1
|
Chae WR, Song YJ, Lee NY. Polydopamine-mediated gold nanoparticle coating strategy and its application in photothermal polymerase chain reaction. LAB ON A CHIP 2024. [PMID: 39589462 DOI: 10.1039/d4lc00554f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Materials with high light-to-heat conversion efficiencies offer valuable strategies for remote heating. These materials find wide applications in photothermal therapy, water distillation, and gene delivery. In this study, we investigated a universal coating method to impart photothermal features to various surfaces. Polydopamine, a well-known adhesive material inspired by mussels, served as an intermediate layer to anchor polyethyleneimine and capture gold nanoparticles. Subsequently, the coated surface underwent electroless gold deposition to improve photothermal heating efficiency by increasing light absorption. This process was analyzed through scanning electron microscopic imaging and absorbance measurements. To demonstrate functionality, the coated surface was photothermally heated using a light-emitting diode controlled with a microprocessor, targeting the metal regulatory transcription factor 1 gene-a marker for osteoarthritis-and the S gene of the severe fever with thrombocytopenia syndrome virus. Successful amplification of the target genes was confirmed after 34 polymerase chain reaction cycles in just 12 min, verified by gel electrophoresis, demonstrating its diagnostic applicability. Overall, this simple photothermal coating method provides versatile utility, and is applicable to diverse surfaces such as membranes, tissue culture dishes, and microfluidic systems.
Collapse
Affiliation(s)
- Woo Ri Chae
- BioNano Applications Research Center, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Guo W, Tao Y, Yang R, Mao K, Zhou H, Xu M, Sun T, Li X, Shi C, Ge Z, Xue R, Zhou H, Ren Y. Compact highly sensitive photothermal RT-LAMP chip for simultaneous multidisease detection. SCIENCE ADVANCES 2024; 10:eadq2899. [PMID: 39536102 PMCID: PMC11559619 DOI: 10.1126/sciadv.adq2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Developing instant detection systems with disease diagnostic capabilities holds immense importance for remote or resource-limited areas. However, the task of creating these systems-which are simultaneously easy to operate, rapid in detection, and cost-effective-remains a challenge. In this study, we present a compact highly sensitive photothermal reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP) chip (SPRC) designed for the detection of multiple diseases. The nucleic acid (NA) amplification on the chip is achieved through LAMP driven by either LED illumination or simple sunlight focusing. SPRC performs sample addition and amplification within a limited volume and autonomous enrichment of NA during the sample addition process, achieving a limit of detection (LOD) as low as 0.2 copies per microliter. Through 120 clinical samples, we achieved an accuracy of 95%, with a specificity exceeding 97.5%. Overall, SPRC has achieved promising progress in the application of point-of-care testing (POCT) by using light energy to simultaneously detect multiple diseases.
Collapse
Affiliation(s)
- Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruizhe Yang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Kaihao Mao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hongwei Zhou
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Minghui Xu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Tie Sun
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiao Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changrui Shi
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Rui Xue
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Haizhou Zhou
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
3
|
Liu W, Chung K, Yu S, Lee LP. Nanoplasmonic biosensors for environmental sustainability and human health. Chem Soc Rev 2024; 53:10491-10522. [PMID: 39192761 DOI: 10.1039/d3cs00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Monitoring the health conditions of the environment and humans is essential for ensuring human well-being, promoting global health, and achieving sustainability. Innovative biosensors are crucial in accurately monitoring health conditions, uncovering the hidden connections between the environment and human well-being, and understanding how environmental factors trigger autoimmune diseases, neurodegenerative diseases, and infectious diseases. This review evaluates the use of nanoplasmonic biosensors that can monitor environmental health and human diseases according to target analytes of different sizes and scales, providing valuable insights for preventive medicine. We begin by explaining the fundamental principles and mechanisms of nanoplasmonic biosensors. We investigate the potential of nanoplasmonic techniques for detecting various biological molecules, extracellular vesicles (EVs), pathogens, and cells. We also explore the possibility of wearable nanoplasmonic biosensors to monitor the physiological network and healthy connectivity of humans, animals, plants, and organisms. This review will guide the design of next-generation nanoplasmonic biosensors to advance sustainable global healthcare for humans, the environment, and the planet.
Collapse
Affiliation(s)
- Wenpeng Liu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Kyungwha Chung
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Yu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Luke P Lee
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
4
|
Whang K, Min J, Shin Y, Hwang I, Lee H, Kwak T, La JA, Kim S, Kim D, Lee LP, Kang T. Capillarity-Driven Enrichment and Hydrodynamic Trapping of Trace Nucleic Acids by Plasmonic Cavity Membrane for Rapid and Sensitive Detections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403896. [PMID: 38663435 DOI: 10.1002/adma.202403896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Small-reactor-based polymerase chain reaction (PCR) has attracted considerable attention. A significant number of tiny reactors must be prepared in parallel to capture, amplify, and accurately quantify few target genes in clinically relevant large volume, which, however, requires sophisticated microfabrication and longer sample-to-answer time. Here, single plasmonic cavity membrane is reported that not only enriches and captures few nucleic acids by taking advantage of both capillarity and hydrodynamic trapping but also quickly amplifies them for sensitive plasmonic detection. The plasmonic cavity membrane with few nanoliters in a void volume is fabricated by self-assembling gold nanorods with SiO2 tips. Simulations reveal that hydrodynamic stagnation between the SiO2 tips is mainly responsible for the trapping of the nucleic acid in the membrane. Finally, it is shown that the plasmonic cavity membrane is capable of enriching severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes up to 20 000-fold within 1 min, amplifying within 3 min, and detecting the trace genes as low as a single copy µL-1. It is anticipated that this work not only expands the utility of PCR but also provides an innovative way of the enrichment and detection of trace biomolecules in a variety of point-of-care testing applications.
Collapse
Affiliation(s)
- Keumrai Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| | - Junwon Min
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, South Korea
| | - Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| | - Inhyeok Hwang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| | - Hyunjoo Lee
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, South Korea
| | - Taejin Kwak
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, South Korea
| | - Ju A La
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| | - Sungbong Kim
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
- Department of Chemistry, Military Academy, Seoul, 01805, South Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, South Korea
| | - Luke P Lee
- Harvard Institute of Medicine, Harvard Medical School, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwonsi, Gyeonggi-do, 16419, South Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| |
Collapse
|
5
|
Madadelahi M, Agarwal R, Martinez-Chapa SO, Madou MJ. A roadmap to high-speed polymerase chain reaction (PCR): COVID-19 as a technology accelerator. Biosens Bioelectron 2024; 246:115830. [PMID: 38039729 DOI: 10.1016/j.bios.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
The limit of detection (LOD), speed, and cost of crucial COVID-19 diagnostic tools, including lateral flow assays (LFA), enzyme-linked immunosorbent assays (ELISA), and polymerase chain reactions (PCR), have all improved because of the financial and governmental support for the epidemic. The most notable improvement in overall efficiency among them has been seen with PCR. Its significance for human health increased during the COVID-19 pandemic, when it emerged as the commonly used approach for identifying the virus. However, because of problems with speed, complexity, and expense, PCR deployment in point-of-care settings continues to be difficult. Microfluidic platforms offer a promising solution by enabling the development of smaller, more affordable, and faster PCR systems. In this review, we delve into the engineering challenges associated with the advancement of high-speed microfluidic PCR equipment. We introduce criteria that facilitate the evaluation and comparison of factors such as speed, LOD, cycling efficiency, and multiplexing capacity, considering sample volume, fluidics, PCR reactor geometry and materials, as well as heating/cooling methods. We also provide a comprehensive list of commercially available PCR devices and conclude with projections and a discussion regarding the current obstacles that need to be addressed in order to progress further in this field.
Collapse
Affiliation(s)
- Masoud Madadelahi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, NL, Mexico; Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Rahul Agarwal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, NL, Mexico
| | | | - Marc J Madou
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, NL, Mexico; Autonomous Medical Devices Incorporated (AMDI), Santa Ana, CA, 92704, USA.
| |
Collapse
|
6
|
Ruhoff V, Arastoo MR, Moreno-Pescador G, Bendix PM. Biological Applications of Thermoplasmonics. NANO LETTERS 2024; 24:777-789. [PMID: 38183300 PMCID: PMC10811673 DOI: 10.1021/acs.nanolett.3c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Thermoplasmonics has emerged as an extraordinarily versatile tool with profound applications across various biological domains ranging from medical science to cell biology and biophysics. The key feature of nanoscale plasmonic heating involves remote activation of heating by applying laser irradiation to plasmonic nanostructures that are designed to optimally convert light into heat. This unique capability paves the way for a diverse array of applications, facilitating the exploration of critical biological processes such as cell differentiation, repair, signaling, and protein functionality, and the advancement of biosensing techniques. Of particular significance is the rapid heat cycling that can be achieved through thermoplasmonics, which has ushered in remarkable technical innovations such as accelerated amplification of DNA through quantitative reverse transcription polymerase chain reaction. Finally, medical applications of photothermal therapy have recently completed clinical trials with remarkable results in prostate cancer, which will inevitably lead to the implementation of photothermal therapy for a number of diseases in the future. Within this review, we offer a survey of the latest advancements in the burgeoning field of thermoplasmonics, with a keen emphasis on its transformative applications within the realm of biosciences.
Collapse
Affiliation(s)
| | - Mohammad Reza Arastoo
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Guillermo Moreno-Pescador
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Poul Martin Bendix
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| |
Collapse
|
7
|
Nguyen HA, Lee NY. Pipette-Free and Fully Integrated Paper Device Employing DNA Extraction, Isothermal Amplification, and Carmoisine-Based Colorimetric Detection for Determining Infectious Pathogens. SENSORS (BASEL, SWITZERLAND) 2023; 23:9112. [PMID: 38005500 PMCID: PMC10675313 DOI: 10.3390/s23229112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
A pipette-free and fully integrated device that can be used to accurately recognize the presence of infectious pathogens is an important and useful tool in point-of-care testing, particularly when aiming to decrease the unpredictable threats posed by disease outbreak. In this study, a paper device is developed to integrate the three main processes required for detecting infectious pathogens, including DNA extraction, loop-mediated isothermal amplification (LAMP), and detection. All key reagents, including sodium dodecyl sulfate (SDS), NaOH, LAMP reagents, and carmoisine, are placed on the paper device. The paper device is operated simply via sliding and folding without using any bulky equipment, and the results can be directly observed by the naked eye. The optimized concentrations of sodium dodecyl sulfate (SDS), sodium hydroxide (NaOH), and carmoisine were found to be 0.1%, 0.1 M, and 0.5 mg/mL, respectively. The paper device was used to detect Enterococcus faecium at concentrations as low as 102 CFU/mL within 60 min. Also, E. faecium spiked in milk was successfully detected using the paper device, demonstrating the feasible application in real sample analysis.
Collapse
Affiliation(s)
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
8
|
Kang BH, Jang KW, Yu ES, Jeong H, Jeong KH. Single-shot multi-channel plasmonic real-time polymerase chain reaction for multi-target point-of-care testing. LAB ON A CHIP 2023; 23:4701-4707. [PMID: 37823261 DOI: 10.1039/d3lc00687e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Plasmonic nucleic acid amplification tests demand high-throughput and multi-target detection of infectious diseases as well as short turnaround time and small size for point-of-care molecular diagnostics. Here, we report a multi-channel plasmonic real-time reverse-transcription polymerase chain reaction (mpRT-qPCR) assay for ultrafast and on-chip multi-target detection. The mpRT-qPCR system features two pairs of plasmonic thermocyclers for rapid nanostructure-driven amplification and microlens array fluorescence microscopes for in situ multi-color fluorescence quantification. Each channel shows a physical dimension of 32 mm, 75 mm, and 25 mm in width, length, and thickness. The ultrathin microscopes simultaneously capture four different fluorescence images from two PCR chambers of a single cartridge at a single shot exposure per PCR cycle of four different excitation light sources. The experimental results demonstrate a single assay result of high-throughput amplification and multi-target quantification for RNA-dependent RNA polymerase, nucleocapsid, and human ribonuclease P genes in SARS-CoV-2 RNA detection. The mpRT-PCR increases the number of tests four times over the single RT-PCR and exhibits a short detection time of 15 min for the four RT-PCR reactions. This point-of-care molecular diagnostic platform can reduce false negative results in clinical applications of virus detection and decentralize healthcare facilities with limited infrastructure.
Collapse
Affiliation(s)
- Byoung-Hoon Kang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyung-Won Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eun-Sil Yu
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyejeong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Cha YG, Na J, Kim HK, Kwon JM, Huh SH, Jo SU, Kim CH, Kim MH, Jeong KH. Microlens array camera with variable apertures for single-shot high dynamic range (HDR) imaging. OPTICS EXPRESS 2023; 31:29589-29595. [PMID: 37710755 DOI: 10.1364/oe.498763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023]
Abstract
We report a microlens array camera with variable apertures (MACVA) for high dynamic range (HDR) imaging by using microlens arrays with various sizes of apertures. The MACVA comprises variable apertures, microlens arrays, gap spacers, and a CMOS image sensor. The microlenses with variable apertures capture low dynamic range (LDR) images with different f-stops under single-shot exposure. The reconstructed HDR images clearly exhibit expanded dynamic ranges surpassing LDR images as well as high resolution without motion artifacts, comparable to the maximum MTF50 value observed among the LDR images. This compact camera provides, what we believe to be, a new perspective for various machine vision or mobile devices applications.
Collapse
|