1
|
Yu Liu X, Ying Mao H, Hong S, Jin CH, Jiang HL, Guan Piao M. Dual-targeting galactose-functionalized hyaluronic acid modified lipid nanoparticles delivering silybin for alleviating alcoholic liver injury. Int J Pharm 2024; 666:124662. [PMID: 39241932 DOI: 10.1016/j.ijpharm.2024.124662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Alcoholic liver injury stands as a predominant pathogenic contributor to the global burden of liver diseases, with alcohol consumption serving as a significant determinant of worldwide morbidity and mortality. Given that liver-targeted therapy for mitigating alcoholic liver injury remains to be a major clinical challenge due to the poor specificity and instability associated with single targeting modification in actively targeted nanomedicine systems, bifunctional targeting modification may serve as a more promising strategy. Here, galactose-functionalized hyaluronic acid (Gal-HA) coated cationic solid lipid nanoparticles carrying silybin (Gal-HA/SIL-SLNPs) featuring dual-targeting hyaluronic acid (HA) and galactose (Gal) moieties, enabled specific liver surface targeting of asialoglycoprotein receptor (ASGPR) and cluster of differentiation 44 (CD44) proteins to enhance silybin uptake, while simultaneously ameliorating the deficiencies of positively charged lipid nanoparticles as drug carriers and preserving their stability in the bloodstream. Based on the findings, Gal-HA/SIL-SLNPs with excellent biocompatibility demonstrated improved cellular internalization and liver distribution, while also displaying ideal curative properties in a mouse model of alcohol-induced liver injury without causing damage to other organs. This work suggests that Gal-HA/SIL-SLNPs with dual modification may represent an encouraging approach for developing more effective liver targeted nano-drug delivery systems to achieve accurate medication for alcoholic liver injury.
Collapse
Affiliation(s)
- Xin Yu Liu
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - He Ying Mao
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Shuai Hong
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Cheng-Hua Jin
- School of Pharmacy, Yanbian University, Yanji 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Hu-Lin Jiang
- School of Pharmacy, Yanbian University, Yanji 133002, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming Guan Piao
- School of Pharmacy, Yanbian University, Yanji 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
2
|
Li C, Zhai S, Duan M, Cao L, Zhang J, Wang Y, Wu Y, Gu S. Weizmannia coagulans BC99 Enhances Intestinal Barrier Function by Modulating Butyrate Formation to Alleviate Acute Alcohol Intoxication in Rats. Nutrients 2024; 16:4142. [PMID: 39683538 DOI: 10.3390/nu16234142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Probiotics have great potential in improving acute alcohol intoxication. The aim of this study was to investigate the mitigating effect and mechanism of action of Weizmannia coagulans BC99 on acute alcohol intoxication (AAI) in SD rats. Methods: BC99 was divided into different doses administered by gavage to rats, and a rat model of acute alcohol intoxication was established by multiple gavages of excess alcohol. Results: Our study demonstrated that W. coagulans BC99 intervention significantly prolonged the latency period of intoxication; significantly attenuated alcohol-induced lipid elevation, liver injury, hepatic inflammation, and intestinal barrier damage; and lowered plasma endotoxin (LPS) levels in rats. In addition, W. coagulans BC99 could effectively restore the balance of intestinal flora, increase the abundance of Lachnospiraceae_NK4A136, Prevotellaceae_NK3B31, Parabacteroides, and Ralstonia, and thus increase the content of intestinal short-chain fatty acids (SCFAs), especially butyric acid. Moreover, we demonstrated through sodium butyrate validation experiments that butyrate could attenuate intestinal barrier damage and reduce the diffusion of LPS, thereby reducing liver inflammation. Conclusions: In conclusion, W. coagulans BC99 ameliorates acute alcohol intoxication in rats by increasing the abundance of butyrate-producing genera and thereby increasing butyrate abundance to alleviate intestinal barrier injury.
Collapse
Affiliation(s)
- Cheng Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shirui Zhai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengyao Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Li Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| | - Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China
| |
Collapse
|
3
|
Lv Y, Hao S, Wang Y, Xing S, Tan M. Hepatocytes and mitochondria dual-targeted astaxanthin WPI-SCP nanoparticles for the alleviation of alcoholic liver injury. Int J Biol Macromol 2024; 285:137992. [PMID: 39581423 DOI: 10.1016/j.ijbiomac.2024.137992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Alcoholic liver injury is one of the most frequent liver diseases around the world, and nutritional intervention has been considered as an effective way to alleviate alcohol liver injury. To alleviate the liver damage caused by alcohol, a type of astaxanthin (AXT) loaded nanoparticles were designed for dual targeting of hepatocytes and mitochondria. Firstly, galactooligosaccharides (GOS) were conjugated to whey protein isolate (WPI) and sea cucumber peptide (SCP) via the Maillard reaction, achieving a grafting degree of 29 %, then triphenylphosphonium (TPP) was linked by amide reaction. Secondly, AXT was loaded into the complex of SCP-WPI-GOS-TPP (SWGT) to form AXT@SCP-WPI-GOS-TPP(AXT@SWGT) nanoparticles. The Pearson coefficient increased from 0.69 to 0.76 after introducing TPP targeting moiety. In vivo experiments showed that AXT@SWGT significantly alleviated liver injury caused by alcohol. The vacuolation and fat accumulation associated with alcoholic liver injury was alleviated. The alcohol dehydrogenase and aldehyde dehydrogenase activity were improved by 296.88 % and 34.19 %, respectively. AXT@SWGT significantly enhanced the biological activities of glutathione by 76.86 %, catalase by 145.42 %, and superoxide dismutase by 33.48 %, thereby alleviating oxidative stress. The results indicated that the AXT@SWGT might have the potential to intervene alcoholic liver injury via the dual targeting strategy.
Collapse
Affiliation(s)
- Yueqi Lv
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Sijia Hao
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Yuxiao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Shanghua Xing
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China.
| |
Collapse
|
4
|
Pashirova T, Shaihutdinova Z, Tatarinov D, Titova A, Malanyeva A, Vasileva O, Gabdurakhmanov K, Dudnikov S, Schopfer LM, Lockridge O, Masson P. Pharmacokinetics and fate of free and encapsulated IRD800CW-labelled human BChE intravenously administered in mice. Int J Biol Macromol 2024; 282:137305. [PMID: 39515732 DOI: 10.1016/j.ijbiomac.2024.137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Human butyrylcholinesterase (BChE) is an efficient bioscavenger of toxicants. Highly purified BChE was labelled with the near infrared fluorescent IRDye800CW. The goal was to determine the pharmacokinetics and fate of enzyme in mice. BChE-IRDye800CW was encapsulated in polyethylene glycol-polypropylene sulfide-based spherical polymersome nanoreactors with the following characteristics: 140 nm diameter, ξ = -6 mV, PDI ≤ 0.2, 1 year stability. Encapsulation did not alter the functional properties of BChE. Free and encapsulated enzyme were injected intravenously to CD-1 mice (single dose of enzyme 1.5 mg/kg and PEG-PPS polymersomes 25 mg/kg) and were analyzed for 8 days using an in vivo imaging system. Results showed that the pharmacokinetic distribution α-phase of encapsulated BChE (t1/2 = 17.6 h) was longer than for free enzyme (t1/2 = 6.6 h). The mean half-time for elimination β-phase was 2-time longer for encapsulated enzyme than for free enzyme (150 vs 72 h). Transient changes in infrared fluorescence in organs showed that BChE is eliminated from liver. However, free and encapsulated enzymes were cleared via different pathways. This first study of pharmacokinetics and fate of BChE encapsulated in polymersomes initiates research of new formulations of bioscavengers aimed at increasing the residence time of enzymes in the blood stream.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation.
| | - Zukhra Shaihutdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Dmitry Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Angelina Titova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Albina Malanyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Olga Vasileva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Kamil Gabdurakhmanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Sergei Dudnikov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | | | - Oksana Lockridge
- University of Nebraska Medical Center, Eppley Institute, Omaha, NE, USA
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation.
| |
Collapse
|
5
|
Yang Y, Fan G, Lan J, Li X, Li X, Liu R. Polysaccharide-mediated modulation of gut microbiota in the treatment of liver diseases: Promising approach with significant challenges. Int J Biol Macromol 2024:135566. [PMID: 39270901 DOI: 10.1016/j.ijbiomac.2024.135566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Liver disease represents a significant global health burden, with an increasing prevalence and a lack of efficient treatment options. The microbiota-gut-liver axis involves bidirectional communication between liver function and intestinal microorganisms. A balanced gut flora protects intestinal homeostasis, while imbalances contribute to the development of liver diseases. Distinct alterations in the structure of gut flora during illness are crucial in the management of various liver diseases. Polysaccharides derived from herbal products, fungi, and other sources have been identified to possess diverse biological activities and are well-tolerated in the treatment of liver diseases. This review provides updates on the therapeutic effects of polysaccharides on liver diseases, including fatty liver diseases, acute liver injuries and liver cancers. It also summarizes advancements in understanding the mechanisms involved, particularly from the perspective of gut microbiota and metabolites, by highlighting the changes in the composition of potentially beneficial and harmful bacteria and their correlation with the therapeutic effects of polysaccharides. Additionally, by exploring the structure-activity relationship, our review provides valuable insights for the structural modification of polysaccharides and expanding their applications. In conclusion, this review offers theoretical support and novel perspectives on developing polysaccharides-based therapeutic approaches for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Jianhang Lan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| |
Collapse
|
6
|
Wang H, Hsu JC, Song W, Lan X, Cai W, Ni D. Nanorepair medicine for treatment of organ injury. Natl Sci Rev 2024; 11:nwae280. [PMID: 39257435 PMCID: PMC11384914 DOI: 10.1093/nsr/nwae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Organ injuries, such as acute kidney injury, ischemic stroke, and spinal cord injury, often result in complications that can be life-threatening or even fatal. Recently, many nanomaterials have emerged as promising agents for repairing various organ injuries. In this review, we present the important developments in the field of nanomaterial-based repair medicine, herein referred to as 'nanorepair medicine'. We first introduce the disease characteristics associated with different types of organ injuries and highlight key examples of relevant nanorepair medicine. We then provide a summary of existing strategies in nanorepair medicine, including organ-targeting methodologies and potential countermeasures against exogenous and endogenous pathologic risk factors. Finally, we offer our perspectives on current challenges and future expectations for the advancement of nanomedicine designed for organ injury repair.
Collapse
Affiliation(s)
- Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenyu Song
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430073, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430073, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
7
|
Su J, Wang P, Zhou W, Peydayesh M, Zhou J, Jin T, Donat F, Jin C, Xia L, Wang K, Ren F, Van der Meeren P, García de Arquer FP, Mezzenga R. Single-site iron-anchored amyloid hydrogels as catalytic platforms for alcohol detoxification. NATURE NANOTECHNOLOGY 2024; 19:1168-1177. [PMID: 38740933 PMCID: PMC11329373 DOI: 10.1038/s41565-024-01657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
Constructing effective antidotes to reduce global health impacts induced by alcohol prevalence is a challenging topic. Despite the positive effects observed with intravenous applications of natural enzyme complexes, their insufficient activities and complicated usage often result in the accumulation of toxic acetaldehyde, which raises important clinical concerns, highlighting the pressing need for stable oral strategies. Here we present an effective solution for alcohol detoxification by employing a biomimetic-nanozyme amyloid hydrogel as an orally administered catalytic platform. We exploit amyloid fibrils derived from β-lactoglobulin, a readily accessible milk protein that is rich in coordinable nitrogen atoms, as a nanocarrier to stabilize atomically dispersed iron (ferrous-dominated). By emulating the coordination structure of the horseradish peroxidase enzyme, the single-site iron nanozyme demonstrates the capability to selectively catalyse alcohol oxidation into acetic acid, as opposed to the more toxic acetaldehyde. Administering the gelatinous nanozyme to mice suffering from alcohol intoxication significantly reduced their blood-alcohol levels (decreased by 55.8% 300 min post-alcohol intake) without causing additional acetaldehyde build-up. Our hydrogel further demonstrates a protective effect on the liver, while simultaneously mitigating intestinal damage and dysbiosis associated with chronic alcohol consumption, introducing a promising strategy in effective alcohol detoxification.
Collapse
Affiliation(s)
- Jiaqi Su
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Pengjie Wang
- Department of Nutrition and Health, Beijing Higher Institution Engineering Research Center of Animal Products, China Agricultural University, Beijing, China
| | - Wei Zhou
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jiangtao Zhou
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Tonghui Jin
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Felix Donat
- Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Zhejiang, China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Kaiwen Wang
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fazheng Ren
- Department of Nutrition and Health, Beijing Higher Institution Engineering Research Center of Animal Products, China Agricultural University, Beijing, China
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Department of Materials, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Xu G, Liu K, Jia B, Dong Z, Zhang C, Liu X, Qu Y, Li W, Zhao M, Zhou H, Li YQ. Electron Lock Manipulates the Catalytic Selectivity of Nanozyme. ACS NANO 2024; 18:3814-3825. [PMID: 38230632 DOI: 10.1021/acsnano.3c12201] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Nanomaterials with enzyme-mimicking functions, termed nanozymes, offer attractive opportunities for biocatalysis and biomedicine. However, manipulating nanozyme selectivity poses an insurmountable hurdle. Here, we propose the concept of an energy-governed electron lock that controls electron transfer between nanozyme and substrates to achieve selectivity manipulation of enzyme-like catalysis. An electron lock can be constructed and opened, via modulating the nanozyme's electron energy to match the energy barrier of enzymatic reactions. An iron-doped carbon dot (FeCD) nanozyme with easy-to-regulate electron energy is selected as a proof of concept. Through regulating the conduction band which dominates electron energy, activatable oxidase and selective peroxidase (POD) with substrate affinity 123-fold higher than that of natural horseradish peroxidase (HRP) is achieved. Furthermore, while maintaining selectivity, FeCDs exhibit catalytic kinetics comparable to that of HRP upon transforming photons into electrons. Superior selectivity, efficient catalysis, and undetectable biotoxicity energize FeCDs as potent targeted drugs on antibiotic-resistant bacterial abscesses. An electron lock provides a robust strategy to manipulate selectivity toward advanced nanozymes.
Collapse
Affiliation(s)
- Guopeng Xu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Kehan Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Bingqing Jia
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Zhenzhen Dong
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, People's Republic of China
| | - Chengmei Zhang
- Laboratory Animal Center of Shandong University, Jinan 250012, People's Republic of China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, People's Republic of China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
9
|
Xu Y, An X, Liu L, Cao X, Wu Z, Jia W, Sun J, Wang H, Huo J, Sun Z, Zhen M, Wang C, Bai C. Self-Cascade Redox Modulator Trilogically Renovates Intestinal Microenvironment for Mitigating Endotoxemia. ACS NANO 2024; 18:2131-2148. [PMID: 38198697 DOI: 10.1021/acsnano.3c09397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Endotoxemia is a life-threatening multiple organ failure disease caused by bacterial endotoxin infection. Unfortunately, current single-target therapy strategies have failed to prevent the progression of endotoxemia. Here, we reported that alanine fullerene redox modulator (AFRM) remodeled the intestinal microenvironment for multiple targets endotoxemia mitigation by suppressing inflammatory macrophages, inhibiting macrophage pyroptosis, and repairing epithelial cell barrier integrity. Specifically, AFRM exhibited broad-spectrum and self-cascade redox regulation properties with superoxide dismutase (SOD)-like enzyme, peroxidase (POD)-like enzyme activity, and hydroxyl radical (•OH) scavenging ability. Guided by proteomics, we demonstrated that AFRM regulated macrophage redox homeostasis and down-regulated LPS/TLR4/NF-κB and MAPK/ERK signaling pathways to suppress inflammatory hyperactivation. Of note, AFRM could attenuate inflammation-induced macrophage pyroptosis via inhibiting the activation of gasdermin D (GSDMD). In addition, our results revealed that AFRM could restore extracellular matrix and cell-tight junction proteins and protect the epithelial cell barrier integrity by regulating extracellular redox homeostasis. Consequently, AFRM inhibited systemic inflammation and potentiated intestinal epithelial barrier damage repair during endotoxemia in mice. Together, our work suggested that fullerene based self-cascade redox modulator has the potential in the management of endotoxemia through synergistically remodeling the inflammation and epithelial barriers in the intestinal microenvironment.
Collapse
Affiliation(s)
- Yuan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin An
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Huo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Sun T, Xiao S, Wang M, Xie Q, Zhang L, Gong M, Zhang D, Zhou C. Reactive Oxygen Species Scavenging Nanozymes: Emerging Therapeutics for Acute Liver Injury Alleviation. Int J Nanomedicine 2023; 18:7901-7922. [PMID: 38148856 PMCID: PMC10750792 DOI: 10.2147/ijn.s435544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023] Open
Abstract
Acute liver injury (AIL), a fatal clinical disease featured with a swift deterioration of hepatocyte functions in the short term, has emerged as a serious public health issues that warrants attention. However, the effectiveness of existing small molecular antioxidants and anti-inflammatory medications in alleviating AIL remains uncertain. The unique inherent structural characteristics of liver confer it a natural propensity for nanoparticle capture, which present an opportunity to exploit in the formulation of nanoscale therapeutic agents, enabling their selective accumulation in the liver and thereby facilitating targeted therapeutic interventions. Significantly increased reactive oxygen species (ROS) accumulation and inflammation response have been evidenced to play crucial roles in occurrence and development of AIL. Nanozymes with ROS-scavenging capacities have demonstrated considerable promise in ROS elimination and inflammation regulation, thereby offering an appealing therapeutic instrument for the management of acute liver injury. In this review, the mechanisms of different type of ALI were summarized. In addition, we provide a comprehensive summary and review of the available ROS-scavenging nanozymes, including transition metal-based nanozymes, noble metal nanozymes, carbon-based nanozymes, and some other nanozymes. Furthermore, the challenges still need to be solved in the field of ROS-scavenging nanozymes for ALI alleviation are also discussed.
Collapse
Affiliation(s)
- Tao Sun
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, People’s Republic of China
| | - Shilin Xiao
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Miaomiao Wang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qian Xie
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Chunyu Zhou
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
11
|
Pashirova T, Shaihutdinova Z, Tatarinov D, Mansurova M, Kazakova R, Bogdanov A, Chabrière E, Jacquet P, Daudé D, Akhunzianov AA, Miftakhova RR, Masson P. Tuning the Envelope Structure of Enzyme Nanoreactors for In Vivo Detoxification of Organophosphates. Int J Mol Sci 2023; 24:15756. [PMID: 37958742 PMCID: PMC10649860 DOI: 10.3390/ijms242115756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Encapsulated phosphotriesterase nanoreactors show their efficacy in the prophylaxis and post-exposure treatment of poisoning by paraoxon. A new enzyme nanoreactor (E-nRs) containing an evolved multiple mutant (L72C/Y97F/Y99F/W263V/I280T) of Saccharolobus solfataricus phosphotriesterase (PTE) for in vivo detoxification of organophosphorous compounds (OP) was made. A comparison of nanoreactors made of three- and di-block copolymers was carried out. Two types of morphology nanoreactors made of di-block copolymers were prepared and characterized as spherical micelles and polymersomes with sizes of 40 nm and 100 nm, respectively. The polymer concentrations were varied from 0.1 to 0.5% (w/w) and enzyme concentrations were varied from 2.5 to 12.5 μM. In vivo experiments using E-nRs of diameter 106 nm, polydispersity 0.17, zeta-potential -8.3 mV, and loading capacity 15% showed that the detoxification efficacy against paraoxon was improved: the LD50 shift was 23.7xLD50 for prophylaxis and 8xLD50 for post-exposure treatment without behavioral alteration or functional physiological changes up to one month after injection. The pharmacokinetic profiles of i.v.-injected E-nRs made of three- and di-block copolymers were similar to the profiles of the injected free enzyme, suggesting partial enzyme encapsulation. Indeed, ELISA and Western blot analyses showed that animals developed an immune response against the enzyme. However, animals that received several injections did not develop iatrogenic symptoms.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
| | - Zukhra Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Dmitry Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
| | - Milana Mansurova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Renata Kazakova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Andrei Bogdanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
| | - Eric Chabrière
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.C.); (P.J.); (D.D.)
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Pauline Jacquet
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.C.); (P.J.); (D.D.)
| | - David Daudé
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.C.); (P.J.); (D.D.)
| | - Almaz A. Akhunzianov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Regina R. Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| |
Collapse
|