modalities.
Collapse
Affiliation(s)
- Jiayu Song
- Department of Gynecological RadiotherapyHarbin Medical University Cancer HospitalHarbin150001China
- School of Medicine and HealthKey Laboratory of Microsystems and Microstructures ManufacturingHarbin Institute of TechnologyHarbin150001China
| | - Yue Feng
- Department of Gynecological OncologyZhejiang Cancer HospitalZhengzhouZhejiang310022China
| | - Jiazhuo Yan
- Department of Gynecological RadiotherapyHarbin Medical University Cancer HospitalHarbin150001China
| | - Ying Wang
- Department of Gynecological RadiotherapyHarbin Medical University Cancer HospitalHarbin150001China
| | - Weixiao Yan
- School of Medicine and HealthKey Laboratory of Microsystems and Microstructures ManufacturingHarbin Institute of TechnologyHarbin150001China
| | - Nan Yang
- Department of Gynecological RadiotherapyHarbin Medical University Cancer HospitalHarbin150001China
| | - Tusheng Wu
- Department of Gynecological RadiotherapyHarbin Medical University Cancer HospitalHarbin150001China
| | - Sijia Liu
- Department of Gynecological RadiotherapyHarbin Medical University Cancer HospitalHarbin150001China
| | - Yuan Wang
- Department of Gynecological RadiotherapyHarbin Medical University Cancer HospitalHarbin150001China
| | - Nannan Zheng
- School of Medicine and HealthKey Laboratory of Microsystems and Microstructures ManufacturingHarbin Institute of TechnologyHarbin150001China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhouHenan450000China
| | - Liangcan He
- School of Medicine and HealthKey Laboratory of Microsystems and Microstructures ManufacturingHarbin Institute of TechnologyHarbin150001China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhouHenan450000China
| | - Yunyan Zhang
- Department of Gynecological RadiotherapyHarbin Medical University Cancer HospitalHarbin150001China
| |
Collapse
|
4
|
Kang X, Ren Y, Wang J, Zhu X, Xin N, Gao F, Yu D. A noble metal-enhanced Au@CuO heterostructure with multienzyme-mimicking activities for colorimetric detection of tannic acid. Analyst 2024. [PMID: 39171410 DOI: 10.1039/d4an01013b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Nanozymes, serving as synthetic alternatives to natural enzymes, offer several benefits including cost-effectiveness, enzyme-like catalytic abilities, enhanced stability, adjustable catalytic activity, easy recyclability, mild reaction conditions, and environmental friendliness. Nonetheless, the ongoing quest to develop nanozymes with enhanced activity and to delve into the catalytic mechanism remains a challenge. In our research, we effectively developed Au@CuO nanocomposites (Au@CuO Nc), replicating the functions of four enzymes found in nature: peroxidase (POD), catalase (CAT), glutathione peroxidase (GPx), and oxidase (OXD). The catalytic efficiency of Au@CuO Nc for TMB oxidation (oxTMB) was approximately 4.8 times greater than that of plain Cu2O cubes, attributed to the synergistic catalytic impact between the Au element and Cu2O within Au@CuO Nc. Mechanistic studies revealed that the novel Au@CuO Nc nanozyme greatly enhances the decomposition of H2O2 to reactive oxygen species (ROS) intermediates (˙OH, ˙O2- and 1O2), resulting in increased POD-like activity of the single-component Cu2O cubes. When an antioxidant like TA was added to the chromogenic system, it converted oxTMB into a colorless form of TMB, enabling further evaluation of TA. Hence, a colorimetric sensor was developed for the rapid and precise quantitative measurement of TA, demonstrating strong linearity between 0.3 and 2.4 μM and featuring a low detection threshold of 0.25 μM. Moreover, this sensor was effectively utilized for the assessment of TA in actual tea samples. This work innovatively proposes a simplified and reliable strategy for the advanced design of highly effective Cu-based nanozymes, enhancing enzyme-like reactions for simultaneous, on-site colorimetric probing of antioxidants.
Collapse
Affiliation(s)
- Xin Kang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China.
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China.
| | - Jin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China.
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China.
| | - Ning Xin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China.
| | - Dehong Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China.
- The Affiliated Pizhou Hospital of Xuzhou Medical University, Jiangsu 221399, China
| |
Collapse
|
5
|
Wei Z, Wang Y, Bi Z, Feng L, Sun Y, Zhang H, Song X, Zhang S. Thermoresponsive and Substrate Self-Cycling Nanoenzyme System for Efficient Tumor Therapy. ACS APPLIED BIO MATERIALS 2024; 7:5337-5344. [PMID: 38968606 DOI: 10.1021/acsabm.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Cerium oxide (CeO2-x) performs well in photothermal and catalytic properties due to its abundance of oxygen vacancies. Based on this, we designed a thermosensitive therapeutic nanoplatform to achieve continuous circular drug release in tumor. It can solve the limitation caused by insufficient substrate in the process of tumor treatment. Briefly, CeO2-x and camptothecin (CPT) were wrapped in an agarose hydrogel, which could be melted by the photothermal effect of CeO2-x. At the same time, the local temperature increase provided photothermal treatment, which could induce the apoptosis of tumor cell. After that, CPT was released to damage the DNA in tumor cells to realize chemical treatment. In addition, CPT could active nicotinamide adenine dinucleotide oxidase to react with O2 to increase the intracellular H2O2. After that, the exposed CeO2-x could catalyze H2O2 to generate cytotoxic reactive oxygen species for chemodynamic therapy. More importantly, CeO2-x could catalyze H2O2 to produce O2, which could combine with the catalytic action of CPT to construct a substrate self-cycling nanoenzyme system. Overall, this self-cycling nanoplatform released hypoxia in the tumor microenvironment and built a multimode tumor treatment, which achieved an ideal antitumor affect.
Collapse
Affiliation(s)
- Zizhen Wei
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yuqi Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhiru Bi
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Lu Feng
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yongbiao Sun
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Huairong Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xinyue Song
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| |
Collapse
|
6
|
Li G, Bao Y, Zhang H, Wang J, Wu X, Yan R, Wang Z, Jin Y. Enhanced catalytic activity of Fe 3O 4-carbon dots complex in the Fenton reaction for enhanced immunotherapeutic and oxygenation effects. J Colloid Interface Sci 2024; 668:618-633. [PMID: 38696990 DOI: 10.1016/j.jcis.2024.04.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
Tumor metastasis and recurrence are closely related to immune escape and hypoxia. Chemodynamic therapy (CDT), photodynamic therapy (PDT), and photothermal therapy (PTT) can induce immunogenic cell death (ICD), and their combination with immune checkpoint agents is a promising therapeutic strategy. Iron based nanomaterials have received more and more attention, but their low Fenton reaction efficiency has hindered their clinical application. In this study, Fe3O4-carbon dots complex (Fe3O4-CDs) was synthesized, which was modified with ferrocenedicarboxylic acid by amide bond, and crosslinked into Fe3O4-CDs@Fc nano complex. The CDs catalyzed the Fenton reaction activity of Fe3O4 by helping to improve the electron transfer efficiency, extended the reaction pH condition to 7.4. The Fe3O4-CDs@Fc exhibit exceptional optical activity, achieving a thermal conversion efficiency of 56.43 % under 808 nm light and a photosensitive single-line state oxygen quantum yield of 33 % under 660 nm light. Fe3O4-CDs@Fc improved intracellular oxygen level and inhibited hypoxia-inducing factor (HIF-1α) by in-situ oxygen production based on Fenton reaction. The multimodal combination of Fe3O4-CDs@Fc (CDT/PDT/PTT) strongly induced immune cell death (ICD). The expression of immune-related protein and HIF-1α was investigated by immunofluorescence method. In vivo, Fe3O4-CDs@Fc combined with immune checkpoint blocker (antibody PD-L1, αPD-L1) effectively ablated primary tumors and inhibited distal tumor growth. Fe3O4-CDs@Fc is a promising immune-antitumor drug.
Collapse
Affiliation(s)
- Guanghao Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; College of Public Health, Mudanjiang Medical University, Mudanjiang 157009, China
| | - Jingchun Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; College of Pharmacy, Qiqihaer Medical University, Qiqihaer 161006, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
7
|
Policei Marques N, Isikawa MM, Muradova Z, Morris T, Berbeco R, Guidelli EJ. Size-Dependent Blue Emission from Europium-Doped Strontium Fluoride Nanoscintillators for X-Ray-Activated Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2400372. [PMID: 38630101 DOI: 10.1002/adhm.202400372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Successful implementation of X-ray-activated photodynamic therapy (X-PDT) is challenging because most photosensitizers (PSs) absorb light in the blue region, but few nanoscintillators produce efficient blue scintillation. Here, efficient blue-emitting SrF2:Eu scintillating nanoparticles (ScNPs) are developed. The optimized synthesis conditions result in cubic nanoparticles with ≈32 nm diameter and blue emission at 416 nm. Coating them with the meso-tetra(n-methyl-4-pyridyl) porphyrin (TMPyP) in a core-shell structure (SrF@TMPyP) results in maximum singlet oxygen (1O2) generation upon X-ray irradiation for nanoparticles with 6TMPyP depositions (SrF@6TMPyP). The 1O2 generation is directly proportional to the dose, does not vary in the low-energy X-ray range (48-160 kVp), but is 21% higher when irradiated with low-energy X-rays than irradiations with higher energy gamma rays. In the clonogenic assay, cancer cells treated with SrF@6TMPyP and exposed to X-rays present a significantly reduced survival fraction compared to the controls. The SrF2:Eu ScNPs and their conjugates stand out as tunable nanoplatforms for X-PDT due to the efficient blue emission from the SrF2:Eu cores; the ability to adjust the scintillation emission in terms of color and intensity by controlling the nanoparticle size; the efficient 1O2 production when conjugated to a PS and the efficacy of killing cancer cells.
Collapse
Affiliation(s)
- Natasha Policei Marques
- Departamento de Física-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Mileni M Isikawa
- Departamento de Física-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Zeinaf Muradova
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Toby Morris
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Eder J Guidelli
- Departamento de Física-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| |
Collapse
|
8
|
Zhang P, Cheng M, Levi-Kalisman Y, Raviv U, Xu Y, Han J, Dou H. Macromolecular Nano-Assemblies for Enhancing the Effect of Oxygen-Dependent Photodynamic Therapy Against Hypoxic Tumors. Chemistry 2024; 30:e202401700. [PMID: 38797874 DOI: 10.1002/chem.202401700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
In oxygen (O2)-dependent photodynamic therapy (PDT), photosensitizers absorb light energy, which is then transferred to ambient O2 and subsequently generates cytotoxic singlet oxygen (1O2). Therefore, the availability of O2 and the utilization efficiency of generated 1O2 are two significant factors that influence the effectiveness of PDT. However, tumor microenvironments (TMEs) characterized by hypoxia and limited utilization efficiency of 1O2 resulting from its short half-life and short diffusion distance significantly restrict the applicability of PDT for hypoxic tumors. To address these challenges, numerous macromolecular nano-assemblies (MNAs) have been designed to relieve hypoxia, utilize hypoxia or enhance the utilization efficiency of 1O2. Herein, we provide a comprehensive review on recent advancements achieved with MNAs in enhancing the effectiveness of O2-dependent PDT against hypoxic tumors.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Meng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, 9190401, Givat Ram, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, 9190401, Givat Ram, Jerusalem, Israel
| | - Yichun Xu
- Shanghai Biochip Co. Ltd. and National Engineering Center for Biochip at Shanghai, 151 Libing Road, 201203, Shanghai, China
| | - Junsong Han
- Shanghai Biochip Co. Ltd. and National Engineering Center for Biochip at Shanghai, 151 Libing Road, 201203, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
9
|
Liu J, Wu J, Chen T, Yang B, Liu X, Xi J, Zhang Z, Gao Y, Li Z. Enhancing X-Ray Sensitization with Multifunctional Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400954. [PMID: 38676336 DOI: 10.1002/smll.202400954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/30/2024] [Indexed: 04/28/2024]
Abstract
In the progression of X-ray-based radiotherapy for the treatment of cancer, the incorporation of nanoparticles (NPs) has a transformative impact. This study investigates the potential of NPs, particularly those comprised of high atomic number elements, as radiosensitizers. This aims to optimize localized radiation doses within tumors, thereby maximizing therapeutic efficacy while preserving surrounding tissues. The multifaceted applications of NPs in radiotherapy encompass collaborative interactions with chemotherapeutic, immunotherapeutic, and targeted pharmaceuticals, along with contributions to photodynamic/photothermal therapy, imaging enhancement, and the integration of artificial intelligence technology. Despite promising preclinical outcomes, the paper acknowledges challenges in the clinical translation of these findings. The conclusion maintains an optimistic stance, emphasizing ongoing trials and technological advancements that bolster personalized treatment approaches. The paper advocates for continuous research and clinical validation, envisioning the integration of NPs as a revolutionary paradigm in cancer therapy, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - JunYong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Bin Yang
- Department of Orthopedics, Shaodong People's Hospital, Shaoyang, Hunan Province, 422800, China
| | - XiangPing Liu
- Department of Neurology, Shaodong People's Hospital, Shaoyang, Hunan Province, 422800, China
| | - Jing Xi
- Department of Nephrology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan Province, 415000, China
| | - Ziyang Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119276, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| |
Collapse
|
10
|
Zou H, Hong Y, Xu B, Wang M, Xie H, Wang Y, Lin Q. Multifunctional Cerium Oxide Nanozyme for Synergistic Dry Eye Disease Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34757-34771. [PMID: 38946068 DOI: 10.1021/acsami.4c07390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Dry eye disease (DED) is a chronic multifactorial ocular surface disease mainly caused by the instability of tear film, characterized by a series of ocular discomforts and even visual disorders. Oxidative stress has been recognized as an upstream factor in DED development. Diquafosol sodium (DQS) is an agonist of the P2Y2 receptor to restore the integrity/stability of the tear film. With the ability to alternate between Ce3+ and Ce4+, cerium oxide nanozymes could scavenge overexpressed reactive oxygen species (ROS). Hence, a DQS-loaded cerium oxide nanozyme was designed to boost the synergistic treatment of DED. Cerium oxide with branched polyethylenimine-graft-poly(ethylene glycol) as nucleating agent and dispersant was fabricated followed with DQS immobilization via a dynamic phenylborate ester bond, obtaining the DQS-loaded cerium oxide nanozyme (defined as Ce@PBD). Because of the ability to mimic the cascade processes of superoxide dismutase and catalase, Ce@PBD could scavenge excessive accumulated ROS, showing strong antioxidant and anti-inflammatory properties. Meanwhile, the P2Y2 receptors in the conjunctival cells could be stimulated by DQS in Ce@PBD, which can relieve the incompleteness and instability of the tear film. The animal experiments demonstrated that Ce@PBD significantly restored the defect of the corneal epithelium and increased the number of goblet cells, with the promotion of tear secretion, which was the best among commercial DQS ophthalmic solutions.
Collapse
Affiliation(s)
- Haoyu Zou
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yueze Hong
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoqi Xu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengting Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hongying Xie
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yajia Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
11
|
Zheng H, Yin N, Lv K, Niu R, Zhou S, Wang Y, Zhang H. Defect-rich sonosensitizers based on CeO 2 with Schottky heterojunctions for boosting sonodynamic/chemodynamic synergistic therapy. J Mater Chem B 2024; 12:4162-4171. [PMID: 38619400 DOI: 10.1039/d4tb00084f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sonodynamic therapy (SDT) has been recognized as a promising treatment for cancer due to its advantages of superior specificity, non-invasiveness, and deep tissue penetration. However, the antitumor effect of SDT remains restricted by the limited generation of reactive oxygen species (ROS) due to the lack of highly efficient sonosensitizers. In this work, we developed the novel sonosensitizer Pt/CeO2-xSx by constructing oxygen defects through S doping and Pt loading in situ. Large amounts of oxygen defects have been obtained by S doping, endowing Pt/CeO2-xSx with the ability to suppress electron-hole recombination, further promoting ROS production. Moreover, the introduction of Pt nanoparticles can not only produce oxygen in situ for relieving hypoxia but also form a Schottky heterojunction with CeO2-xSx for further inhibiting electron-hole recombination. In addition, Pt/CeO2-xSx could effectively deplete overexpressed glutathione (GSH) via redox reactions, amplifying oxidative stress in the tumor microenvironment (TME). Combined with the excellent POD-mimetic activity, Pt/CeO2-xSx can achieve highly efficient synergistic therapy of SDT and chemodynamic therapy (CDT). All these findings demonstrated that Pt/CeO2-xSx has great potential for cancer therapy, and this work provides a promising direction for designing and constructing efficient sonosensitizers.
Collapse
Affiliation(s)
- Haiyang Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Na Yin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kehong Lv
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shijie Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
12
|
Liu Z, Liu X, Zhang W, Gao R, Wei H, Yu CY. Current advances in modulating tumor hypoxia for enhanced therapeutic efficacy. Acta Biomater 2024; 176:1-27. [PMID: 38232912 DOI: 10.1016/j.actbio.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Hypoxia is a common feature of most solid tumors, which promotes the proliferation, invasion, metastasis, and therapeutic resistance of tumors. Researchers have been developing advanced strategies and nanoplatforms to modulate tumor hypoxia to enhance therapeutic effects. A timely review of this rapidly developing research topic is therefore highly desirable. For this purpose, this review first introduces the impact of hypoxia on tumor development and therapeutic resistance in detail. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are also systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We provide a detailed discussion of the rationale and research progress of these strategies. Through a review of current trends, it is hoped that this comprehensive overview can provide new prospects for clinical application in tumor treatment. STATEMENT OF SIGNIFICANCE: As a common feature of most solid tumors, hypoxia significantly promotes tumor progression. Advanced nanoplatforms have been developed to modulate tumor hypoxia to enhanced therapeutic effects. In this review, we first introduce the impact of hypoxia on tumor progression. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We discuss the rationale and research progress of the above strategies in detail, and finally introduce future challenges for treatment of hypoxic tumors. By reviewing the current trends, this comprehensive overview can provide new prospects for clinical translatable tumor therapy.
Collapse
Affiliation(s)
- Zihan Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wei Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ruijie Gao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
13
|
Ali Al Saidi AK, Ghazanfari A, Baek A, Tegafaw T, Ahmad MY, Zhao D, Liu Y, Yang JU, Park JA, Yang BW, Chae KS, Nam SW, Chang Y, Lee GH. Ultrasmall cerium oxide nanoparticles as highly sensitive X-ray contrast agents and their antioxidant effect. RSC Adv 2024; 14:3647-3658. [PMID: 38268539 PMCID: PMC10805080 DOI: 10.1039/d3ra08372a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
Owing to their theranostic properties, cerium oxide (CeO2) nanoparticles have attracted considerable attention for their key applications in nanomedicine. In this study, ultrasmall CeO2 nanoparticles (particle diameter = 1-3 nm) as X-ray contrast agents with an antioxidant effect were investigated for the first time. The nanoparticles were coated with hydrophilic and biocompatible poly(acrylic acid) (PAA) and poly(acrylic acid-co-maleic acid) (PAAMA) to ensure satisfactory colloidal stability in aqueous media and low cellular toxicity. The synthesized nanoparticles were characterized using high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, thermogravimetric analysis, dynamic light scattering, cell viability assay, photoluminescence spectroscopy, and X-ray computed tomography (CT). Their potential as X-ray contrast agents was demonstrated by measuring phantom images and in vivo CT images in mice injected intravenously and intraperitoneally. The X-ray attenuation of these nanoparticles was greater than that of the commercial X-ray contrast agent Ultravist and those of larger CeO2 nanoparticles reported previously. In addition, they exhibited an antioxidant effect for the removal of hydrogen peroxide. The results confirmed that the PAA- and PAAMA-coated ultrasmall CeO2 nanoparticles demonstrate potential as highly sensitive radioprotective or theranostic X-ray contrast agents.
Collapse
Affiliation(s)
| | - Adibehalsadat Ghazanfari
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea
| | - Ahrum Baek
- Institute of Biomedical Engineering, School of Medicine, Kyungpook National University Taegu 41944 South Korea
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea
| | - Ji-Ung Yang
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences Seoul 01812 South Korea
| | - Ji Ae Park
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences Seoul 01812 South Korea
| | - Byeong Woo Yang
- Theranocure Medlifescience Bldg. 1, Chilgok, Bukgu Taegu 41405 South Korea
| | - Kwon Seok Chae
- Department of Biology Education, Teachers' College, Kyungpook National University Taegu 41566 South Korea
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University Taegu 41944 South Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University Taegu 41944 South Korea
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea
| |
Collapse
|
14
|
Feng C, Zheng W, Jiang Y, Fu W, Huang W, Shen C, Wang Y, Qian H. Au Nanorods Activated the Zn/Ce Composites with Cancer Cell Specific Cytotoxicity for Enhanced Chemodynamic Therapy. NANO LETTERS 2024; 24:295-304. [PMID: 38117248 DOI: 10.1021/acs.nanolett.3c04031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chemodynamic therapy based on the Fenton reaction has been developed as an extremely promising modality for cancer therapeutics. In this study, a core-shell structure nanoplatform was constructed by a Au nanorod externally encapsulating Ce/Zn-based composites (ACZO). The nanoparticles can catalyze the generation of reactive oxygen species (ROS) under acidic conditions and effectively consume existing glutathione (GSH) to destroy the redox balance within the tumor. Moreover, the decomposition of the nanocomplexes under acidic conditions releases large amounts of zinc ions, leading to zinc overload in cancer cells. The photothermal effect generated by the Au nanorods not only provides photothermal therapy (PTT) but also augments the catalytic reaction and ions action mentioned above. This facile strategy to improve the efficacy of chemodynamic therapy by the photothermal enhancement of catalytic activity and zinc ion release provides a promising perspective for potential tumor treatment.
Collapse
Affiliation(s)
- Chengcheng Feng
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, P. R. China
| | - Yechun Jiang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, P. R. China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, P. R. China
| | - Wenkai Huang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Yuanyin Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, P. R. China
| |
Collapse
|
15
|
Li J, Lv Z, Guo Y, Fang J, Wang A, Feng Y, Zhang Y, Zhu J, Zhao Z, Cheng X, Shi H. Hafnium (Hf)-Chelating Porphyrin-Decorated Gold Nanosensitizers for Enhanced Radio-Radiodynamic Therapy of Colon Carcinoma. ACS NANO 2023; 17:25147-25156. [PMID: 38063344 DOI: 10.1021/acsnano.3c08068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
X-ray-induced radiodynamic therapy (RDT) that can significantly reduce radiation dose with an improved anticancer effect has emerged as an attractive and promising therapeutic modality for tumors. However, it is highly significant to develop safe and efficient radiosensitizing agents for tumor radiation therapy. Herein, we present a smart nanotheranostic system FA-Au-CH that consists of gold nanoradiosensitizers, photosensitizer chlorin e6 (Ce6), and folic acid (FA) as a folate-receptor-targeting ligand for improved tumor specificity. FA-Au-CH nanoparticles have been demonstrated to be able to simultaneously serve as radiosensitizers and RDT agents for enhanced computed tomography (CT) imaging-guided radiotherapy (RT) of colon carcinoma, owing to the strong X-ray attenuation capability of high-Z elements Au and Hf, as well as the characteristics of Hf that can transfer radiation energy to Ce6 to generate ROS from Ce6 under X-ray irradiation. The integration of RT and RDT in this study demonstrates great efficacy and offers a promising therapeutic modality for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jiachen Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Zhengzhong Lv
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Yirui Guo
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Yali Feng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Jinfeng Zhu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Zhongsheng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
16
|
Di Y, Deng R, Liu Z, Mao Y, Gao Y, Zhao Q, Wang S. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials 2023; 303:122391. [PMID: 37995457 DOI: 10.1016/j.biomaterials.2023.122391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.
Collapse
Affiliation(s)
- Yifan Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ruizhu Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
17
|
Xia J, Hu C, Ji Y, Wang M, Jin Y, Ye L, Xie D, Jiang S, Li R, Hu Z, Dai J. Copper-Loaded Nanoheterojunction Enables Superb Orthotopic Osteosarcoma Therapy via Oxidative Stress and Cell Cuproptosis. ACS NANO 2023; 17:21134-21152. [PMID: 37902237 DOI: 10.1021/acsnano.3c04903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Catalytic tumor therapy based on two-dimensional (2D) nanomaterials is a burgeoning and promising tumor therapeutic modality. However, the inefficient utilization and conversion of exogenous stimulation, single catalytic modality, and unsatisfactory therapeutic efficiency in the tumor microenvironment (TME) have seriously restricted their further application in tumor therapy. Herein, the heterogeneous carbon nitride-based nanoagent named T-HCN@CuMS was successfully developed, which dramatically improved the efficiency of the tumor therapeutic modality. Benefiting from the donor-acceptor (triazine-heptazine) structure within the heterogeneous carbon nitride nanosheets (HCN) and the construction of interplanar heterostructure with copper loaded metallic molybdenum bisulfide nanosheets (CuMS), T-HCN@CuMS presented a favorable photo-induced catalytic property to generate abundant reactive oxygen species (ROS) under near-infrared (NIR) light irradiation. Besides, the choice of CuMS simultaneously enabled this nanoagent to efficiently catalyze the Fenton-like reaction and trigger cell cuproptosis, a recently recognized regulated cell death mode characterized by imbalanced intracellular copper homeostasis and aggregation of lipoylated mitochondrial proteins. Moreover, upon surface modification with cRGDfk-PEG2k-DSPE, T-HCN@CuMS was prepared and endowed with improved dispersibility and αvβ3 integrins targeting ability. In general, through the rational design, T-HCN@CuMS was facilely prepared and had achieved satisfactory antitumor and antimetastasis outcomes both in vitro and in a high-metastatic orthotopic osteosarcoma model. This strategy could offer an idea to treat malignant diseases based on 2D nanomaterials.
Collapse
Affiliation(s)
- Jiechao Xia
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Chuan Hu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Yinwen Ji
- The Children's Hospital, National Clinical Research Center for Child Health, Medical College of Zhejiang University, Hangzhou 310052, China
| | - Min Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yang Jin
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Dingqi Xie
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Sicheng Jiang
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Renhong Li
- National Engineering Lab for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhijun Hu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Jiayong Dai
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
18
|
Liu S, Li W, Ding H, Tian B, Fang L, Zhao X, Zhao R, An B, Ding L, Zhong L, Yang P. Biomineralized RuO 2 Nanozyme with Multi-Enzyme Activity for Ultrasound-Triggered Peroxynitrite-Boosted Ferroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303057. [PMID: 37434100 DOI: 10.1002/smll.202303057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/21/2023] [Indexed: 07/13/2023]
Abstract
Ferroptosis, as a non-apoptotic cell death pathway, has attracted increasing attention for cancer therapy. However, the clinical application of ferroptosis-participated modalities is severely limited by the low efficiency owing to the intrinsic intracellular regulation pathways. Herein, chlorin e6 (Ce6) and N-acetyl-l-cysteine-conjugated bovine serum albumin-ruthenium dioxide is elaborately designed and constructed for ultrasound-triggered peroxynitrite-mediated ferroptosis. Upon ultrasound stimulation, the sonosensitizers of Ce6 and RuO2 exhibit highly efficient singlet oxygen (1 O2 ) generation capacity, which is sequentially amplified by superoxide dismutase and catalase-mimicking activity of RuO2 with hypoxia relief. Meanwhile, the S-nitrosothiol group in BCNR breaks off to release nitric oxide (NO) on-demand, which then reacts with 1 O2 forming highly cytotoxic peroxynitrite (ONOO- ) spontaneously. Importantly, BCNR nanozyme with glutathione peroxidase-mimicking activity can consume glutathione (GSH), along with the generated ONOO- downregulates glutathione reductase, avoiding GSH regeneration. The two-parallel approach ensures complete depletion of GSH within the tumor, resulting in the boosted ferroptosis sensitization of cancer cells. Thus, this work presents a superior paradigm for designing peroxynitrite-boosted ferroptosis sensitization cancer therapeutic.
Collapse
Affiliation(s)
- Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Wenting Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Boshi Tian
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Linyang Fang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xudong Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Baichao An
- College of Pharmacy, Guangdong Medical University, Dongguan, 523808, People's Republic of China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lianfei Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Lei Zhong
- Department of Breast Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
19
|
Babu B, Stoltz SA, Mittal A, Pawar S, Kolanthai E, Coathup M, Seal S. Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2873. [PMID: 37947718 PMCID: PMC10647410 DOI: 10.3390/nano13212873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Nanotechnology has expanded what can be achieved in our approach to cancer treatment. The ability to produce and engineer functional nanoparticle formulations to elicit higher incidences of tumor cell radiolysis has resulted in substantial improvements in cancer cell eradication while also permitting multi-modal biomedical functionalities. These radiosensitive nanomaterials utilize material characteristics, such as radio-blocking/absorbing high-Z atomic number elements, to mediate localized effects from therapeutic irradiation. These materials thereby allow subsequent scattered or emitted radiation to produce direct (e.g., damage to genetic materials) or indirect (e.g., protein oxidation, reactive oxygen species formation) damage to tumor cells. Using nanomaterials that activate under certain physiologic conditions, such as the tumor microenvironment, can selectively target tumor cells. These characteristics, combined with biological interactions that can target the tumor environment, allow for localized radio-sensitization while mitigating damage to healthy cells. This review explores the various nanomaterial formulations utilized in cancer radiosensitivity research. Emphasis on inorganic nanomaterials showcases the specific material characteristics that enable higher incidences of radiation while ensuring localized cancer targeting based on tumor microenvironment activation. The aim of this review is to guide future research in cancer radiosensitization using nanomaterial formulations and to detail common approaches to its treatment, as well as their relations to commonly implemented radiotherapy techniques.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Samantha Archer Stoltz
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA;
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
20
|
Li S, Xu F, Ren X, Tan L, Fu C, Wu Q, Chen Z, Ren J, Huang Z, Meng X. H 2S-Reactivating Antitumor Immune Response after Microwave Thermal Therapy for Long-Term Tumor Suppression. ACS NANO 2023; 17:19242-19253. [PMID: 37781935 DOI: 10.1021/acsnano.3c05936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Microwave thermal therapy (MWTT) is one of the most potent ablative treatments known, with advantages like deep penetration, minimal invasion, repeatable operation, and low interference from bone and gas. However, microwave (MW) is not selective against tumors, and residual tumors after incomplete ablation will generate immunosuppression, ultimately making tumors prone to recurrence and metastasis. Herein, a nano-immunomodulator (Bi-MOF-l-Cys@PEG@HA, BMCPH) is proposed to reverse the immunosuppression and reactivate the antitumor immune effect through responsively releasing H2S in tumor cells for improving MWTT. Under MW irradiation, BMCPH will mediate MWTT to ablate tumors and release l-cysteine (l-Cys) to react with the highly expressed cystathionine β-synthase in tumor to generate H2S. The generated H2S can inhibit the accumulation of myeloid-derived suppressor cells (MDSCs) and promote the expression of cytotoxic T lymphocytes (CTLs). Moreover, Bi-MOF can also scavenge reactive oxygen species (ROS), a major means of MDSCs-mediated immunosuppression, to further weaken the immunosuppressive effect. Simultaneously, the surface-covered HA will gather CTLs around the tumor to enhance the immune response. This nano gas immunomodulator provides an idea for the sensitive and tunable release of unstable gas molecules at tumor sites. The strategy of H2S gas to reverse immunosuppression and reactivate antitumor immune response introduces a direction to reduce the risk of tumor recurrence and metastasis after thermal ablation.
Collapse
Affiliation(s)
- Shimei Li
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Fanyi Xu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
21
|
Huang L, Su Y, Zhang D, Zeng Z, Hu X, Hong S, Lin X. Recent theranostic applications of hydrogen peroxide-responsive nanomaterials for multiple diseases. RSC Adv 2023; 13:27333-27358. [PMID: 37705984 PMCID: PMC10496458 DOI: 10.1039/d3ra05020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
It is well established that hydrogen peroxide (H2O2) is associated with the initiation and progression of many diseases. With the rapid development of nanotechnology, the diagnosis and treatment of those diseases could be realized through a variety of H2O2-responsive nanomaterials. In order to broaden the application prospects of H2O2-responsive nanomaterials and promote their development, understanding and summarizing the design and application fields of such materials has attracted much attention. This review provides a comprehensive summary of the types of H2O2-responsive nanomaterials including organic, inorganic and organic-inorganic hybrids in recent years, and focused on their specific design and applications. Based on the type of disease, such as tumors, bacteria, dental diseases, inflammation, cardiovascular diseases, bone injury and so on, key examples for above disease imaging diagnosis and therapy strategies are introduced. In addition, current challenges and the outlook of H2O2-responsive nanomaterials are also discussed. This review aims to stimulate the potential of H2O2-responsive nanomaterials and provide new application ideas for various functional nanomaterials related to H2O2.
Collapse
Affiliation(s)
- Linjie Huang
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Yina Su
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Dongdong Zhang
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Zheng Zeng
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Xueqi Hu
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Shanni Hong
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Xiahui Lin
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| |
Collapse
|
22
|
Zhou J, Cao C, Zhang X, Zhang X, Li J, Deng H, Wang S. Gas-assisted phototherapy for cancer treatment. J Control Release 2023; 360:564-577. [PMID: 37442200 DOI: 10.1016/j.jconrel.2023.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Phototherapies, mainly including photodynamic and photothermal therapy, have made considerable strides in the field of cancer treatment. With the aid of phototherapeutic agents, reactive oxygen species (ROS) or heat are generated under light irradiation to selectively damage cancer cells. However, sole-modality phototherapy faces certain drawbacks, such as limited penetration of phototherapeutic agents into tumor tissues, inefficient ROS generation due to hypoxia, treatment-induced inflammation and resistance of tumor to treatment (e.g., high levels of antioxidants, expression of heat shock protein). Gas therapy, an emerging therapy approach that damages cancer cells by improving the level of certain gas at the tumor site, shows potential to overcome the challenges associated with phototherapies. In addition, with the rapid development of nanotechnology, gas-assisted phototherapy based on nanomedicines has emerged as a promising strategy to enhance the treatment efficacy. This review summarizes recent advances in gas-assisted phototherapy and discusses the prospects and challenges of this strategy in cancer phototherapy.
Collapse
Affiliation(s)
- Jun Zhou
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Cao
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xinlu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jiansen Li
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Hongzhang Deng
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| | - Sheng Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
23
|
Mandl GA, Vettier F, Tessitore G, Maurizio SL, Bietar K, Stochaj U, Capobianco JA. Combining Pr 3+-Doped Nanoradiosensitizers and Endogenous Protoporphyrin IX for X-ray-Mediated Photodynamic Therapy of Glioblastoma Cells. ACS APPLIED BIO MATERIALS 2023. [PMID: 37267436 DOI: 10.1021/acsabm.3c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Glioblastoma multiforme is an aggressive type of brain cancer with high recurrence rates due to the presence of radioresistant cells remaining after tumor resection. Here, we report the development of an X-ray-mediated photodynamic therapy (X-PDT) system using NaLuF4:25% Pr3+ radioluminescent nanoparticles in conjunction with protoporphyrin IX (PPIX), an endogenous photosensitizer that accumulates selectively in cancer cells. Conveniently, 5-aminolevulinic acid (5-ALA), the prodrug that is administered for PDT, is the only drug approved for fluorescence-guided resection of glioblastoma, enabling dual detection and treatment of malignant cells. NaLuF4:Pr3+ nanoparticles were synthesized and spectroscopically evaluated at a range of Pr3+ concentrations. This generated radioluminescent nanoparticles with strong emissions from the 1S0 excited state of Pr3+, which overlaps with the Soret band of PPIX to perform photodynamic therapy. The spectral overlap between the nanoparticles and PPIX improved treatment outcomes for U251 cells, which were used as a model for the thin tumor margin. In addition to sensitizing PPIX to induce X-PDT, our nanoparticles exhibit strong radiosensitizing properties through a radiation dose-enhancement effect. We evaluate the effects of the nanoparticles alone and in combination with PPIX on viability, death, stress, senescence, and proliferation. Collectively, our results demonstrate this as a strong proof of concept for nanomedicine.
Collapse
Affiliation(s)
- Gabrielle A Mandl
- Department of Chemistry and Biochemistry & Centre for Nanoscience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec H4B 1R6, Canada
| | - Freesia Vettier
- Department of Chemistry and Biochemistry & Centre for Nanoscience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec H4B 1R6, Canada
| | - Gabriella Tessitore
- Department of Chemistry and Biochemistry & Centre for Nanoscience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec H4B 1R6, Canada
| | - Steven L Maurizio
- Department of Chemistry and Biochemistry & Centre for Nanoscience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec H4B 1R6, Canada
| | - Kais Bietar
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - John A Capobianco
- Department of Chemistry and Biochemistry & Centre for Nanoscience Research, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
24
|
Zhu B, Qu F, Bi D, Geng R, Chen S, Zhu J. Monolayer LDH Nanosheets with Ultrahigh ICG Loading for Phototherapy and Ca 2+-Induced Mitochondrial Membrane Potential Damage to Co-Enhance Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9135-9149. [PMID: 36753759 DOI: 10.1021/acsami.2c22338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tumor recurrence and metastasis are the main causes of cancer mortality; traditional chemotherapeutic drugs have severe toxicity and side effects in cancer treatment. To overcome these issues, here, we present a pH-responsive, self-destructive intelligent nanoplatform for magnetic resonance/fluorescence dual-mode image-guided mitochondrial membrane potential damage (MMPD)/photodynamic (PDT)/photothermal (PTT)/immunotherapy for breast cancer treatment with external near infrared (NIR) light irradiation. To do so, we construct multifunctional monolayer-layered double hydroxide (LDH) nanosheets (MICaP), co-loading indocyanine green (ICG) with ultrahigh loading content realized via electrostatic interactions, and calcium phosphate (Ca3(PO4)2) coating via biomineralization. Such a combined therapy design is featured by the outstanding biocompatibility and provokes immunogenic cell death (ICD) of tumors toward cancer immunotherapy. The active transport of excess Ca2+ released from pH-sensitive Ca3(PO4)2 can induce MMPD of tumor cells to minimize oxygen consumption in the tumor microenvironment (TME). The presence of ICG not only generates singlet oxygen (1O2) to induce apoptosis by photodynamic therapy (PDT) but also initiates tumor cell necrosis by photothermal therapy (PTT) under near-infrared (NIR) light radiation. Eventually, the immune response generated by MMPD/PDT/PTT greatly promotes a cytotoxic T lymphocyte (CTL) response that can limit tumor growth and metastasis. Both in vitro and in vivo studies indeed illustrate outstanding antitumor efficiency and outcomes. We anticipate that such precisely designed nanoformulations can contribute in a useful and advantageous way that is conducive to explore novel nanomedicines with notable values in antitumor therapy.
Collapse
Affiliation(s)
- Bengao Zhu
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Fei Qu
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Duohang Bi
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Rui Geng
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Senbin Chen
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Mold Technology, and Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| |
Collapse
|