1
|
Liu Y, Bai X, Feng X, Liu S, Hu Y, Chu H, Zhang L, Cai B, Ma Y. Revolutionizing animal husbandry: Breakthroughs in gene editing delivery systems. Gene 2025; 935:149044. [PMID: 39490705 DOI: 10.1016/j.gene.2024.149044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Gene editing technology has become an essential tool for advancing breeding practices, enhancing disease resistance, and boosting productivity in animal husbandry. Despite its potential, the delivery of gene editing reagents into cells faces several challenges, including low targeting efficiency, immunogenicity, and cytotoxicity, which have hindered its wider application in the field. This review discusses the evolution of gene editing technologies and highlights recent advancements in various delivery methods used in animal husbandry. It critically evaluates the strengths and weaknesses of these different delivery approaches while identifying potential directions for future development. The goal is to equip researchers with effective strategies to optimize delivery methods, ultimately facilitating the implementation and progress of gene editing technologies in animal husbandry.
Collapse
Affiliation(s)
- Yuan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Xue Bai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China
| | - Xue Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Shuang Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Yamei Hu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Hongen Chu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Bei Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Huang L, Zhan J, Li Y, Huang K, Zhu X, Li J. The roles of extracellular vesicles in gliomas: Challenge or opportunity? Life Sci 2024; 358:123150. [PMID: 39471898 DOI: 10.1016/j.lfs.2024.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Gliomas are increasingly becoming a major disease affecting human health, and current treatments are not as effective as expected. Deeper insights into glioma heterogeneity and the search for new diagnostic and therapeutic strategies appear to be urgent. Gliomas adapt to their surroundings and form a supportive tumor microenvironment (TME). Glioma cells will communicate with the surrounding cells through extracellular vesicles (EVs) carrying bioactive substances such as nucleic acids, proteins and lipids which is related to the modification to various metabolic pathways and regulation of biological behaviors, and this regulation can be bidirectional, widely existing between cells in the TME, constituting a complex network of interactions. This complex regulation can affect glioma therapy, leading to different types of resistance. Because of the feasibility of EVs isolation in various body fluids, they have a promising usage in the diagnosis and monitoring of gliomas. At the same time, the nature of EVs to cross the blood-brain barrier (BBB) confers potential for their use as drug delivery systems. In this review, we will focus on the roles and functions of EVs derived from different cellular origins in the glioma microenvironment and the intercellular regulatory networks, and explore possible clinical applications in glioma diagnosis and precision therapy.
Collapse
Affiliation(s)
- Le Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yao Li
- The 1st affiiated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The 2nd Affiliated Hospital, Jiangxi Medical University, Nanchang University, Nanchang, PR China.
| |
Collapse
|
3
|
Zhao S, Di Y, Fan H, Xu C, Li H, Wang Y, Wang W, Li C, Wang J. Targeted delivery of extracellular vesicles: the mechanisms, techniques and therapeutic applications. MOLECULAR BIOMEDICINE 2024; 5:60. [PMID: 39567444 PMCID: PMC11579273 DOI: 10.1186/s43556-024-00230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-derived vesicles with a phospholipid bilayer measuring 50-150 nm in diameter with demonstrated therapeutic potentials. Limitations such as the natural biodistribution (mainly concentrated in the liver and spleen) and short plasma half-life of EVs present significant challenges to their clinical translation. In recent years, growing research indicated that engineered EVs with enhanced targeting to lesion sites have markedly promoted therapeutic efficacy. However, there is a dearth of systematic knowledge on the recent advances in engineering EVs for targeted delivery. Herein, we provide an overview of the targeting mechanisms, engineering techniques, and clinical translations of natural and engineered EVs in therapeutic applications. Enrichment of EVs at lesion sites may be achieved through the recognition of tissue markers, pathological changes, and the circumvention of mononuclear phagocyte system (MPS). Alternatively, external stimuli, including magnetic fields and ultrasound, may also be employed. EV engineering techniques that fulfill targeting functions includes genetic engineering, membrane fusion, chemical modification and physical modification. A comparative statistical analysis was conducted to elucidate the discrepancies between the diverse techniques on size, morphology, stability, targeting and therapeutic efficacy in vitro and in vivo. Additionally, a summary of the registered clinical trials utilizing EVs from 2010 to 2023 has been provided, with a full discussion on the perspectives. This review provides a comprehensive overview of the mechanisms and techniques associated with targeted delivery of EVs in therapeutic applications to advocate further explorations of engineered EVs and accelerate their clinical applications.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yunfeng Di
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huilan Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chengyan Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haijing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
| | - Wei Wang
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chun Li
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyu Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Nujoom N, Koyakutty M, Biswas L, Rajkumar T, Nair SV. Emerging Gene-editing nano-therapeutics for Cancer. Heliyon 2024; 10:e39323. [PMID: 39524822 PMCID: PMC11550658 DOI: 10.1016/j.heliyon.2024.e39323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Remarkable progress has been made in the field of genome engineering after the discovery of CRISPR/Cas9 in 2012 by Jennifer Doudna and Emmanuelle Charpentier. Compared to any other gene-editing tools, CRISPR/Cas9 attracted the attention of the scientific community because of its simplicity, specificity, and multiplex editing possibilities for which the inventors were awarded the Nobel prize for chemistry in 2020. CRISPR/Cas9 allows targeted alteration of the genomic sequence, gene regulation, and epigenetic modifications using an RNA-guided site-specific endonuclease. Though the impact of CRISPR/Cas9 was undisputed, some of its limitations led to key modifications including the use of miniature-Cas proteins, Cas9 Retron precise Parallel Editing via homologY (CRISPEY), Cas-Clover, or development of alternative methods including retron-recombineering, Obligate Mobile Element Guided Activity(OMEGA), Fanzor, and Argonaute proteins. As cancer is caused by genetic and epigenetic alterations, gene-editing was found to be highly useful for knocking out oncogenes, editing mutations to regain the normal functioning of tumor suppressor genes, knock-out immune checkpoint blockade in CAR-T cells, producing 'off-the-shelf' CAR-T cells, identify novel tumorigenic genes and functional analysis of multiple pathways in cancer, etc. Advancements in nanoparticle-based delivery of guide-RNA and Cas9 complex to the human body further enhanced the potential of CRISPR/Cas9 for clinical translation. Several studies are reported for developing novel delivery methods to enhance the tumor-specific application of CRISPR/Cas9 for anticancer therapy. In this review, we discuss new developments in novel gene editing techniques and recent progress in nanoparticle-based CRISPR/Cas9 delivery specific to cancer applications.
Collapse
Affiliation(s)
- Najma Nujoom
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Manzoor Koyakutty
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Thangarajan Rajkumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Shantikumar V. Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| |
Collapse
|
5
|
Culkins C, Adomanis R, Phan N, Robinson B, Slaton E, Lothrop E, Chen Y, Kimmel BR. Unlocking the Gates: Therapeutic Agents for Noninvasive Drug Delivery Across the Blood-Brain Barrier. Mol Pharm 2024; 21:5430-5454. [PMID: 39324552 DOI: 10.1021/acs.molpharmaceut.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The blood-brain barrier (BBB) is a highly selective network of various cell types that acts as a filter between the blood and the brain parenchyma. Because of this, the BBB remains a major obstacle for drug delivery to the central nervous system (CNS). In recent years, there has been a focus on developing various modifiable platforms, such as monoclonal antibodies (mAbs), nanobodies (Nbs), peptides, and nanoparticles, as both therapeutic agents and carriers for targeted drug delivery to treat brain cancers and diseases. Methods for bypassing the BBB can be invasive or noninvasive. Invasive techniques, such as transient disruption of the BBB using low pulse electrical fields and intracerebroventricular infusion, lack specificity and have numerous safety concerns. In this review, we will focus on noninvasive transport mechanisms that offer high levels of biocompatibility, personalization, specificity and are regarded as generally safer than their invasive counterparts. Modifiable platforms can be designed to noninvasively traverse the BBB through one or more of the following pathways: passive diffusion through a physio-pathologically disrupted BBB, adsorptive-mediated transcytosis, receptor-mediated transcytosis, shuttle-mediated transcytosis, and somatic gene transfer. Through understanding the noninvasive pathways, new applications, including Chimeric Antigen Receptors T-cell (CAR-T) therapy, and approaches for drug delivery across the BBB are emerging.
Collapse
Affiliation(s)
- Courtney Culkins
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Roman Adomanis
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan Phan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise Robinson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ethan Slaton
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elijah Lothrop
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yinuo Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise R Kimmel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Engineering, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Rouatbi N, Walters AA, Costa PM, Qin Y, Liam-Or R, Grant V, Pollard SM, Wang JTW, Al-Jamal KT. RNA lipid nanoparticles as efficient in vivo CRISPR-Cas9 gene editing tool for therapeutic target validation in glioblastoma cancer stem cells. J Control Release 2024; 375:776-787. [PMID: 39284526 DOI: 10.1016/j.jconrel.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
In vitro and ex-vivo target identification strategies often fail to predict in vivo efficacy, particularly for glioblastoma (GBM), a highly heterogenous tumor rich in resistant cancer stem cells (GSCs). An in vivo screening tool can improve prediction of therapeutic efficacy by considering the complex tumor microenvironment and the dynamic plasticity of GSCs driving therapy resistance and recurrence. This study proposes lipid nanoparticles (LNPs) as an efficient in vivo CRISPR-Cas9 gene editing tool for target validation in mesenchymal GSCs. LNPs co-delivering mRNA (mCas9) and single-guide RNA (sgRNA) were successfully formulated and optimized facilitating both in vitro and in vivo gene editing. In vitro, LNPs achieved up to 67 % reduction in green fluorescent protein (GFP) expression, used as a model target, outperforming a commercial transfection reagent. Intratumoral administration of LNPs in GSCs resulted in ∼80 % GFP gene knock-out and a 2-fold reduction in GFP signal by day 14. This study showcases the applicability of CRISPR-Cas9 LNPs as a potential in vivo screening tool in GSCs, currently lacking effective treatment. By replacing GFP with a pool of potential targets, the proposed platform presents an exciting prospect for therapeutic target validation in orthotopic GSCs, bridging the gap between preclinical and clinical research.
Collapse
Affiliation(s)
- Nadia Rouatbi
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Adam A Walters
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Pedro M Costa
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Yue Qin
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Revadee Liam-Or
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Vivien Grant
- Centre for Regenerative Medicine, Institute for Regeneration and Repair & Cancer Research UK Scotland Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair & Cancer Research UK Scotland Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
7
|
Brezgin S, Frolova A, Bayurova E, Slatinskaya O, Ponomareva N, Parshina E, Bochkova Z, Kachanov A, Tikhonov A, Kostyusheva A, Karandashov I, Demina P, Latyshev O, Eliseeva O, Belikova M, Pokrovsky VS, Gegechkory V, Khaydukov E, Silachev D, Zamyatnin AA, Maksimov G, Lukashev A, Gordeychuk I, Chulanov V, Kostyushev D. Saponin is Essential for the Isolation of Proteins and RNA from Biological Nanoparticles. Anal Chem 2024; 96:17432-17443. [PMID: 39402710 DOI: 10.1021/acs.analchem.4c04607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Extracellular vesicles (EVs), biomimetics, and other biological nanoparticles (BNs) produced from human cells are gaining increasing attention in the fields of molecular diagnostics and nanomedicine for the delivery of therapeutic cargo. In particular, BNs are considered prospective delivery vehicles for different biologics, including protein and RNA therapeutics. Moreover, EVs are widely used in molecular diagnostics for early detection of disease-associated proteins and RNA. Technical approaches for measuring biologics mostly originated from the field of EVs and were later adopted for other BNs, such as extracellular vesicle-mimetic nanovesicles, membrane nanoparticles (nanoghosts), and hybrid nanoparticles, with minimal modifications. Here, we demonstrate that BNs are highly resistant to protocols that severely underestimate the protein and RNA content of BNs, and provide the relevance of these data both for general BNs characterization and practical applications of CRISPR/Cas-based therapies. We demonstrate that the addition of saponin leads to an ∼2- to 7-fold enhancement in protein isolation and an ∼2- to 242-fold improvement in RNA recovery rates and detection efficiency. Differences in the proteolipid contents of BNs, measured by Raman and surface-enhanced Raman spectroscopy, correlate with their susceptibility to saponin treatment for cargo extraction. Finally, we develop a unified protocol using saponin to efficiently isolate proteins and RNA from the BNs. These data demonstrate that previously utilized protocols underestimate BN cargo contents and offer gold standard protocols that can be broadly adopted into the field of nanobiologics, molecular diagnostics, and analytical chemistry.
Collapse
Affiliation(s)
- Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Division of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Anastasia Frolova
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Division of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), Moscow 142782, Russia
| | - Olga Slatinskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Division of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Evgeniia Parshina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Zhanna Bochkova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Andrey Tikhonov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Polina Demina
- Moscow Pedagogical State University, Moscow 119435, Russia
| | - Oleg Latyshev
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Olesja Eliseeva
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Maria Belikova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), Moscow 142782, Russia
| | - Vadim S Pokrovsky
- Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
- People's Friendship University, Moscow 117198, Russia
| | - Vladimir Gegechkory
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | | | - Denis Silachev
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow 119991, Russia
| | - Georgy Maksimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander Lukashev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Research Institute for Systems Biology and Medicine, Moscow 117246, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), Moscow 142782, Russia
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Division of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
8
|
Cui C, Du M, Zhao Y, Tang J, Liu M, Min G, Chen R, Zhang Q, Sun Z, Weng H. Functional Ginger-Derived Extracellular Vesicles-Coated ZIF-8 Containing TNF-α siRNA for Ulcerative Colitis Therapy by Modulating Gut Microbiota. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53460-53473. [PMID: 39303016 DOI: 10.1021/acsami.4c10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tumor necrosis factor-α (TNF-α) plays a causal role in the pathogenesis of ulcerative colitis (UC), and anti-TNF-α siRNA shows great promise in UC therapy. However, delivering siRNA with site-targeted stability and therapeutic efficacy is still challenging due to the complex and dynamic intestinal microenvironment. Here, based on the functional plant-derived ginger extracellular vesicles (EVs) and porous ZIF-8 nanoparticles, we propose a novel TNF-α siRNA delivery strategy (EVs@ZIF-8@siRNA) for UC targeted therapy. Ginger EVs show strong colon and macrophage targeting, as well as robust resistance to acidic degradation in the stomach. Moreover, 6-shogaol in ginger-derived EVs displays anti-inflammatory effects, which enhance the treatment efficiency by cooperation with TNF-α siRNA. In vitro experiments reveal that ZIF-8 nanoparticles have high TNF-α siRNA loading capacity and promote siRNA escape from cellular lysosomes. In vivo experiments show that the TNF-α level is reduced more significantly in colonic tissue than other nontargeted inflammation related factors, showing a good targeting of this composite nanoparticle. Furthermore, gut microbiota sequencing results demonstrate that the nanoparticles can promote intestinal barrier repair by regulating the intestinal microbial balance and restoring the intestinal health of UC mice. Therefore, the developed EVs@ZIF-8@siRNA nanoparticles may represent a novel colon-targeted oral drug, providing a promising therapeutic strategy for UC therapy.
Collapse
Affiliation(s)
- Chenyang Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Miao Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Yihang Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Jiaze Tang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Mengge Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Geng Min
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Rongchen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Qiang Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhaowei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Haibo Weng
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| |
Collapse
|
9
|
Muluh TA, Fu Q, Ai X, Wang C, Chen W, Zheng X, Wang W, Wang M, Shu XS, Ying Y. Targeting Ferroptosis as an Advance Strategy in Cancer Therapy. Antioxid Redox Signal 2024; 41:616-636. [PMID: 38959114 DOI: 10.1089/ars.2024.0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Significance: This study innovates by systematically integrating the molecular mechanisms of iron death and its application in cancer therapy. By deeply analyzing the interaction between iron death and the tumor microenvironment, the study provides a new theoretical basis for cancer treatment and directions for developing more effective treatment strategies. In addition, the study points to critical issues and barriers that need to be addressed in future research, providing valuable insights into the use of iron death in clinical translation. Recent Advances: These findings are expected to drive further advances in cancer treatment, bringing patients more treatment options and hope. Through this paper, we see the great potential of iron death in cancer treatment and look forward to more research results being translated into clinical applications in the future to contribute to the fight against cancer. Critical Issues: In today's society, cancer is still one of the major diseases threatening human health. Despite advances in existing treatments, cancer recurrence and drug resistance remain a severe problem. These problems increase the difficulty of treatment and bring a substantial physical and mental burden to patients. Therefore, finding new treatment strategies to overcome these challenges has become significant. Future Directions: The study delved into the molecular basis of iron death in tumor biology. It proposed a conceptual framework to account for the interaction of iron death with the tumor immune microenvironment, guide treatment selection, predict efficacy, explore combination therapies, and identify new therapeutic targets to overcome cancer resistance to standard treatments, peeving a path for future research and clinical translation of ferroptosis as a potential strategy in cancer therapy. Antioxid. Redox Signal. 41, 616-636. [Figure: see text].
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Qianqian Fu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaojiao Ai
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Changfeng Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiangyi Zheng
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Wang
- Shanghai Waker Bioscience Co., Ltd., Shanghai, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xing-Sheng Shu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ying Ying
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Akyuz E, Aslan FS, Gokce E, Ilmaz O, Topcu F, Kakac S. Extracellular vesicle and CRISPR gene therapy: Current applications in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Eur J Neurosci 2024; 60:6057-6090. [PMID: 39297377 DOI: 10.1111/ejn.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 10/17/2024]
Abstract
Neurodegenerative diseases are characterized by progressive deterioration of the nervous system. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) are prominently life-threatening examples of neurodegenerative diseases. The complexity of the pathophysiology in neurodegenerative diseases causes difficulties in diagnosing. Although the drugs temporarily help to correct specific symptoms including memory loss and degeneration, a complete treatment has not been found yet. New therapeutic approaches have been developed to understand and treat the underlying pathogenesis of neurodegenerative diseases. With this purpose, clustered-regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) technology has recently suggested a new treatment option. Editing of the genome is carried out by insertion and deletion processes on DNA. Safe delivery of the CRISPR/Cas system to the targeted cells without affecting surrounding cells is frequently investigated. Extracellular vesicles (EVs), that is exosomes, have recently been used in CRISPR/Cas studies. In this review, CRISPR/Cas and EV approaches used for diagnosis and/or treatment in AD, PD, ALS, and HD are reviewed. CRISPR/Cas and EV technologies, which stand out as new therapeutic approaches, may offer a definitive treatment option in neurodegenerative diseases.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Türkiye
| | | | - Enise Gokce
- School of Medicine, Pamukkale University, Denizli, Türkiye
| | - Oguzkan Ilmaz
- School of Medicine, Giresun University, Giresun, Türkiye
| | | | - Seda Kakac
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Türkiye
| |
Collapse
|
11
|
Yeon Kim S, Tang M, Lu T, Chih SY, Li W. Ferroptosis in glioma therapy: advancements in sensitizing strategies and the complex tumor-promoting roles. Brain Res 2024; 1840:149045. [PMID: 38821335 PMCID: PMC11323215 DOI: 10.1016/j.brainres.2024.149045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic regulated cell death, is induced by the accumulation of lipid peroxides on cellular membranes. Over the past decade, ferroptosis has emerged as a crucial process implicated in various physiological and pathological systems. Positioned as an alternative modality of cell death, ferroptosis holds promise for eliminating cancer cells that have developed resistance to apoptosis induced by conventional therapeutics. This has led to a growing interest in leveraging ferroptosis for cancer therapy across diverse malignancies. Gliomas are tumors arising from glial or precursor cells, with glioblastoma (GBM) being the most common malignant primary brain tumor that is associated with a dismal prognosis. This review provides a summary of recent advancements in the exploration of ferroptosis-sensitizing methods, with a specific focus on their potential application in enhancing the treatment of gliomas. In addition to summarizing the therapeutic potential, this review also discusses the intricate interplay of ferroptosis and its potential tumor-promoting roles within gliomas. Recognizing these dual roles is essential, as they could potentially complicate the therapeutic benefits of ferroptosis. Exploring strategies aimed at circumventing these tumor-promoting roles could enhance the overall therapeutic efficacy of ferroptosis in the context of glioma treatment.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Miaolu Tang
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Tong Lu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Stephen Y Chih
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
12
|
Wei Y, Xu Y, Sun Q, Hong Y, Liang S, Jiang H, Zhang X, Zhang S, Chen Q. Targeting ferroptosis opens new avenues in gliomas. Int J Biol Sci 2024; 20:4674-4690. [PMID: 39309434 PMCID: PMC11414377 DOI: 10.7150/ijbs.96476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Gliomas are one of the most challenging tumors to treat due to their malignant phenotype, brain parenchymal infiltration, intratumoral heterogeneity, and immunosuppressive microenvironment, resulting in a high recurrence rate and dismal five-year survival rate. The current standard therapies, including maximum tumor resection, chemotherapy with temozolomide, and radiotherapy, have exhibited limited efficacy, which is caused partially by the resistance of tumor cell death. Recent studies have revealed that ferroptosis, a newly defined programmed cell death (PCD), plays a crucial role in the occurrence and progression of gliomas and significantly affects the efficacy of various treatments, representing a promising therapeutic strategy. In this review, we provide a comprehensive overview of the latest progress in ferroptosis, its involvement and regulation in the pathophysiological process of gliomas, various treatment hotspots, the existing obstacles, and future directions worth investigating. Our review sheds light on providing novel insights into manipulating ferroptosis to provide potential targets and strategies of glioma treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| |
Collapse
|
13
|
Hu C, Chen Q, Wu T, Du X, Dong Y, Peng Z, Xue W, Sunkara V, Cho YK, Dong L. The Role of Extracellular Vesicles in the Treatment of Prostate Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311071. [PMID: 38639331 DOI: 10.1002/smll.202311071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Prostate cancer (PCa) has become a public health concern in elderly men due to an ever-increasing number of estimated cases. Unfortunately, the available treatments are unsatisfactory because of a lack of a durable response, especially in advanced disease states. Extracellular vesicles (EVs) are lipid-bilayer encircled nanoscale vesicles that carry numerous biomolecules (e.g., nucleic acids, proteins, and lipids), mediating the transfer of information. The past decade has witnessed a wide range of EV applications in both diagnostics and therapeutics. First, EV-based non-invasive liquid biopsies provide biomarkers in various clinical scenarios to guide treatment; EVs can facilitate the grading and staging of patients for appropriate treatment selection. Second, EVs play a pivotal role in pathophysiological processes via intercellular communication. Targeting key molecules involved in EV-mediated tumor progression (e.g., proliferation, angiogenesis, metastasis, immune escape, and drug resistance) is a potential approach for curbing PCa. Third, EVs are promising drug carriers. Naïve EVs from various sources and engineered EV-based drug delivery systems have paved the way for the development of new treatment modalities. This review discusses the recent advancements in the application of EV therapies and highlights EV-based functional materials as novel interventions for PCa.
Collapse
Affiliation(s)
- Cong Hu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qi Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tianyang Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanhao Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zehong Peng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Vijaya Sunkara
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science Ulsan, Ulsan, 44919, Republic of Korea
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
14
|
Li X, Li L, Fu X, Huang S, Wang Y, Yang Y, Zhou S, Zou Z, Peng Q, Zhang C. A novel tetrahedral framework nucleic acid-derived chemodynamic therapy agent for effective glioblastoma treatment. Cell Prolif 2024:e13736. [PMID: 39180500 DOI: 10.1111/cpr.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Chemodynamic therapy (CDT) has garnered significant attention for treating diverse malignant tumours due to its minimally invasive nature, reduced damage to healthy tissues, and potential mitigation of side effects. However, its application in glioblastoma (GBM) is hindered by the diminished capacity of CDT agents to traverse the blood-brain barrier (BBB), inadequate tumour targeting efficiency, and restricted availability of H2O2 within the tumour microenvironment (TME). To address these challenges, we devised a novel CDT agent (Fe@tFNAs-ANG-3AT) based on a tetrahedral framework nucleic acids (tFNAs). Fe@tFNAs-ANG-3AT was constructed by anchoring iron ions (Fe3+) onto the dual appendages-modified tFNAs. Specifically, one appendage, Angiopep-2 (ANG, a penetrating peptide), facilitates Fe@tFNAs-ANG-3AT penetration across the BBB and selective targeting of tumour cells. Simultaneously, the second appendage, 3-Amino-1,2,4-triazole (3AT, a H2O2 enzyme inhibitor), augments the H2O2 levels required for effective CDT treatment. Upon tumour cell internalization, the loaded Fe3+ in Fe@tFNAs-ANG-3AT is reduced to Fe2+ by the overexpressed glutathione (GSH) in the TME, catalysing the generation of cytotoxic hydroxyl radicals (·OH) and inducing tumour cell death via elevated oxidative stress levels within tumour cells. It is anticipated that Fe@tFNAs-ANG-3AT holds promise as a transformative treatment strategy for GBM.
Collapse
Affiliation(s)
- Xiaodie Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Fu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shiqian Huang
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuepeng Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqin Zhou
- Department of Anesthesiology of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Zhaowei Zou
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Peng
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Chao Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Kalinina E. Glutathione-Dependent Pathways in Cancer Cells. Int J Mol Sci 2024; 25:8423. [PMID: 39125992 PMCID: PMC11312684 DOI: 10.3390/ijms25158423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The most abundant tripeptide-glutathione (GSH)-and the major GSH-related enzymes-glutathione peroxidases (GPxs) and glutathione S-transferases (GSTs)-are highly significant in the regulation of tumor cell viability, initiation of tumor development, its progression, and drug resistance. The high level of GSH synthesis in different cancer types depends not only on the increasing expression of the key enzymes of the γ-glutamyl cycle but also on the changes in transport velocity of its precursor amino acids. The ability of GPxs to reduce hydroperoxides is used for cellular viability, and each member of the GPx family has a different mechanism of action and site for maintaining redox balance. GSTs not only catalyze the conjugation of GSH to electrophilic substances and the reduction of organic hydroperoxides but also take part in the regulation of cellular signaling pathways. By catalyzing the S-glutathionylation of key target proteins, GSTs are involved in the regulation of major cellular processes, including metabolism (e.g., glycolysis and the PPP), signal transduction, transcription regulation, and the development of resistance to anticancer drugs. In this review, recent findings in GSH synthesis, the roles and functions of GPxs, and GST isoforms in cancer development are discussed, along with the search for GST and GPx inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
16
|
Zeng X, Lin GX, Zeng X, Zheng J, Ren C, Luo Z, Xiao K, Sun N, Zhang L, Rui G, Chen X. Penfluridol regulates p62 / Keap1 / Nrf2 signaling pathway to induce ferroptosis in osteosarcoma cells. Biomed Pharmacother 2024; 177:117094. [PMID: 38996707 DOI: 10.1016/j.biopha.2024.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The cure rate for patients with osteosarcoma (OS) has stagnated over the past few decades. Penfluridol, a first-generation antipsychotic, has demonstrated to prevent lung and esophageal malignancies from proliferation and metastasis. However, the effect of penfluridol on OS and its underlying molecular mechanism remains unclear. This study revealed that penfluridol effectively inhibited cell proliferation and migration, and induced G2/M phase arrest in OS cells. In addition, penfluridol treatment was found to increased reactive oxygen species (ROS) levels in OS cells. Combined with the RNA-Seq results, the anti-OS effect of penfluridol was hypothesized to be attributed to the induction of ferroptosis. Western blot results showed that penfluridol promoted intracellular Fe2+ concentration, membrane lipid peroxidation, and decreased intracellular GSH level to induce ferroptosis. Further studies showed that p62/Keap1/Nrf2 signaling pathway was implicated in penfluridol-induced ferroptosis in OS cells. Overexpression of p62 effectively reversed penfluridol-induced ferroptosis. In vivo, penfluridol effectively inhibited proliferation and prolonged survival in xenograft tumor model. Therefore, penfluridol is a promising drug targeting OS in the future.
Collapse
Affiliation(s)
- Xiangchen Zeng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guang-Xun Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xianhui Zeng
- Department of Infectious Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 570206, China
| | - Jiyuan Zheng
- The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Chong Ren
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhong Luo
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Keyi Xiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Naikun Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Long Zhang
- Department of Pain, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Gang Rui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Xiaohui Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
17
|
Yang Y, Chen H, Li Y, Liang J, Huang F, Wang L, Miao H, Nanda HS, Wu J, Peng X, Zhou Y. Hydrogel Loaded with Extracellular Vesicles: An Emerging Strategy for Wound Healing. Pharmaceuticals (Basel) 2024; 17:923. [PMID: 39065772 PMCID: PMC11280375 DOI: 10.3390/ph17070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
An increasing number of novel biomaterials have been applied in wound healing therapy. Creating beneficial environments and containing various bioactive molecules, hydrogel- and extracellular vesicle (EV)-based therapies have respectively emerged as effective approaches for wound healing. Moreover, the synergistic combination of these two components demonstrates more favorable outcomes in both chronic and acute wound healing. This review provides a comprehensive discussion and summary of the combined application of EVs and hydrogels to address the intricate scenario of wounds. The wound healing process and related biological mechanisms are outlined in the first section. Subsequently, the utilization of EV-loaded hydrogels during the wound healing process is evaluated and discussed. The moist environment created by hydrogels is conducive to wound tissue regeneration. Additionally, the continuous and controlled release of EVs from various origins could be achieved by hydrogel encapsulation. Finally, recent in vitro and in vivo studies reported on hydrogel dressings loaded with EVs are summarized and challenges and opportunities for the future clinical application of this therapeutic approach are outlined.
Collapse
Affiliation(s)
- Yucan Yang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Huizhi Chen
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Yunjie Li
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Junting Liang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Feng Huang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Liyan Wang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Huilai Miao
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, Madhya Pradesh, India;
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xinsheng Peng
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Yubin Zhou
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
18
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Chen F, Kang R, Tang D, Liu J. Ferroptosis: principles and significance in health and disease. J Hematol Oncol 2024; 17:41. [PMID: 38844964 PMCID: PMC11157757 DOI: 10.1186/s13045-024-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia-reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
20
|
Zhang X, Li G, Chen H, Nie XW, Bian JS. Targeting NKAα1 to treat Parkinson's disease through inhibition of mitophagy-dependent ferroptosis. Free Radic Biol Med 2024; 218:190-204. [PMID: 38574977 DOI: 10.1016/j.freeradbiomed.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Dysfunction of the Na+/K+-ATPase (NKA) has been documented in various neurodegenerative diseases, yet the specific role of NKAα1 in Parkinson's disease (PD) remains incompletely understood. In this investigation, we utilized NKAα1 haploinsufficiency (NKAα1+/-) mice to probe the influence of NKAα1 on dopaminergic (DA) neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our findings reveal that NKAα1+/- mice displayed a heightened loss of DA neurons and more pronounced motor dysfunction compared to the control group when exposed to MPTP. Intriguingly, this phenomenon coincided with the activation of ferroptosis and impaired mitophagy both in vivo and in vitro. To scrutinize the role and underlying mechanism of NKAα1 in PD, we employed DR-Ab, an antibody targeting the DR-region of the NKA α subunit. Our study demonstrates that the administration of DR-Ab effectively reinstated the membrane abundance of NKAα1, thereby mitigating MPTP-induced DA neuron loss and subsequent improvement in behavioral deficit. Mechanistically, DR-Ab heightened the formation of the surface NKAα1/SLC7A11 complex, inhibiting SLC7A11-dependent ferroptosis. Moreover, DR-Ab disrupted the cytosolic interaction between NKAα1 and Parkin, facilitating the translocation of Parkin to mitochondria and enhancing the process of mitophagy. In conclusion, this study establishes NKAα1 as a key regulator of ferroptosis and mitophagy, identifying its DR-region as a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Guanghong Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hanbin Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiao-Wei Nie
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
21
|
Cela I, Capone E, Trevisi G, Sala G. Extracellular vesicles in glioblastoma: Biomarkers and therapeutic tools. Semin Cancer Biol 2024; 101:25-43. [PMID: 38754752 DOI: 10.1016/j.semcancer.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Glioblastoma (GBM) is the most aggressive tumor among the gliomas and intracranial tumors and to date prognosis for GBM patients remains poor, with a median survival typically measured in months to a few years depending on various factors. Although standardized therapies are routinely employed, it is clear that these strategies are unable to cope with heterogeneity and invasiveness of GBM. Furthermore, diagnosis and monitoring of responses to therapies are directly dependent on tissue biopsies or magnetic resonance imaging (MRI) techniques. From this point of view, liquid biopsies are arising as key sources of a variety of biomarkers with the advantage of being easily accessible and monitorable. In this context, extracellular vesicles (EVs), physiologically shed into body fluids by virtually all cells, are gaining increasing interest both as natural carriers of biomarkers and as specific signatures even for GBM. What makes these vesicles particularly attractive is they are also emerging as therapeutical vehicles to treat GBM given their native ability to cross the blood-brain barrier (BBB). Here, we reviewed recent advances on the use of EVs as biomarker for liquid biopsy and nanocarriers for targeted delivery of anticancer drugs in glioblastoma.
Collapse
Affiliation(s)
- Ilaria Cela
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gianluca Trevisi
- Department of Neurosciences, Imaging and Clinical Sciences, "G. D'Annunzio" University, Chieti, Italy; Neurosurgical Unit, Santo Spirito Hospital, Pescara 65121, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
22
|
Liu X, Zhang J, Zheng S, Li M, Xu W, Shi J, Kamei KI, Tian C. Hybrid adipocyte-derived exosome nano platform for potent chemo-phototherapy in targeted hepatocellular carcinoma. J Control Release 2024; 370:168-181. [PMID: 38643936 DOI: 10.1016/j.jconrel.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The high prevalence and severity of hepatocellular carcinoma (HCC) present a significant menace to human health. Despite the significant advancements in nanotechnology-driven antineoplastic agents, there remains a conspicuous gap in the development of targeted chemotherapeutic agents specifically designed for HCC. Consequently, there is an urgent need to explore potent drug delivery systems for effective HCC treatment. Here we have exploited the interplay between HCC and adipocyte to engineer a hybrid adipocyte-derived exosome platform, serving as a versatile vehicle to specifically target HCC and exsert potent antitumor effect. A lipid-like prodrug of docetaxel (DSTG) with a reactive oxygen species (ROS)-cleavable linker, and a lipid-conjugated photosensitizer (PPLA), spontaneously co-assemble into nanoparticles, functioning as the lipid cores of the hybrid exosomes (HEMPs and NEMPs). These nanoparticles are further encapsuled within adipocyte-derived exosome membranes, enhancing their affinity towards HCC cancer cells. As such, cancer cell uptakes of hybrid exosomes are increased up to 5.73-fold compared to lipid core nanoparticles. Our in vitro and in vivo experiments have demonstrated that HEMPs not only enhance the bioactivity of the prodrug and extend its circulation in the bloodstream but also effectively inhibit tumor growth by selectively targeting hepatocellular carcinoma tumor cells. Self-facilitated synergistic drug release subsequently promoting antitumor efficacy, inducing significant inhibition of tumor growth with minimal side effects. Our findings herald a promising direction for the development of targeted HCC therapeutics.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiaxin Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wenqian Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, PR China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Program of Biology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Program of Bioengineering, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, Tandon School of Engineering, New York University, MetroTech, Brooklyn, NY 11201, United States of America.
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, PR China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, PR China.
| |
Collapse
|
23
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
24
|
Peng Y, Zhan M, Karpus A, Zou Y, Mignani S, Majoral JP, Shi X, Shen M. Brain Delivery of Biomimetic Phosphorus Dendrimer/Antibody Nanocomplexes for Enhanced Glioma Immunotherapy via Immune Modulation of T Cells and Natural Killer Cells. ACS NANO 2024; 18:10142-10155. [PMID: 38526307 DOI: 10.1021/acsnano.3c13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Fully mobilizing the activities of multiple immune cells is crucial to achieve the desired tumor immunotherapeutic efficacy yet still remains challenging. Herein, we report a nanomedicine formulation based on phosphorus dendrimer (termed AK128)/programmed cell death protein 1 antibody (aPD1) nanocomplexes (NCs) that are camouflaged with M1-type macrophage cell membranes (M1m) for enhanced immunotherapy of orthotopic glioma. The constructed AK128-aPD1@M1m NCs with a mean particle size of 160.3 nm possess good stability and cytocompatibility. By virtue of the decorated M1m having α4 and β1 integrins, the NCs are able to penetrate the blood-brain barrier to codeliver both AK128 with intrinsic immunomodulatory activity and aPD1 to the orthotopic glioma with prolonged blood circulation time. We show that the phosphorus dendrimer AK128 can boost natural killer (NK) cell proliferation in peripheral blood mononuclear cells, while the delivered aPD1 enables immune checkpoint blockade (ICB) to restore the cytotoxic T cells and NK cells, thus promoting tumor cell apoptosis and simultaneously decreasing the tumor distribution of regulatory T cells vastly for improved glioma immunotherapy. The developed nanomedicine formulation with a simple composition achieves multiple modulations of immune cells by utilizing the immunomodulatory activity of nanocarrier and antibody-mediated ICB therapy, providing an effective strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Yamin Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
| | - Yu Zou
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
25
|
Kim HI, Park J, Zhu Y, Wang X, Han Y, Zhang D. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp Mol Med 2024; 56:836-849. [PMID: 38556545 PMCID: PMC11059217 DOI: 10.1038/s12276-024-01201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 04/02/2024] Open
Abstract
Exosomes, which are nanosized vesicles secreted by cells, are attracting increasing interest in the field of biomedical research due to their unique properties, including biocompatibility, cargo loading capacity, and deep tissue penetration. They serve as natural signaling agents in intercellular communication, and their inherent ability to carry proteins, lipids, and nucleic acids endows them with remarkable therapeutic potential. Thus, exosomes can be exploited for diverse therapeutic applications, including chemotherapy, gene therapy, and photothermal therapy. Moreover, their capacity for homotypic targeting and self-recognition provides opportunities for personalized medicine. Despite their advantages as novel therapeutic agents, there are several challenges in optimizing cargo loading efficiency and structural stability and in defining exosome origins. Future research should include the development of large-scale, quality-controllable production methods, the refinement of drug loading strategies, and extensive in vivo studies and clinical trials. Despite the unresolved difficulties, the use of exosomes as efficient, stable, and safe therapeutic delivery systems is an interesting area in biomedical research. Therefore, this review describes exosomes and summarizes cutting-edge studies published in high-impact journals that have introduced novel or enhanced therapeutic effects using exosomes as a drug delivery system in the past 2 years. We provide an informative overview of the current state of exosome research, highlighting the unique properties and therapeutic applications of exosomes. We also emphasize challenges and future directions, underscoring the importance of addressing key issues in the field. With this review, we encourage researchers to further develop exosome-based drugs for clinical application, as such drugs may be among the most promising next-generation therapeutics.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea.
- Sarcopenia Total Solution Center, Wonkwang University, Iksan, 54538, Republic of Korea.
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
26
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
27
|
Begagić E, Bečulić H, Đuzić N, Džidić-Krivić A, Pugonja R, Muharemović A, Jaganjac B, Salković N, Sefo H, Pojskić M. CRISPR/Cas9-Mediated Gene Therapy for Glioblastoma: A Scoping Review. Biomedicines 2024; 12:238. [PMID: 38275409 PMCID: PMC10813360 DOI: 10.3390/biomedicines12010238] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
This scoping review examines the use of CRISPR/Cas9 gene editing in glioblastoma (GBM), a predominant and aggressive brain tumor. Categorizing gene targets into distinct groups, this review explores their roles in cell cycle regulation, microenvironmental dynamics, interphase processes, and therapy resistance reduction. The complexity of CRISPR-Cas9 applications in GBM research is highlighted, providing unique insights into apoptosis, cell proliferation, and immune responses within the tumor microenvironment. The studies challenge conventional perspectives on specific genes, emphasizing the potential therapeutic implications of manipulating key molecular players in cell cycle dynamics. Exploring CRISPR/Cas9 gene therapy in GBMs yields significant insights into the regulation of cellular processes, spanning cell interphase, renewal, and migration. Researchers, by precisely targeting specific genes, uncover the molecular orchestration governing cell proliferation, growth, and differentiation during critical phases of the cell cycle. The findings underscore the potential of CRISPR/Cas9 technology in unraveling the complex dynamics of the GBM microenvironment, offering promising avenues for targeted therapies to curb GBM growth. This review also outlines studies addressing therapy resistance in GBM, employing CRISPR/Cas9 to target genes associated with chemotherapy resistance, showcasing its transformative potential in effective GBM treatments.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Nermin Đuzić
- Department of Genetics and Bioengineering, International Burch University Sarajevo, Francuske revolucije BB, 71000 Sarajevo, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Ragib Pugonja
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Asja Muharemović
- Department of Genetics and Bioengineering, International Burch University Sarajevo, Francuske revolucije BB, 71000 Sarajevo, Bosnia and Herzegovina
| | - Belma Jaganjac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Naida Salković
- Department of General Medicine, School of Medicine, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina;
| | - Haso Sefo
- Clinic of Neurosurgery, University Clinical Center Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany;
| |
Collapse
|
28
|
Zhu S, Wang J, Suo M, Huang H, Liu X, Wang J, Li Z. Can extracellular vesicles be considered as a potential frontier in the treatment of intervertebral disc disease? Ageing Res Rev 2023; 92:102094. [PMID: 37863436 DOI: 10.1016/j.arr.2023.102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
As a global public health problem, low back pain (LBP) caused by intervertebral disc degeneration (IDD) seriously affects patients' quality of life. In addition, the prevalence of IDD tends to be younger, which brings a huge burden to individuals and society economically. Current treatments do not delay or reverse the progression of IDD. The emergence of biologic therapies has brought new hope for the treatment of IDD. Among them, extracellular vesicles (EVs), as nanoscale bioactive substances that mediate cellular communication, have now produced many surprising results in the research of the treatment of IDD. This article reviews the mechanisms and roles of EVs in delaying IDD and describes the prospects and challenges of EVs.
Collapse
Affiliation(s)
- Shengxu Zhu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Junlin Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China.
| |
Collapse
|
29
|
Lunavat TR, Nieland L, Vrijmoet AB, Zargani-Piccardi A, Samaha Y, Breyne K, Breakefield XO. Roles of extracellular vesicles in glioblastoma: foes, friends and informers. Front Oncol 2023; 13:1291177. [PMID: 38074665 PMCID: PMC10704464 DOI: 10.3389/fonc.2023.1291177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 02/12/2024] Open
Abstract
Glioblastoma (GB) tumors are one of the most insidious cancers which take over the brain and defy therapy. Over time and in response to treatment the tumor and the brain cells in the tumor microenvironment (TME) undergo many genetic/epigenetic driven changes in their phenotypes and this is reflected in the cellular contents within the extracellular vesicles (EVs) they produce. With the result that some EVs try to subdue the tumor (friends of the brain), while others participate in the glioblastoma takeover (foes of the brain) in a dynamic and ever changing process. Monitoring the contents of these EVs in biofluids can inform decisions based on GB status to guide therapeutic intervention. This review covers primarily recent research describing the different cell types in the brain, as well as the tumor cells, which participate in this EV deluge. This includes EVs produced by the tumor which manipulate the transcriptome of normal cells in their environment in support of tumor growth (foes), as well as responses of normal cells which try to restrict tumor growth and invasion, including traveling to cervical lymph nodes to present tumor neo-antigens to dendritic cells (DCs). In addition EVs released by tumors into biofluids can report on the status of living tumor cells via their cargo and thus serving as biomarkers. However, EVs released by tumor cells and their influence on normal cells in the tumor microenvironment is a major factor in immune suppression and coercion of normal brain cells to join the GB "band wagon". Efforts are being made to deploy EVs as therapeutic vehicles for drugs and small inhibitory RNAs. Increasing knowledge about EVs in the TME is being utilized to track tumor progression and response to therapy and even to weaponize EVs to fight the tumor.
Collapse
Affiliation(s)
- Taral R. Lunavat
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lisa Nieland
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Neurosurgery, Leiden University Medical Center, Leiden, RC, Netherlands
| | - Anne B. Vrijmoet
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ayrton Zargani-Piccardi
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Youssef Samaha
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Koen Breyne
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Xandra O. Breakefield
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|